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Package information 
 
Actually we are distributing two executable files bellowing to BasIreps distribution. 
The first is the console version of BasIreps (basireps.exe) and the second is the GUI 
program for the console version (gbasireps.exe). GBasIreps is able to generate the input 
control file for BasIreps and run the program in a silent mode showing automatically 
the final files generated by BasIreps.  
 
Both are included on the FullProf Suite package. 
 
 
Running the program 
     
For a rapid view of BasIreps, run the GUI GBasIreps by clicking on it, or invoking it 
from a console or from the program EdPCR. 
 
You may run directly BasIreps from a console as follows: 
 

Local_Prompt> basireps My_file  <cr> 
 
My_file is the code of the input file summarizing the instructions for running BasIreps. 
The complete name, by default, is "My_file.smb"; however any extension can be used 
and it must be given in general cases. 
   
To access the help file of BasIreps from GBasIreps the environment variable 
FULLPROF has to be defined. It points to a directory where the executable files have to 
be stored. 
 
These notes are given to facilitate the use of the program. At present there is no detailed 
manual for BasIreps. For someone with sufficient skills in group theory the output files 
are self explanatory. 
 
The program 
 
The program BasIreps calculates the irreducible representations (irreps) of the so called 
"little groups" from which the full irreducible representations of space groups can be 
calculated using the induction formula. The method used in BasIreps for calculating the 



irreps is based in the procedure used in the program KAREP by E. Hovestreydt, I. 
Aroyo et al, J.Appl.Cryst. 25, 544 (1992). The method of Zak used in KAREP has been 
implemented in a special subroutine within BasIreps. 
 
After calculating the irreps corresponding to a given space group and propagation vector 
the program calculates the basis functions corresponding to vectorial properties (atom 
displacements or magnetic moments) of atoms in crystalline solids. 
 
This program calculates non-normalized basis functions of the irreducible 
representations of the little group kG  for atom properties in a crystal. In particular the 
calculations can be performed for atomic displacements (or phonon modes), as polar 
vectors, and for magnetic moments as axial vectors. In general the 
displacement/magnetic moment of atom j in cell L may be written as a Fourier series of 
the form: 
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k and RL are vectors referred to the reciprocal and direct crystallographic basis 
respectively. The vectors jLm   and jkS  have the same units and are referred to a basis 
of unit vectors along the direct crystallographic cell basis. The vectors jkS  are the 
Fourier components of the magnetic moments (or displacements) jLm . 
 
Taking into account the symmetry, the vectors jkS  may be written as linear 
combinations of the so-called basis functions of the irreducible representations of the 
propagation vector group kG . The number of free parameters in a displacive phase 
transition, or in a magnetic structure, is less than { }3N n O= × × k . The number 3 comes 
from the three components of jkS , n is the total number of atoms in a primitive cell and 

{ }O k  is the number of propagation vectors. The number of independent free 
parameters (order parameters) can be calculated from group theory. In general the 
vector jkS  may be written as: 
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Where ,a mC  are the coefficients (that may be real or pure imaginary) of the linear 

combination, and ( ), ,a m jνV k  are constant vectors referred to the basis of the direct 
cell. The labels are the following ( , )νk  is for the particular propagation vector and the 
representation called νΓ . The index a varies from 1 up to the dimension of the 
irreducible representation: a=1,2,...dim( νΓ ). The index m varies from 1 to the number 
of times the irreducible representation νΓ  is contained in the global mechanic/magnetic 
reducible representation constructed by working with the symmetry operators acting on 



atoms coordinates and components of polar/axial vectors (dimension 3 × n). See, for 
instance, the book by Y.A. Izyumov, V.E. Naish and R.P. Ozerov (1991) for details. 
 
The program BasIreps calculates the vectors ( ), ,a m jνV k  in a non-normalized form. 
However, the final form of the basis functions is written as simple as possible. An effort 
in future versions will be performed to recognize particular combinations of common 
numbers. 
 
The program BasIreps is written in a subset of the Fortran 95 language called F. It is 
based in the Crystallographic Fortran Modules Library (CrysFML), by Juan Rodriguez-
Carvajal and Javier Gonzalez-Platas. 
 
 
Input file 
 
The file is written in free format. Each line starts with a keyword and a list of values. 
Whatever line starting with "!" or "#" (without quotes) in the first column are 
considered as a comment. 
 
The minimum input for running the program is constituted by three lines with the 
keywords TITLE, SPGR (or GEN) and KVEC. The keywords are case sensitive, so 
only upper-case keywords are allowed. 
 
An example of minimal input file for BasIreps is: 
 

TITLE Minimum content of *.smb file 
SPGR  P n m a 
KVEC  0.5000  0.0000  0.0000    X 

 
Another examples is: 
 

TITLE Minimum content of *.smb file 
GEN   x+1/2,y,-z ; x,-y,z ;  -x,-y,-z 
KVEC  0.0000  0.2500  0.0000    U 

 
The values associated with the above keywords are the following: 
 
TITLE 
Whatever string of characters for identification purposes 
 
SPGR 
A string containing the Hermann-Mauguin symbol of the space group.  
The different symmetry directions have to be separated by a blank character. The 
program interprets the space group symbol (Hermann-Mauguin or Hall notations are 
allowed) and generates an output with symmetry information about the provided space 
group. 
 
GEN 
A string containing the Jones faithful representation of the generators. The character 
";" (without quotes) is used as separator for the different generators. 



