SANS

Scattering (or diffraction) of X-rays, light, or neutrons at small angles is used to examine objects that are large compared to the wavelength (λ) of the radiation used.

Sizes of interest = "large scale structures" = 1 - 300 nm or more

- •Mesoporous structures
- Biological structures (membranes, vesicles, proteins in solution)Polymers
- •Colloids and surfactants (micelles and more)
- •Magnetic films and nanoparticles
- •Voids and Precipitates

WHY USE NEUTRONS?

- -- Neutrons interact through short-range nuclear interactions. They have no charge and are very penetrating and do not destroy samples.
- -- Neutron wavelengths are comparable to atomic sizes and interdistance spacings.
- -- Neutrons interactions with hydrogen and deuterium are widely different making the deuterium labeling method an advantage.

In the case of light or X-rays, the scattering cross-section of an atom (a concept which may be likened to the collision cross-section encountered in the classical derivation of chemical kinetic theory) increases in direct proportion to the number of electrons present; that is, it increases with increasing atomic number, Z. However, the strength of the neutron-nucleus interaction varies completely irregularly with Z; not even isotopes of the same element have the same neutron scattering crosssection, σ . The most significant isotopic variation occurs when Z = 1. Hydrogen has a (coherent) σ_{coh} of 1.75′ 10⁻²⁴ cm² (or, in physicists units, 1.75 barns) which is roughly the same as that of manganese. On the other hand, for deuterium $\sigma_{coh} = 5.6$ barns, similar to the value for carbon-12. Thus, and unlike X-rays, not only can neutrons "see" hydrogen isotopes, but they can differentiate between them.

For <u>neutrons</u>, b_i depends on nucleus (isotope, spin relative to neutron ($\uparrow\uparrow$ or $\downarrow\uparrow$)), etc. Even for one type of atom,

 $b_i = \langle b \rangle + \delta b_i \leftarrow \text{random variable}$

• Neutron "contrast variation" provides powerful and often unique insights.

• Carefully designed experiments provide information on much more than "structure" alone.

The Neutron has Both Particle-Like and Wave-Like Properties

- Mass: m_n = 1.675 x 10⁻²⁷ kg
- Charge = 0; Spin = ¹/₂
- Magnetic dipole moment: $\mu_n = -1.913 \,\mu_N$
- Nuclear magneton: $\mu_N = eh/4\pi m_p = 5.051 \text{ x } 10^{-27} \text{ J } \text{T}^{-1}$
- Velocity (v), kinetic energy (E), wavevector (k), wavelength (λ), temperature (T).
- $E = m_n v^2/2 = k_B T = (hk/2\pi)^2/2m_n$; $k = 2 \pi/\lambda = m_n v/(h/2\pi)$

	Energy (meV)	Temp (K)	Wavelength (nm)
Cold	0.1 – 10	1 – 120	0.4 – 3
Thermal	5 – 100	60 — 1000	0.1 – 0.4
Hot	100 – 500	1000 – 6000	0.04 – 0.1

 λ (nm) = 395.6 / v (m/s) E (meV) = 0.02072 k² (k in nm⁻¹)

2D detector

A diffraction pattern is obtained (not a direct image)

• Rather than use scattering angle $2\theta_s$ to show the diffraction pattern we use the scattering vector Q (in "reciprocal space"

Constructive interference from structures in the direction of **q**

Diffraction length scale
$$d \approx \frac{2\pi}{q}$$

 $2\theta \approx \frac{\lambda}{d} \approx \frac{6\dot{A}}{60 \text{ to } 1000\dot{A}}$
 $2\theta \approx 0.3^{\circ} \text{ to } 5^{\circ}$

Scattering is at small angles - non-zero but smaller than classical diffraction angles

The NG3 30 m NIST-SANS Instrument

30 m NIST-SANS Instrument Characteristics

Source:	neutron guide (NG3), 6 x 6 cm ²		
Monochromator:	mechanical velocity selector with variable speed and pitch		
Wavelength Range:	variable from 5 Å to 20 Å		
Wavelength Resol.:	10% to 30% for Δλ/λ (FWHM)		
Source-to-Sample Dist.:	3.5 to 15m in 1.5m steps via insertion of neutron guides		
Sample-to-Detector Dist.	:1.3 to 13.2 m continuously variable for NG3		
Collimation:	circular pinhole collimation		
Sample Size:	0.5 to 2.5 cm diameter		
Q-range:	0.001 to 0.6 Å ⁻¹		
Size Regime:	10 Å to 6000 Å		
Detector:	64 x 64 cm ² He-3 position-sensitive area detector		
	proportional counter (0.5 cm ² resolution).		