 
KVEC 
Components of the k-vector (three real numbers) followed by one or two letter for 
labelling the k-vector (e.g. X, M, LD, UV ...). The components should be given with 
respect to the reciprocal basis of the conventional unit cell, as is commonly used in 
diffraction physics and crystallography. 
 
 
With this minimal input the program calculates only the small representations of the 
propagation vector group (little group). To calculate basis functions the program needs 
the following keywords: BASIR and ATOM 
 
BASIR 
This keyword should be followed by two words.  
 
The first one can be AXIAL or POLAR and the second must be CEL if one wants the 
program to put all generated atoms within the reference unit cell (all fractional 
coordinates >= 0 and < 1.0).  AXIAL is adequate for the analysis of magnetic 
structures, and POLAR is useful for studying phonons (normal vibration modes) or 
structural phase transitions. 
 
ATOM 
This keyword introduces the information about one atom in the unit cell. Two labels are 
needed for the atoms. The second one should be the name of the element. This is not 
used internally but it is convenient for compatibility with other programs reading the 
same file. The two labels are followed by three fractional coordinates. The program 
generates the rest of atoms in the unit cell. 
 

ATOM  Cu  Cu  0.2341  0.5000  0.00000 
 
SUBL 
This keyword is an alternative to ATOM for the case the numbering of sublattices is to 
be controlled by the user. This keyword must be followed in the same line by the label of 
the atom and the number of sublattices, NSUB, corresponding to the site. 
The coordinates of the NSUB atoms must be given in the following NSUB lines starting 
at least from the 5th column. An arbitrary label may be put in the first 4 columns. The 
program will use the common label of the atoms adding and underscore "_" followed by 
the number of the sublattice. 
For instance, if in the input file there are the lines 

...... 
SUBL Tb       4 
At     0.00000  0.00000  0.50000 
At     0.25000  0.75000  0.75000 
At     0.50000  0.00000  0.00000 
At     0.25000  0.25000  0.25000 
....... 

 
the program will generate the labels Tb_1, Tb_2, Tb_3 and Tb_4 for numbering the 
atoms. 



Examples 
 
A complete example of input file to be used by BasIreps is: 
 

TITLE Minimum content of *.smb file 
SPGR  C m c a 
KVEC  0.0000  0.0000  1.0000    Z 
BASIR AXIAL CEL 
ATOM  Fe   Fe    0.0000  0.0000  0.47510 
ATOM  Co   Fe    0.2341  0.5000  0.00000 

 
Another example in which the sublattices are explicitly given in a particular order is the 
following: 
 

TITLE Test Basireps 
SPGR  I 41/a m d 
KVEC   0.5000  0.5000  0.5000 X 
BASIR AXIAL 
SUBL Tb       4 
At     0.00000  0.00000  0.50000 
At     0.25000  0.75000  0.75000 
At     0.50000  0.00000  0.00000 
At     0.25000  0.25000  0.25000 
SUBL Fe       4 
At     0.00000  0.00000  0.00000 
At     0.50000  0.00000  0.50000 
At     0.75000  0.25000  0.75000 
At     0.75000  0.75000  0.25000 

 
 
GBasIreps 
 
The GUI to BasIreps has the following important fields that are used to generate input, 
"codefile.smb", and output files (after running BasIreps from the corresponding menu 
or button): "codefile.bsr" and "codefile.fp" 
 
Code of files 
Common code of files for the run 
 
Working Directory 
Complete path name of the working directory. This may be selected using the Browse 
button. 
 
Title 
A character string used as a title for the run 
 
SpaceGroup or generators 
A character string with different meanings. The user may input  different things: 
 

• A number for the space group between 1 and 230 
• The Hermann-Mauguin symbol of the space group using one space for 

separating symmetry directions. Example: I 41/a m d 



• The Hall symbol of the space group using also one space for separating 
symmetry directions. Example: -I 4bd 2 

• List of space group generators in Jone's faithful notation and separated by 
semicolons. 

 
Example:   x,-y,z+1/2 ;  -x,y,z  ; -x,-y,-z 

 
 
K-vector 
Components of the propagation vector in reciprocal lattice units. The reciprocal basis 
vectors are defined, through the well known dual relations, using direct basis vector of 
the conventional unit cell. This is the common practice in diffraction physics and 
crystallography. 
 
Warning: The components of k-vectors in most textbooks of group theory are given 
with respect to the reciprocal basis of the primitive direct basis vectors. For primitive 
Bravais lattices there is no problem. 
 
Brillouin Zone Label 
Whatever character used for identification purposes. Up to two letters! 
 

Example: GG 
 
Polar vector/Axial vector 
Checking one of the two alternatives will select the behaviour of the symmetry operators 
upon acting on vectors. 
 
Atoms in unit cell 
If this box is checked the program will put all generated atoms within the reference cell 
all coordinates values (v) verifying 0.0 <= v < 1.0. This is only operative if the box 
"Explicit Sublattices" is not checked. 
 
Number of atoms, Explicit Sublattices and Atom positions 
 
In the case the box "Explicit Sublattices" IS NOT CHECKED 
The "Number of atoms" coincides with the number of sites (NS). The program will 
generate automatically all sublattices and, eventually, modify the number of sites if the 
propagation vector group cannot connect part of the sublattices generated by the full 
space group. The "Symbol" of the atom should have a maximum of four characters. 
Usually the chemical symbol is enough. The fractional coordinates are given in the 
fields "x/a", "x/b", "x/c". The GUI generates NS ATOM lines. 
 