Why such a long instrument?

When you perform an experiment you'll always try to have as much intensity as possible with a good resolution (δQ). Essentially $L_1 \approx L_2$

TOF instruments

LOQ data reduction, (e.g. for 49% d-PS/ h-PS)

R.K.Heenan, J.Penfold & S.M.King, J.Appl.Cryst. 30(1997)1140-1147

Small Angle Samples

Neutrons -

- 8-12 mm diameter beam
- 1mm thick (2mm in D₂O)
- Quartz glass cells

 (as for UV spectroscopy, no Boron which adsorbs neutrons, as does Cadmium)
- · Pressure, shear cells, cryostat, furnace etc, fairly easy

X-Rays -

- Thin samples
- Mica window cells
- Radiation damage and/or heating ?
- Powerful synchrotron X-ray beams do now allow more complex sample environment – but samples still fry!

SANS SAMPLES AND CELL HOLDERS

SANS samples can be solid, gels, solutions or powders. Sample thicknesses are 1 mm to 2 mm. Sample diameter can vary between 0.5 cm and 2 cm.

- Easier to think in terms of material properties rather than atomic properties
- · Define a "Scattering Length Density"

$$p(\vec{r}) = b_i \delta(\vec{r} - \vec{r}_i)$$

or
$$\sum_{i=1}^{n} b_i$$

$$\rho = \frac{1}{\overline{v}}$$

 \overline{V} is the volume containing the n atoms

• Can we really use scattering length densities?

 We can use material properties rather than atomic properties when doing <u>small-angle</u> scattering

Neutron scattering length densities

$$\rho = \frac{\sum n_i b_i}{V} \quad \text{V can be any suitable} \quad V_{MOLAR} = \frac{\rho_{BULK} N_A}{M}$$
e.g. water $V = \frac{1.0g.cm^{-3} 6.023 \times 10^{23}}{18.0152g.mol^{-1}} = 29.915 \times 10^{-24} cm^3 = 29.915 \text{ Å}^3$
H₂O $\rho = \frac{(2 \times (-0.3739) + 0.580) \times 10^{-12} cm}{29.915 \times 10^{-24} cm^3} = -0.56 \times 10^{10} cm^{-2}$
D₂O $\rho = \frac{(2 \times 0.667 + 0.580) \times 10^{-12} cm}{29.915 \times 10^{-24} cm^3} = 6.40 \times 10^{10} cm^{-2}$

NOTE units of length per unit volume! x 10¹⁰ cm⁻² is the same as x 10⁻⁶ Å⁻², 1Å = 10⁻⁸ cm = 0.1nm ¹H (⁷Li, ⁶²Ni,⁴⁸Ti etc) have a negative *b* due to phase shift via neutron spin interaction.

Digression - useful units!

Distances in Angstrom, $1 \text{ Å} = 10^{-10} \text{ m} = 10^{-8} \text{ cm} = 0.1 \text{ nm}$

Scattering lengths are in femtometres, 1 fm = 10⁻¹⁵ m

Total and absorption cross sections in "barns", 1 barn = 10-24 cm²

Neutron wide angle diffraction scattering cross sections are often "barns per molecule" or "barns per atom"

To go from SANS type cm⁻¹ to barns per molecule (both have implied "per steradian" for scattering probability per unit solid angle) multiply by V_{MOLAR} in Å³.

 $(\partial \Sigma / \partial \Omega)$ [cm⁻¹] x V [Å³] = $(\partial \Sigma / \partial \Omega)$ [cm⁻¹] V [10⁻²⁴ cm³] = $(\partial \Sigma / \partial \Omega)$ ' [10⁻²⁴ cm²] = $(\partial \Sigma / \partial \Omega)$ ' [barns]

matching the contrast of different parts of a spherical shell by varying solvent deuteration

Specific deuteration enhances the contrast and/or "strains" parts of a macromolecular complex or single polymer chains in a matrix

contrast variation in polymer melts

Small Angle Neutron Scattering (SANS)