In the case the box "Explicit Sublattices" IS CHECKED 
The "Number of atoms" is really the total number of atoms in the unit cell. In this case 
the name of the atoms cannot be arbitrarily given. For a particular site they must share 
the same atom code and the different sublattices are distinguished by an added 
underscore "_" followed by the number of the sublattice. The GUI generates a list of 
SUBL block of lines, deduced from the "Symbol".  For example, to generate the SUBL 
blocks in the example of SUBL keyword above we have to write Number of atoms = 8, 
check the "Explicit Sublattices" box and provide the list: 
 



Tb_1    0.00000  0.00000  0.50000 
Tb_2    0.25000  0.75000  0.75000 
Tb_3    0.50000  0.00000  0.00000 
Tb_4    0.25000  0.25000  0.25000 
Fe_1    0.00000  0.00000  0.00000 
Fe_2    0.50000  0.00000  0.50000 
Fe_3    0.75000  0.25000  0.75000 
Fe_4    0.75000  0.75000  0.25000 

 
BE CAREFUL! if the provided sublattices do not correspond are not related by 
operators in the propagation vector group (little group) the obtained results are wrong! 
If you are not sure it is safer to use the first atom of sites and let the program generate 
the sublattices. 
 
Output files 
 
The program generates two output files of extension '.bsr' and '.fp'. The first file 
contains the full information generated by BasIreps. The second file contains 
information in a format suitable to be pasted in the PCR file for FullProf. 
 
As stated above, the content of the output files is self-explanatory. 
 
Sometimes, mostly when complex multidimensional representations are concerned, the 
number of calculated basis functions is greater than what is expected. That may be due 
to propagation errors in the calculation of the rank of a general complex matrix. If this 
situation appears for a particular case the user should inspect the obtained basis 
functions and try to extract the linear independent basis functions from the provided set. 
 
From the version 3.0, a formal writing of the Fourier coefficients jkS  is output in the 
file of extension *.bsr. Symbols for the coefficients ,a mC  are used in the following 
order: 
 
"u","v","w","p","q","r","a","b","c","d","e","f","g","l","m","n","s","t", 
"U","V","W","P","Q","R","A","B","C","D","E","F","G","L","M","N","S","T" 

 
If particular real numbers appear in the components of the basis functions (this may be 
due, for instance, to incommensurate propagation vectors) the program tries to 
recognize them and in the writing of the Fourier coefficients these special numbers 
appear in symbolic form. The numbers are given the following names in the order of 
appearance: 
 

"r0","r1","r2","r3","r4","r5","r6","r7","r8","r9", 
"p0","p1","p2","p3","p4","p5","p6","p7","p8","p9", 
"q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", 
"s0","s1","s2","s3","s4","s5","s6","s7","s8","s9", 
"t0","t1","t2","t3","t4","t5","t6","t7","t8","t9" 

 
 The values of these numbers are given in separate lines with more precision than that 
used for writing the basis vectors ( ), ,a m jνV k . 
  An example of output concerning this last point is given below. The calculation is 
performed for the following case: 
 



    TITLE Test Basireps 
    SPGR  P 4/n m m 
    KVEC   0.5000  0.2341  0.0000 X 
    BASIR AXIAL CEL 
    ATOM Mn   Mn    0.2500  0.2500  0.1320 
 
   ..... 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
=>Basis functions of Representation IRrep( 1) of dimension  2 contained 3 times in GAMMA 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
 SYMM  x,y,z   -x+1,y+1/2,-z+1 
 Atoms:      Mn_1              Mn_2 
  1:Re ( 1.00 0.00 0.00) ( 0.74 0.00 0.00) 
    Im ( 0.00 0.00 0.00) (-0.67 0.00 0.00) 
  2:Re ( 0.00 1.00 0.00) ( 0.00-0.74 0.00) 
    Im ( 0.00 0.00 0.00) ( 0.00 0.67 0.00) 
  3:Re ( 0.00 0.00 1.00) ( 0.00 0.00 0.74) 
    Im ( 0.00 0.00 0.00) ( 0.00 0.00-0.67) 
  4:Re (-0.74 0.00 0.00) ( 0.10 0.00 0.00) 
    Im ( 0.67 0.00 0.00) (-1.00 0.00 0.00) 
  5:Re ( 0.00 0.74 0.00) ( 0.00 0.10 0.00) 
    Im ( 0.00-0.67 0.00) ( 0.00-1.00 0.00) 
  6:Re ( 0.00 0.00 0.74) ( 0.00 0.00-0.10) 
    Im ( 0.00 0.00-0.67) ( 0.00 0.00 1.00) 
 
 
 ----- LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p,q .... 
       General expressions of the Fourier coefficients Sk(i) i=1,2,...nat 
 
  SYMM x,y,z                                      Atom: Mn_1      0.2500  0.2500  0.1320 
       Sk(1): (u-r0.p,v+r0.q,w+r0.r)+i.r1.(p,-q,-r) 
 
  SYMM -x+1,y+1/2,-z+1                            Atom: Mn_2      0.7500  0.7500  0.8680 
       Sk(2): (r0.u+r2.p,-r0.v+r2.q,r0.w-r2.r)+i.(-r1.u-r3.p,r1.v-r3.q,-r1.w+r3.r) 
 
 
        Values of real constants r0,r1,... 
              r0 =   0.741531    r1 =   0.670919    r2 =   0.099737    r3 =   0.995014 
 
Check combinations of values by pairs: usually these real constants are related to k-
vector. They can constitute real and/or imaginary parts of exp{2.pi.i.K.T }, being T a 
non-primitive translation of a symmetry operator. In many simple cases r0=cos(2.pi.k.t) 
and r1=sin(2.pi.k.t), etc ... 
 