Macromolecular structures: polymers, micelles,complex fluids, precipitates,porous media, fractal structures

Measure: Scattered Intensity => <u>Macroscopic cross section</u> = (Scattered intensity(Q) / Incident intensity) T d

$$\frac{d\Sigma}{d\Omega} \left[\vec{Q}_{S} \right] = \frac{\left| \iiint_{V_{S}} \Delta \rho \left[\vec{r} \right] \exp \left[i \vec{Q}_{S} \cdot \vec{r} \right] d^{3} \vec{r} \right|^{2}}{V_{S}}$$

|3-D Fourier Transform of scattering contrast|² normalized to sample scattering volume

Reciprocity in diffraction: Fourier features at $Q_S =>$ size $d \sim 2\pi/Q_S$ Intensity at smaller Q_S (angle) => larger structures

Sample Scattering

- Contribution to detector counts
- 1) Scattering from sample
- 2) Scattering from other than sample (neutrons still go through sample)
- 3) Stray neutrons and electronic noise (neutrons don't go through sample)

 $I_{meas}(i) = \Phi t A \epsilon(i) \Delta \Omega T_{c+s}[(d\Sigma/d\Omega)_{s}(i) d_{s} + (d\Sigma/d\Omega)_{c}(i) d_{c}] + I_{bgd} t$

SANS DATA ACQUISITION

- -- Choose neutron wavelength (λ = 6 Å) and wavelength spread ($\Delta\lambda/\lambda$ =15%).
- -- Choose source-to-sample distance L₁ and sample-to-detector distance L₂.
- -- Choose counting time.
- -- Measure scattering: Empty cell scattering Sample scattering Blocked beam scattering
- -- Measure transmission: Cell transmission Empty cell transmission
- -- Neutron transmission is the ratio of the transmitted beam to the incident beam.

SANS DATA REDUCTION

Correct for empty cell and blocked beam scattering.

 $I(Q) = [I_{sample+cell} - I_{blocked beam}]/T_{sample+cell} - [I_{cell} - I_{blocked beam}]T_{cell}$

Rescale the SANS intensity to an absolute scale (units of cm⁻¹).

Perform the radial averaging for isotropic scattering to obtain the Q-dependent macroscopic cross section $I(Q) = d\Sigma(Q)/d\Omega$.

General Two-Phase System

• Incompressible phases of scattering length density ρ_1 and ρ_2

$$\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2$$

$$\rho(\mathbf{r}) = \begin{cases} \rho_1 \text{ in } V_1 \\ \rho_2 \text{ in } V_2 \end{cases}$$

break the total volume into two sub-volumes

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = \frac{1}{V} \left| \int_{V_1} \rho_1 e^{i\vec{q}\cdot\vec{r}} d\vec{r}_1 + \int_{V_2} \rho_2 e^{i\vec{q}\cdot\vec{r}} d\vec{r}_2 \right|^2$$
$$\frac{d\Sigma}{d\Omega}(\vec{q}) = \frac{1}{V} \left| \rho_1 \int_{V_1} e^{i\vec{q}\cdot\vec{r}} d\vec{r}_1 + \rho_2 \left\{ \int_{V} e^{i\vec{q}\cdot\vec{r}} d\vec{r} - \int_{V_1} e^{i\vec{q}\cdot\vec{r}} d\vec{r}_1 \right\} \right|^2$$

· So at non-zero q-values:

Babinet's Principle

Two structures give the same scattering

$$\frac{d\Sigma}{d\Omega}(\boldsymbol{\bar{q}}) \propto \left(\boldsymbol{\rho}_1 - \boldsymbol{\rho}_2\right)^2$$

*incoherent scattering may be different

Scattering Invariant

10 % black 90 % white in each square

· Scattered intensity for each would certainly be different

$$Q_I \equiv \int_{0}^{\infty} q^2 \frac{d\Sigma}{d\Omega}(q) \, dq$$

• For an incompressible, two-phase system:

$$Q_I = 2\pi^2 \Delta \rho^2 \phi (1 - \phi)$$

• Domains can be in any arrangement

Dilute particles - subtract uniform solvent & sum over one particle:

$$P(Q) = N \int_{V} \int_{V} (\rho(\underline{r}_{1}) - \rho_{s})(\rho(\underline{r}_{2}) - \rho_{s}) \exp\left\{-iQ(\underline{r}_{1} - \underline{r}_{2})\right\} dV_{1} dV_{2}$$
$$= NV^{2} (\Delta \rho)^{2} F^{2}(Q) \qquad \text{Note NV} = \phi \text{ volume fraction}$$

Randomly oriented or centro-symmetric particle, ONLY gives information on average radial density distribution $\rho(r)$ or g(r):

$$F(Q) = \int 4\pi r^2 \rho(r) \frac{\sin(Qr)}{Qr} dr$$

[This is a Fourier transform: small Q is for large r, high Q for small r]

SANS from Dilute (i.e. Independent) Particles

"Dilute" means:

no correlation between positions or orientations of particles

"Particle" means:

any <u>discrete</u> submicron scale material inhomogeniety

Simple (uniform) Particles

- macromolecules, e.g., proteins, polymer chains
- single phase precipitates in metal alloys
- voids, pores, microcracks, etc.
- simple colloids, e.g., latex

Scattering from Dilute, Homogeneous Particles

$$I(\vec{Q}) \propto \frac{d\Sigma(\vec{Q})}{d\Omega} = \frac{1}{V} \left| \int_{V} \rho(\vec{r}) e^{i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^{2}$$

for identical particles

$$\frac{d\Sigma(\vec{Q})}{d\Omega} = \frac{N}{V} \left(\rho_{p} - \rho_{o}\right)^{2} V_{p}^{2} \left| \frac{1}{V_{p}} \int e^{i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^{2}$$
Contrast Factor Particle Shape
$$\left| F_{p}(\vec{Q}) \right|^{2} \text{ Form Factor}$$

Guinier Plot $\ln[I(Q)] = \ln[I(0)] - Q^2 R_G^2 / 3$

Guinier Radius, RG

- rms distance from "center of scattering density"

1) Spherical Particles

2) Cylinders (Rods or Disks)

$$R_G^2 = \frac{L^2}{12} + \frac{d^2}{8}$$

$$R_G^2 = \frac{1}{5}(a^2 + b^2 + c^2)$$

4) Gaussian chain

$$R_{G}^{2} = \frac{1}{6}\overline{L^{2}} \quad \overline{L^{2}} = \frac{1}{6} \operatorname{average square of}$$
the end-to-end distance

From Scattering Extrapolated to Q=0

$$I(0) \propto \frac{d\Sigma(0)}{d\Omega} = \frac{1}{V} \left(\int_{V} \rho(\vec{r}) d\vec{r} \right)^{2}$$

in terms of:

c(particle concentration) [mg/ml] =

M_W (particle molecular weight)

$$\frac{N\rho V_{p}}{V}$$

$$\rho V_{p} N_{A}$$

=

$$\frac{\mathrm{d}\Sigma(0)}{\mathrm{d}\Omega} = \frac{\mathrm{c}\,\mathbf{M}_{\mathbf{w}}}{\rho_{\mathrm{N}_{\mathrm{A}}}} \left(\rho_{\mathrm{p}} - \rho_{\mathrm{o}}\right)^{2}$$

 N_A = Avogadro's number

$$ho$$
 = mass density

Form Factors for Some Simple Particle Shapes:

 $P(Q) = F^2(Q, r) \rightarrow 1 \text{ as } Q \rightarrow 0$

 $I(Q) = NV^{2} (\Delta \rho)^{2} P(Q) + BKG$

Cylinder (rod or disc)

$$I(Q) = N(\Delta \rho)^2 V^2 \int_0^{\pi/2} F^2(Q) \sin(\gamma) d\gamma$$

$$F(Q) = \frac{\sin(\frac{1}{2}QL\cos\gamma)}{\frac{1}{2}QL\cos\gamma} \frac{2J_1(QR\sin\gamma)}{QR\sin\gamma}$$

Randomly oriented rods full length L, radius R, $V = \pi R^2 L$

 $J_1(x) =$ "first order Bessel function of the first kind" is **NOT**same as $j_1(x)$ on next slide!

As $x \to 0$, $J_1(x)/x \to \frac{1}{2}$ & $sin(x)/x \to 1$ so $P(Q \to 0)=1$

Integrate numerically over γ = angle between Q and rod axis.