  ..... 
 

   One can see that the constant r2 is written as "0.10" in the basis vectors and the 
constant r3 does not appear because it is approximated as "1.00" in the format used 
for writing the numerical vectors. 
   The meaning of these constants are related, as suggested in the comment of the output, 
to the propagation vector k=(0.5000, 0.2341, 0.0000). The complex numbers r0+i.r1 
and r2+i.r3 are: 
 
            r0+i.r1 = exp{pi.i.ky}   and    r2+i.r3 = exp{2.pi.i.ky} 
 

This suggests a further simplification of the general Fourier coefficients that can be 
worked out by the user: 
 
Sk(1)=(u-r0.p,v+r0.q,w+r0.r)+i.r1.(p,-q,-r)=(u,v,w)+r0.(-p,q,r)+i.r1.(p,-q,-r) 
Sk(1) = (u,v,w) + r0.(-p,q,r)-i.r1.(-p,q,r) = (u,v,w) + (r0-ir1).(-p,q,r) 
Sk(1) = (u,v,w) + (-p,q,r) .exp{-pi.i.ky} 
 
Sk(2) = (r0.u+r2.p,-r0.v+r2.q,r0.w-r2.r)+i.(-r1.u-r3.p,r1.v-r3.q,-r1.w+r3.r) 
Sk(2) = r0 (u,-v,w) + r2(p,q,-r) + i.r1.(-u,v,-w) +i.r3 (-p,-q,r) 
Sk(2) = (r0-i.r1).(u,-v,w)+(r2-ir3).(p,q,-r) 
Sk(2) = (u,-v,w).exp{-pi.i.ky}+(p,q,-r).exp{-2.pi.i.ky} 



Disclaimer 
 
The program BasIreps is distributed in the hope that it will be useful, but WITHOUT 
ANY WARRANTY of being free of internal errors. In no event will the author be liable 
to you for damages, including any general, special, incidental or consequential damages 
arising out of the use or inability to use the program (including but not limited to loss of 
data or data being rendered inaccurate or losses sustained by you or third parties or a 
failure of the program to operate with any other programs). 
 
Recommended references: 
 

• International Tables for Crystallography, Volume A: Space Group Symmetry.  
Edited by Theo Hahn, published by the IUCr, D. Reidel Publishing Company, 
1983. 

 
• Isotropy subgroups of the 230 crystallographic space groups 

Harold T. Stokes and Dorian M. Hatch, Word Scientific, 1988, ISBN 9971-50-
772-2. 

 
• Commensurate and Incommensurate Phase Transitions 

Jerzy Kocinski, ELSEVIER, 1990. ISBN 0-444-98775-4 
This is the third volume of a series called Phase Transition Phenomena. 

 
• Representation of the Crystallographic Space Groups. Irreducible 

Representations, Induced Representations and Corepresentations. 2nd Edition 
O.V. Kovalev, Ed. by Harold T. Stokes and Dorian M. Hatch, Gordon and 
Breach Science Publishers, 1993. ISBN 2-88124-934-5 

 
• The mathematical theory of symmetry in solids 

C.J. Bradley and A.P. Cracknell, Clarendon Press (Oxford University Press, Ely 
House, London W.1), 1972. 

 
For magnetic structure symmetry analysis see the following references: 
 

• E. F. Bertaut, Acta Cryst. A24, 217 (1968). 
 
• E. F. Bertaut, Spin Configurations in Ionic Structures: Theory and Practice, in  

Magnetism, vol 3, Ed. G.T. Rado and H. Suhl, Academic Press, 1963. 
 

• Y.A. Izyumov, V.E. Naish, J Magn.Magn.Mat. 12,239 (1979); Y.A. Izyumov, 
V.E. Naish and V.N. Syromiatnikov J Magn.Magn.Mat. 12, 249 (1979); Y.A. 
Izyumov, V.E. Naish and S.B. Petrov, J Magn.Magn.Mat. 13, 267 (1979); Y.A. 
Izyumov, V.E. Naish and S.B. Petrov, J Magn.Magn.Mat. 13, 275 (1979); Y.A. 
Izyumov, J Magn.Magn.Mat. 21, 33 (1980). 