Form Factors for Some Simple Particle Shapes:

Form Factors for Some Simple Shapes:

Ellipsoid

ellipsoid radii R, R, and XR
X>1 prolate (~rugby ball), $V = \frac{4\pi}{3} XR^3$ X<1 oblate (~ pumpkin),</td>X=1 sphere.

$$I(Q) = N(\Delta \rho)^2 V^2 \int_0^{\pi/2} F^2(u) \sin(\gamma) d\gamma$$

$$F(u) = \frac{j_1(u)}{u} = \frac{3(\sin(u) - u\cos(u))}{u^3} \qquad u = QR(\sin^2\gamma + X^2\cos^2\gamma)^{1/2}$$

Note F(u) is same as F(QR) for sphere! Change of variable to $\mu = \cos(\gamma)$ makes computation simpler:

$$I(Q) = N(\Delta \rho)^2 V^2 \int_0^1 F^2(u) d\mu \qquad u = QR \left((1 - \mu^2) + X^2 \mu^2 \right)^{1/2}$$

Can be hard to distinguish X<1 and X>1, and also polydisperse spheres - absolute intensities, shape at high Q, and S(Q) may help.

Gaussian coil (ideal polymer)

$$I(Q) = I_0 \{ 2(y - 1 + \exp(-y)) / y^2 \}$$
$$y = (QR_G)^2$$

 R_G = radius of gyration, the rms (root mean square) radius – same as in Guinier plot.

For dilute polymer, as usual
$$I_0 = NV^2 (\Delta \rho)^2$$

DILUTE PARTICLE SHAPE log-linear plot

P(Q)

Absolute intensity of non-dilute samples & polymers

For dilute and concentrated (solid or melt) polymers and other particles:

$$I_0 = \phi(1-\phi)V(\Delta\rho)^2 = \frac{c}{d}(1-\frac{c}{d})\frac{M}{dN_A}(\Delta\rho)^2$$

 ϕ = volume fraction

V = particle volume

 $(\Delta \rho)^2$ = scattering length density difference

 $c = concentration (g.cm^{-3}),$

M = molecular weight (g.mol⁻¹),

N_A =Avogadro's number,

 $d = bulk density (g.cm^{-3}).$

NOTE at 50%vol, f (1-f) halves the usual intensity.

Polymer equations - often "disguised" with

(polymerisation index) × (monomer molecular weight,

segment length etc.)

For micelles M gives the aggregation number.

POROD'S LAW - surface to volume ratio from high Q limit

Well defined, sharp interface

$$I(Q) \to \frac{2\pi (\Delta \rho)^2 S}{Q^4}$$

If a plot of Q⁴I(Q) will has a plateau value y [units Å⁴ cm⁻¹] then

$$S(cm^2/cm^3) = \frac{10^{32} y}{2\pi (\Delta \rho)^2} \qquad \Delta \rho \text{ in cm}^2$$

A good "incoherent" background subtraction is vital !

Can try FIT to Q⁻⁴ and additional flat background.

[Other "power laws" may (or may not) relate to "fractal" materials or rough surfaces, thins sheets, thin rods etc.]

q / nm⁻¹

spheres

SANS data (circles) for particles (surfactant micelles) in solution in D_2O , with increasing concentration (ignore the dashed lines, will see this again later when we explain the fits) Data for 0.9, 1.8, 7 and 29 % vol.

Does not look like Bragg scatter from a crystal, except for peak at the highest concentration – "Bragg peak" from a very disordered array of micelles ! SANS fits give size, shape (aggregation number) and charge on the micelle. Particle radius ~ 19 Å, axial ratio X ~ 1.7

D.J.Barlow, M.J.Lawrence, T.Zuberi, S.Zuberi & R.K.Heenan, Langmuir 16(2000)10398-10403.

Example: interacting spheres:

10% R=40 Å radius spheres, in "core" contrast, (polydispersity $\sigma/R_{bar} = 0.15$, $\Delta \rho = 6 \times 10^{10} \text{ cm}^{-2}$). plus another 16% in invisible 15 Å coating gives hard sphere S(Q) of 26 % vol & R = 55 Å S(Q) \rightarrow 1 at high Q

At higher volume fractions we start to see interference from waves scattered by adjacent particles (it was there all along, but at smaller Q, inside the beam stop!). I(Q=0) is now decreased!

To first approximation we multiply P(Q) by an "inter-particle structure factor" S(Q) which depends on "long range" interparticle interactions. S(Q) comes from a Fourier transform of <u>interparticle</u> g(r) & hence interaction potential for colloids or Bragg $d = 2\pi/Q_{peak}$ in "liquid crystal".

$$\frac{\partial \Sigma}{\partial \omega} = I(Q) = NV^2 (\Delta \rho)^2 P(Q)S(Q) + BKG$$

$$\langle S(\vec{q}) \rangle = S(q) = 1 + 4\pi n_p \int_{0}^{\infty} [g(r) - 1] \frac{\sin qr}{qr} r^2 dr$$

Note:

- S(q) is proportional to the number density of particles
- S(q) depends on g(r), the pair correlation function

- n_pg(r) is a "local" density of particles
- Spatial arrangement set by interparticle interactions and indirect interactions

The form of the interparticle potential has a great effect on the low q value of S(q)

The low q limit is proportional to the osmotic compressibility

$$S(q=0) = kT\left(\frac{\partial n}{\partial \pi}\right)$$

- Attractive interactions ⇒ more compressible
- Repulsive interactions ⇒ less compressible

- The form of the interparticle potential has a great effect on the low q value of S(q)
- Example of charged spheres:
 - development of "interaction peak"
 - change in low-q slope and I(0)
- Must fit model to data
 - know P(q)
 - ?calculate S(q)?

Ornstein Zernicke Equation:

$$\mathbf{h}(\mathbf{r}) = \mathbf{g}(\mathbf{r}) - \mathbf{l} = \mathbf{c}(\mathbf{r}) + \mathbf{n} \int \mathbf{c} \left(\left| \vec{\mathbf{r}} - \vec{\mathbf{x}} \right| \right) \mathbf{h}(\mathbf{x}) d\vec{\mathbf{x}}$$

- c(r) = direct correlation function
- Integral = all indirect interactions

A second relation is necessary to relate c(r) and g(r)

Percus-Yevick Closure - an approximation

$$c(r) = g(r) \left[1 - e^{\beta u(r)} \right]$$

- correct closure gives correct results
- in general a difficult problem

$$\langle S(\vec{q}) \rangle = S(q) = 1 + 4\pi n_p \int_{0}^{\infty} [g(r) - 1] \frac{\sin qr}{qr} r^2 dr$$

POLYDISPERSITY

Sum SANS over size distribution - Gaussian, log-normal, uniform, etc. "Schultz distribution" is similar to log-normal but I(Q) is analytic. Generally SANS is only sensitive to mean R_{bar} and "polysdispersity" $\sigma(R)/R_{bar}$ where $\sigma(R)$ is the standard deviation.

Schultz distribution:

NOTE: at large σ the Schultz is very skewed and has significant numbers of small particles. Gamma function $\Gamma(n) = (n-1)!$ Care is needed in numerical calcs as Z may be large.

Contrast variation - introduction

For core plus shell spherical particle

e.g. Spherical Shell $R_1 = 40$ Å $(R_2-R_1) = 15$ Å (with 15% polydispersity)

At "contrast match" $\rho_1 = \rho_3$, then we see "hollow shell" with oscillation in I(Q) which is very sensitive to the details of the structure.

Practical computations

Please note – the way that equations are presented in scientific papers may not be the best way to use them in a computer program.

There are many ways to re-arrange the equations, e.g. the core/shell sphere on the previous slide can become:

$$I(Q) = \frac{16\pi^2 N}{Q^6} \{ (\rho_1 - \rho_2) f(Q, R_{CORE}) + (\rho_2 - \rho_3) f(Q, R_{CORE} + T_{SHELL}) \}^2$$
$$f(Q, r) = (\sin(Qr) - Qr\cos(Qr))$$

Where there are N particles per unit volume (usually per cm³). Note that we may need to include a factor 10⁴⁸ to convert Q(Å⁻¹)⁶ to cm⁻⁶.

CONTRAST VARIATION - CORE/SHELL PARTICLES

<u>e.g.</u> Core $\rho 1 = 6x10^{10}$ cm⁻², mean $R_1 = 40$ Å, $\phi = 1\%$, $\sigma/R_{bar} = 15\%$ $R_2 - R_1 = 15$ Å shell $\rho_2 = 3x10^{10}$ cm⁻².

"interference" – rarely seen, but be aware! Solvent between "core" & "shell" matches the average sld of the whole particle. Small Q, long dist. SANS ~ zero, High Q, short distances some scatter!