 
• Y.A. Izyumov, V.E. Naish and R.P. Ozerov,"Neutron diffraction of magnetic 

materials", Consultants Bureau, Plenum Publishing Corporation, New York 
(1991) 
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A program for analysis of 
diffraction patterns: FullProf

• A program for : 
Simulation of powder diffraction patterns
Pattern decomposition integrated intensities 
Structure refinement
Powder and single crystal data

• Crystal and magnetic structures 
• Multiple data sets: simultaneous treatment of several

powder diffraction patterns  (CW X-rays & neutrons, 
Energy dispersive X-rays, TOF neutron diffraction)

• Combined treatment of single crystal and powder data
• Crystal and magnetic Structure determination capabilities:

simulated annealing on integrated intensity data
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FullProf Web site 

http://www-llb.cea.fr/fullweb/powder.htm
or

ftp://ftp.cea.fr/pub/llb/divers/fullprof.2k

Also from CCP14: http://www.ccp14.ac.uk

FullProf.2k (Fortran 90 subset ELF90)
Windows , Linux, Solaris, MacOS
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How works FullProf

FullProf

Output
files,
Plot

diffr.  
patterns

Minimal input:
Input control file (extension ‘ .pcr ’): PCR-file
Model, crystallographic/magnetic information

PCR file

DAT file(s)
Eventually, experimental data
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The PCR file: steep learning curve

DAT file(s) Format depending on the 
instrument, usually simple

Many variables and options 
Complex to handlePCR file
Hint: copy an existing 

(working) PCR-file and modify 
it for the user case, or...

USE the new GUI: EdPCR
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Last minute changes in FullProf
Documented in “fp2k.inf”

--------------------------------------------------------------------------
In this file new features, as well as discovered bugs, of FullProf.2k
are periodically documented. For details consult the manual of FullProf.
From 10 May 2003, comments on the programs constituting the FullProf suite
are also provided.

Juan Rodriguez-Carvajal (Laboratoire Leon Brillouin, Saclay)
--------------------------------------------------------------------------

---------------
28 July 2003

---------------
- An updated version of FullProf.2k is now available.

. . . . . . . . .
- Some changes have been introduced for treating the background:

(1) The polynomial background of 12 coefficients, for constant wavelength case, has been
changed so that the last three coefficients correspond to inverse powers of 2theta.
. . . . . . . 

(2) Now there is the possibility to include several previously calculated profiles as
contributing, through a linear combination, to the background of a powder diffraction
pattern. The individual profiles are read in input files named "filedat_n.bac". Where
"filedat" is the code of the data file corresponding to a diffraction pattern and the
index "n" is the number of the contributing profile. The additional contribution to
the background is calculated as:
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Last minute changes in FullProf
Documented in “fp2k.inf”

- Reorganization of the TOF peak shapes and 
derivatives. The refinement of the 
instrumental parameters is now much more 
stable. . . . . . 
The new peak shape INSTR=13 (thanks to Laurent
Chapon!) consisting in the convolution of a 
pseudo-Voigt function with the Ikeda-Carpenter 
function is now working.

The TOF peak shapes used in FullProf and 
the meaning of each refinable parameter is now 
documented in the note: TOF_FullProf.PDF
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Some recent features in FullProf
New facilities concerning symmetry

Automatic mode for handling refinement
codes and symmetry constraints

The use of distances and angles restraints

Changes in the format of the file containing
the Instrumental Resolution Function

Special form factors

Simulated Annealing

The treatment of micro-structural effects
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New facilities concerning symmetry in FullProf

⇒ The symmetry used within FullProf is totally based in the 
Crystallographic Fortran 95 Modules Library (CrysFML)
(Tuesday 26 ⇒ FA3-MS5, Meeting Room 11B)

⇒ These modules provide better crystallographic information 
to the user of the program. In particular automatic calculation 
of the multiplicity of each site is now performed after reading 
the atoms as well as the calculation of the appropriate 
coefficients for automatic quantitative analysis of mixture of 
phases.

⇒ New output files with full information of crystallographic 
symmetry are produced (extension: sym)
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Simulated Annealing in 
FullProf
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The structure of acid strontium oxalate was 
determined from X-ray powder diffraction
G. Vanhoyland et al.  JSSC 157, 283 (2001)

The raw chemical composition should be: SrC3O7 H3

Where are the 
hydrogen atoms?

Neutron powder 
diffraction gives 
you the answer …
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The structure of acid strontium oxalate was 
determined from X-ray powder diffraction
G. Vanhoyland et al.  JSSC 157, 283 (2001)

Where are the 
hydrogen atoms?

In the original paper hydrogen atoms were 
determined using Fourier synthesis.

Here we use this published example to illustrate how to 
use the Simulated Annealing option existing in FullProf
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Comparison of the “x-ray 
structure” with the observed 

neutron powder diffraction pattern
of acid Strontium oxalate.

Thermal parameters are wrong … 
need refinement of some Biso!
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Comparison of the “x-ray 
structure” with the observed 

neutron powder diffraction pattern
of acid Strontium oxalate.

After refinement of background 
and B(Sr), B(C) and B(O)
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Portion of PCR (Acid Sr-oxalate) file to perform a Le Bail fit with 
output of an integrated intensity file suitable for Simulated Annealing
. . . . . . . 
!-------------------------------------------------------------------------------
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:     0.81
!-------------------------------------------------------------------------------
Sr/C/O/D
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

0   0   0 0.0 0.0 1.0   2   0   0   0   0        942.600   0 5   1
!
!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref

11   0   0   0   0   0  1.0000  0.0000  0.0000  0.0000   1   0
!
P 21/n                   <--Space group symbol
!-------> Profile Parameters for Pattern #  1
!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model
0.46025E-01   0.23580   0.00000   0.00000   0.00000   0.00000       0

0.00000     0.000     0.000     0.000     0.000     0.000
!       U         V          W           X          Y        GauSiz   LorSiz Size-
Model

0.405860  -0.525900   0.243880   0.000000   0.000000   0.000000   0.000000 0
0.000      0.000      0.000      0.000      0.000      0.000      0.000

!     a          b         c        alpha      beta       gamma
6.330998  16.862967   5.787098  90.000000  97.656639  90.000000
111.00000  121.00000  131.00000    0.00000  141.00000    0.00000

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4
0.00000  0.00000  0.09150  0.02857  0.00000  0.00000

0.00     0.00     0.00     0.00     0.00     0.00
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First cycle of Le Bail fit to extract integrated intensities 
for using Simulated Annealing within FullProf
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Second cycle of Le Bail fit to extract integrated intensities 
for using Simulated Annealing within FullProf
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Final Le Bail fit to extract integrated intensities for using 
Simulated Annealing within FullProf
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Intensity file generated after running FullProf 
with: Jbt=2, More=1, Jvi=11

Phase No:   1 Sr/C/O/D Overlaped reflections re-grouped

(3i4,2f12.2,i4,3f14.4) <- Format of h,k,l, Int, sigma and non used items
1.2251   0   2 <- Wavelength, type of data, powder indicator
0   2   0       31.10        2.79   1        0.0000        0.0000        8.3325
1   1   0       14.90        1.83   1        0.0000        0.0000       11.9580
0   1   1       11.94        1.45   1        0.0000        0.0000       12.9544
1   2   0       25.22        1.58   1        0.0000        0.0000       13.9794
0   2   1        8.43        1.18   1        0.0000        0.0000       14.8430

-1   0   1        2.81        0.63   1        0.0000        0.0000       15.4887
-1   1   1        4.76        0.51   1        0.0000        0.0000       16.0452
0   4   0       -1.00        1.94   1        0.0000        0.0000       16.7094
1   3   0      201.31        2.04   1        0.0000        0.0000       16.8261
0   3   1       -1.00        0.80   1   Negative intensity means that

-1   2   1       -1.00        0.55   1 the reflection contributes to the
1   0   1       51.67        0.97   1 next positive observation  
1   1   1        3.53        0.56   1        0.0000        0.0000       18.2075
1   2   1       -1.00        1.00   1        0.0000        0.0000       19.6075

-1   3   1       -1.00        1.14   1        0.0000        0.0000       19.9599
1   4   0      261.17        1.99   1        0.0000        0.0000       20.1632
0   4   1       62.57        1.26   1        0.0000        0.0000       20.7778
1   3   1        1.30        0.19   1        0.0000        0.0000       21.7486
2   0   0       -1.00        0.31   1        0.0000        0.0000       22.5185

-1   4   1       -1.00        0.85   1        0.0000        0.0000       22.8597
2   1   0      462.88        3.36   1        0.0000        0.0000       22.9101

. . . . . . . . . . . . . . . . . . . . 
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Only the reflections 
contributing to this portion 
of the diffraction pattern 
are enough to determine the 
deuterium positions
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How to prepare a Simulating Annealing PCR file?

COMM Neutron diffraction Acid Sr-oxalate (deuterated) 
!Files => DAT-file: srox-sa,  PCR-file: srox-sa 
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut

1   0   1   0   0   0   0 0   0   0   0 0   0   9 3 0   0   0   1
!
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana

0   0   1   0   1   0   0   0   0   3   0 0   0   0   0   0   0
!
!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD   Sent0

1  0.10  1.00  1.00  1.00  1.00     5.0000  0.050000    124.900   0.000 0.000
!
!

9 !Number of refined parameters
!-------------------------------------------------------------------------------
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:     43.79
!-------------------------------------------------------------------------------
Sr/C/O/D
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

14   0   0 0.0 0.0 1.0   0   4   0   0   0        966.691   0 5   0
. . . . . . . . . 
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How to prepare a Simulating Annealing PCR file?
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

14   0   0 0.0 0.0 1.0   0   4   0   0   0        966.691   0 5   0
!
P 21/n                   <--Space group symbol
!Atom Typ       X        Y        Z     Biso      Occ     In Fin N_t Spc /Codes
Sr   SR      0.87930  0.41798  0.73560  1.55853  1.00000   0   0 0    0

0.00     0.00     0.00     0.00     0.00
C1   C       0.63200  0.23920  0.57800  1.48511  1.00000   0   0 0    0

0.00     0.00     0.00     0.00     0.00
C2   C       0.58300  0.51640  0.09300  1.48511  1.00000   0   0 0    0

0.00     0.00     0.00     0.00     0.00
C3   C       0.64800  0.27780  0.34700  1.48511  1.00000   0   0 0    0

0.00     0.00     0.00     0.00     0.00
O1   O       0.62200  0.22870  0.15700  1.24468  1.00000   0   0 0    0

0.00     0.00     0.00     0.00     0.00
. . . . . . . . . . 
O7   O       0.69400  0.34880  0.32900  1.24468  1.00000   0   0 0    0

0.00     0.00     0.00     0.00     0.00
H1   D       0.17449  0.26512  0.31765  2.00000  1.00000   0   0   0    0

11.00    21.00    31.00 0.00     0.00
H2   D       0.41474  0.05317  0.39374  2.00000  1.00000   0   0   0    0

41.00    51.00    61.00 0.00     0.00
H3   D       0.14942  0.30371  0.01023  2.00000  1.00000   0   0   0    0

71.00    81.00    91.00 0.00     0.00

Put atoms to be localized in arbitrary general positions. 
Avoid starting in special positions unless you want to look for 
atoms with some fixed coordinates.



Durban, August 24, 2003 ECM-21 Software Workshop

How to prepare a Simulating Annealing PCR file?