NOTE I(Q) from "shell contrast" scales non-linearly with particle size and layer thickness - trial calculations are useful to plan experiments.

Determining the Contrast Match Point

$$I(Q=0) = \frac{N}{V} (\rho_p - \rho_o)^2 V_p^2$$

**Need "dilute" particles and "low" Q

- Make several measurements at different solvent SLDs
- Keep the same concentration
- Extrapolate data to I(Q=0)
- Plot sqrt(IQ=0) vs. SLD
- Don't forget to correct for the incoherent background contribution
- For composite particles, I(Q=0) will never reach zero - but it will be a minimum at the average particle contrast

The CO₂ Phase Diagram

W. Leitner, Nature, vol. 405, 11 May 2000

scCO₂ is a very poor solvent for most high MW polymers, with the possible exception of fluoropolymers, silicones, and poly(ether-carbonate)

(T. Sarbu, T.Styranec and E.J. Beckman, Nature, vol. 405, 11 May 2000)

It is then possible to design copolymers with a CO_2 -phobic and a CO_2 -philic portion that behave as surfactants, giving micellar-like aggregates in certain conditions

PVAC-b-PTAN

High Pressure (High Density)

$$P(q) = \left[V_1(\rho_1 - \rho_2) \frac{3j_1(qR_1)}{qR_1} + V_2(\rho_2 - \rho_0) \frac{3j_1(qR_2)}{qR_2} \right]^2$$

$$j_1(x) = \frac{\sin(x) - x\cos(x)}{x^2}$$

$$S(q) = \frac{1}{1 + 24\phi \frac{G(2qR_{\rm HS},\phi)}{2qR_{\rm HS}}}$$

$$G(x,\phi) = \frac{(1+2\phi)^2}{(1-\phi)^4 x^2} (\sin x - x\cos x) - \frac{6\phi(1+\phi/2)^2}{(1-\phi)^4 x^3} [2x\sin x + (2-x^2)\cos x - 2] + \frac{\phi(1+2\phi)^2}{2(1-\phi)^4 x^5} \{-x^4\cos x + 4[(3x^2-6)\cos x + (x^3-6x)\sin x + 6]\}$$

Ρ	(1 - uom)	ρ	CS	Agg.	Ζ	
172	0.925	0.821	1.00	29.5(1)	17.0(1)	
179	0.925	0.830	1.0(1)	29.3(3)	17.0(1)	
186	0.925	0.838	1.1(1)	29.2(5)	17.4(1)	
199	0.900	0.849	1.1(1)	28.0(3)	19.5(3)	
213	0.900	0.858	1.1(1)	24.8(5)	18.4(5)	
227	0.875	0.868	1.1(2)	21.7(2)	18.0(2)	
241	0.875	0.879	1.1(3)	19.4(2)	17.0(2)	
255	0.850	0.889	1.1(1)	18.6(2)	17.0(2)	
268	0.750	0.900	1.6(2)	14.8(3)	17.0(2)	
282	0.65	0.909	1.8(2)	12.0(2)	10.0(2)	
295		transition zone, 0.91 g/cm ³				
310		transition zone, 0.92 g/cm ³				
357		0.917	7 Random coil, Rg 43.5 Å			

amphiphilic block copolymer:

synthesized by anionic polymerisation
predetermined M_W
predetermined composition
low polydispersity
high interfacial tension (PEP/water)

J. Stellbrink, G. Rother, M. Laurati, R. Lund, L. Willner and D. Richter, *J. Phys.: Cond. Matter*, **16**, S3821-S3834, 2004. R. Lund, L. Willner, J. Stellbrink, A. Radulescu and D. Richter, *Macromolecules*, **37**, 9984-9993, 2004. R. Lund, L. Willner, J. Stellbrink, P. Lindner, and D. Richter, Phys. Rev. Letters, **96**, 068302, 2006.