No profile parameters, 
part of the file similar to single crystal format

!  Scale Factors
!  Sc1       Sc2        Sc3        Sc4        Sc5        Sc6
0.3805E-01 0.000      0.000      0.000      0.000      0.000

0.00      0.00      0.00      0.00      0.00      0.00
!  Extinction Parameters
! Ext1       Ext2       Ext3       Ext4       Ext5      Ext6    Ext7  Ext-Model

0.000      0.000      0.000      0.000      0.000     0.000   0.000    0
0.00       0.00       0.00       0.00       0.00      0.00    0.00

!     a          b         c        alpha      beta       gamma
6.330226  16.863087   5.787093  90.000000  97.642853  90.000000
0.00000    0.00000    0.00000    0.00000    0.00000    0.00000

! x-Lambda/2  +          Not yet used parameters
0.00000     0.00000     0.00000     0.00000     0.00000

0.00        0.00        0.00        0.00        0.00
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How to prepare a Simulating Annealing PCR file?

! Limits for selected parameters (+ steps & BoundCond for SA):
1 0.0000      1.0000      0.0152   1      X_H1
2 0.0000      1.0000      0.0073   1      Y_H1
3 0.0000      1.0000      0.0264   1      Z_H1
4 0.0000      1.0000      0.0279   1      X_H2
5 0.0000      1.0000      0.0080   1      Y_H2
6 0.0000      1.0000      0.0323   1      Z_H2
7 0.0000      1.0000      0.0334   1      X_H3
8 0.0000      1.0000      0.0087   1      Y_H3
9 0.0000      1.0000      0.0346   1      Z_H3

! T_ini   Anneal  Accept NumTemps NumThCyc InitConf
5.000   0.900   0.020       30        0      0

! NCyclM   Nsolu Num_Ref Nscalef  NAlgor
80       1   106 1       0

Random initial 
configurationCorana algorithm

Initial step = range

Periodic boundary conditionsParameter number

Number of reflections 
to consider Automatic treatment 

of the scale factor 

Ranges and steps



Durban, August 24, 2003 ECM-21 Software Workshop

Example of 
Simulated Annealing 

run on acid Sr-oxalate

3 hydrogen atoms added to 
the asymmetric unit that 
can move freely in the 
whole unit cell
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Refinement of the Simulated Annealing solution (only 
background and scale factor are refined)



Durban, August 24, 2003 ECM-21 Software Workshop

Final Refinement of the Simulated Annealing solution: all 
structural (56) and profile(19) parameters are refined)
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Hydrogen atoms in acid strontium oxalate as 
determined by Simulated Annealing using FullProf

The chemical formula is Sr(HC2O4). ½ (C2O4) . H2O

Where are the hydrogen atoms?

Two types of oxalate groups

As found Refined

Chains along c
C2O4 ⋅⋅⋅ H⋅⋅⋅C2O4 ⋅⋅⋅ H⋅⋅⋅

Isolated C2O4

And water molecules
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Hydrogen atoms in acid strontium oxalate as 
determined by Simulated Annealing using FullProf

The chemical formula is Sr(HC2O4). ½ (C2O4).H2O

As found Refined
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Hydrogen atoms in acid strontium oxalate as 
determined by Simulated Annealing using FullProf

Sr(HC2O4) .½ (C2O4).H2O

Sr is coordinated by oxygen atoms belonging 
to oxalate groups and water molecules
Chains along c:     ⋅⋅⋅ C2O4 ⋅⋅⋅ H⋅⋅⋅C2O4 ⋅⋅⋅ H⋅⋅⋅
Water molecules
Isolated C2O4 (no hydrogen bonding)
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The use of distances and angles restraints in 
FullProf

The calculation of distances and angles, as well as bond 
valence sums can now be done automatically, without 
using external programs.

Output files with extension dis contain all the relevant 
information for the different phases if the user ask for this 
option. 

A byproduct of these calculations is the generation of the 
output files of names dconstr"n".hlp (n stands for the 
number of the phase) containing lines that can be directly 
pasted to PCR files for soft constraints on distances and 
angles. 
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The use of distances and angles restraints in 
FullProf

Restrains: d(C-C) oxalate=1.5500 ±0.0002

First cycle:
=> Distance restraints:      Dobs     Dcalc  diff/sigma

(C1   - C3  ):          1.55000   1.56618   -80.88648
(C2   - C2  ):          1.55000   1.53215    89.24484

Second cycle:
(C1   - C3  ):          1.55000   1.54243    37.82809
(C2   - C2  ):          1.55000   1.56776   -88.77576

Third cycle:
(C1   - C3  ):          1.55000   1.55625   -31.26800
(C2   - C2  ):          1.55000   1.55001    -0.06020

Convergence at cycle 8:
(C1   - C3  ):          1.55000   1.55004    -0.21458
(C2   - C2  ):          1.55000   1.54999     0.06676
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The use of distances and angles restraints in 
FullProf

No restrains
=> Global user-weighted Chi2 (Bragg contrib.):  2.35
=> Phase:  1
=> Bragg R-factor:  4.21       Vol:  612.268( 0.040)  Fract(%):  100.00( 0.91)
=> Rf-factor= 2.38             ATZ:         966.690   Brindley:  1.0000

Restrains: d(C-C) oxalate=1.5500 ±0.0002
=> Global user-weighted Chi2 (Bragg contrib.):  2.34
=> Phase:  1
=> Bragg R-factor:  4.22       Vol:  612.254( 0.040)  Fract(%):  100.00( 0.91)
=> Rf-factor= 2.43             ATZ:         966.690   Brindley:  1.0000
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The use of linear restraints in FullProf

If NLI > 0, the program expect to read at the end of 
the PCR file the following items:

NLI pairs of lines containing
First line:
Name of the restrain, number of coefficients (n), 
value(q), sigma 
Second line:
Up to n pairs of: coefficient(ai), parameter number of pi.