Theory (Lines) M. Watzlawek et al. PRL 1999, G. Foffi et al. PRL 2003 Experiment (Symbols) M. Laurati, J. Stellbrink, R. Lund, L. Willner, D. Richter, and E. Zaccarelli, *Phys. Rev. Letters*, **94**, 195504, 2005. M. Laurati, J. Stellbrink, R. Lund, L. Willner, D. Richter, and E. Zaccarelli, PRE, **76**, 041503, 2007

Richter, J. Phys. Cond. Matter (in press)

Rheology: Steady Shear

Rheo-SANS

Scattering From Fractal Systems

- Fractals are systems that are "self-similar" under a change of scale I.e. R -> CR
- For a mass fractal the number of particles within a sphere of radius R is proportional to R^D where D is the fractal dimension

Thus

 $4pR^{2}dR.G(R) = \text{number of particles between distance R and R + dR = cR^{D-1}dR}$ $\therefore G(R) = (c/4\pi)R^{D-3}$ and $S(\vec{Q}) = \int d\vec{R}.e^{i\vec{Q}.\vec{R}}G(R) = \frac{2\pi}{Q}\int dR.R.\sin QR.(c/4\pi)R^{D-3}$ $= \frac{c}{2}\frac{1}{Q^{D}}\int dx.x^{D-2}.\sin x = \frac{const}{Q^{D}}$

For a surface fractal, one can prove that $S(Q) \propto \frac{const}{Q^{6-D_s}}$ which reduces to the Porod form for smooth surfaces of dimension 2.

Typical Intensity Plot for SANS From Disordered Systems

White marbles from Carrara (Italy)

MU2

CAN C

CD 11

MU4

CV 9

PA LA

MGS = ca. 4 mm with slightly irregular interfaces Not very polydisperse Medium Metamorphism (ca 400 °C) Long time

CAN C

MGS = ca. 4-5 mm – Smeared Interfaces

- time shorter than previous
- Similar temperatures

$I(q) \propto P(q,r,Ds) \cdot S(q,r,D,R)$ $P(q,r,Ds) = \left(1 + \frac{\sqrt{2}}{3}q^2r^2\right)^{\frac{Ds-6}{2}}$ $S(q,r,D,R) = 1 + \frac{D\Gamma(D-1)}{qr^D} \left(1 + \frac{1}{qR^2}\right)^{\frac{1-D}{2}} \sin[(D-1)\arctan(qR)]$

A. Emmerling et al., J. of Non Cryst. Sol. 185, 240 (1994)J. Teixeira, J. App. Cryst., 21, 781 (1988)

biogenic platforms generated by Dendropoma petraeum

- Basic Equations
- Model-independent methods

Guinier, Porod, Invariant

• Non-Linear Model Fitting

Particles, Polymers, Materials

- Global Fitting
- Anisotropic Scattering
- Transforms
- Ab initio modeling

Non-Linear Model Fitting

One of the most commonly used methods

- a "forward" calculation

- many structures and interactions to choose from

Non-Linear Model Fitting

Point	parameters_sf	coef_sf	smear_coef_sf
0	scale	0.05	0.05
1	Radius (A)	55	55
2	contrast (Å-2)	2e-06	2e-06
3	bkgd (cm-1)	0	0

• Non-linear least squares fitting to experimental data

Use all the information you can to reduce the number of free model parameters
SLD's
-Concentrations
-Lengths

• A "good" fit does not necessarily guarantee a perfect representation of the structure in the sample

Global Fitting

Contrast variation

- same particles, different solvent
- R, ρ_p , ϕ are the same
- ρ_{solv} , background are different

SANS + USANS data

- same sample (same cell)
- all parameters are the same
- smearing, scaling different

Contrast Variation

reduce the number of phases "visible"

• The two distinct two - phase systems can be easily understood

Anisotropic Scattering

Elongated particles aligned by shear

Transforms - p(r)

p(r) is the probability that 2 randomly chosen points are at a distance r apart

If I(Q) is measured over a wide enough Q-range, then one can compute p(r) as the inverse transform:

$$p(r) = \frac{1}{2\pi^2} \int_{0}^{\infty} I(Q)(Qr) \sin(Qr) \, dQ$$

For a sphere:

$$p(r) = 12x^2(2 - 3x + x^3)$$
 $x = r/D$

*See: D. Svergun, O. Glatter

Ab initio methods

- Calculate I(Q) for complex structures
 - Biological molecules made up of subunits
 - non-standard geometric shapes

**Need "dilute" particles and "burly" computer

Interesting Links:

http://scattering.tripod.com

http://www.isis.rl.ac.uk/LargeScale/LOQ/loq.htm

http://www.ncnr.nist.gov/resources/simulator.html