1,...

( )i i
i n

a p q qσ
=

= ±∑
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The treatment of micro-
structural effects in FullProf
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Procedure for working with micro-
structural effects in FullProf

Characterise the IRF of the diffractometer using a calibrating 
sample

Use WinPLOTR for creating an INSTRUMENTAL 
RESOLUTION FILE (Fit individual peaks through the pattern)

Use FullProf with IRF putting to ZERO all FWHM
parameters

Select a model for microstructure and refine only the
parameters related to the sample.

The program generates a microstructural file and
other files for plot
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2 2 2 2
2( (1 ) ) tan tan

cos
G

G ST
IH U D V Wξ θ θ
θ

= + − + + +

[ ( )]( ) tan
cos

Z
L ST

Y F SH X Dξ θ
θ

+
= + +

Modeling the Gaussian and Lorentzian
components of the profile function in 
terms of anisotropic microstructural
parameters
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Anisotropic strain broadening
Phenomenological model: strains considered as fluctuations 
and correlation between metric parameters 
J. Rodríguez-Carvajal et al (J. Phys. Cond. Matt. 3, 3215 (1991)

( )2

1 ;hkl i
hkl

M M hkl
d

α= =

The metric parameters αi (direct, reciprocal or any combination) 
are considered as stochastic variables with a Gaussian distribution
characterized by :
• the mean 〈 αi〉 and 
• the variance-covariance matrix Cij
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The mean and the variance of the function Mhkl
are given by (JRC et al , J. Phys. Cond. Matt. 3, 3215 (1991) ):

( );hkl iM M hklα=

( )2

,
hkl ij

i j i j

M MM Cσ
α α
∂ ∂

=
∂ ∂∑

If the metric parameters are taken as the coefficients of the 
quadratic form: 2 2 2

2

1

hkl

Ah Bk Cl Dkl Ehl Fhk
d

= + + + + +
{αi}={A,B,C,D,E,F}

Cij contains 21 parameters, 
15 independent

( )
{ }

2

4

H K L
hkl HKL

HKL
H K L

M S h k lσ
+ + =

= ∑
P. W. Stephens,
J. Appl. Cryst. 32, 281 (1999)
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Nd2NiO4

  S_400     S_040      S_004     S_220
22.04(78) 17.74(57)  0.016(2)  -38.8(1.2)
Lorentzian Parameter:  0.093(2)

Nd2NiO4, LT

A-strain h k l
43.4585  0 1 2
48.1172  1 0 2
 7.1018  1 1 0
 5.9724  1 1 1
 4.1383  1 1 2
 9.7952  0 0 4
 4.0162  1 1 3
79.5271  0 2 0
87.5578  2 0 0
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Re-entrant transition in HoFe4Ge2

Neutron diffraction patterns of HoFe4Ge2 on G4.2 -
LLB,  low Q region showing magnetic reflections

Q (Å-1)

T=63K

T=36K

T=16K

T=4K
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T=52K

T=36K

T=21K

T=14K

T=4K

HoFe4Ge2 on BM16 - ESRF

T=63K

T=36K

T=16K

T=4K

HoFe4Ge2 on G4.2 - LLB

Q (Å-1)

Re-entrant transition in 
HoFe4Ge2: RX-vs-N

High resolution powder 
diffraction
X-ray Synchrotron radiation
In the diffraction patterns one can 
see the re-entrant transition

Neutron powder diffraction
The splitting of nuclear 
reflections is not seen
Only a subtle broadening can be 
appreciated by individual 
refinement of the reflections.
Extra reflections are of magnetic 
origin.
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Q(Å-1)

T=4 K, Cmmm & P42/mnm

at

bt

P42/mnm

P42/mnm

Cmmm ao

bo bt

at

The patterns of microstrains can be visualized putting 
Jvi=5 in the PCR file and reading the binary file with 
GFOURIER. Use projection mode.

Microstrain patterns of HoFe4Ge2

T=52K, P42/mnm
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Anisotropic broadening due to size effects

x
y

Lh
Ω

h

The intrinsic profile of a particular reflection due to size 
effect has an integral breadth        , the Scherrer formula:

gives the volume-averaged apparent size of the 
crystallites in the direction normal to the scattering 
planes. This apparent size has a perfectly defined 
physical interpretation:

in terms of the normalized column-length distribution 
pV(L):

*

1
cosV

S S

D λ
β θ β

= =

( ) 3

1,...

1 1 ,
i

V
i N i C

D L x y d
N V=

= ∑ ∫∫∫ h r

0

( )VV
D L p L dL

∞

= ∫

Sβ
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Pd3MnD0.8

Portion of the neutron diffraction pattern of Pd3MnD0.8 at room temperature obtained on 
3T2 (LLB, λ = 1.22 Å). On top, the comparison with the calculated profile using the 
resolution function of the instrument. Below the fit using IsizeModel = -14. Notice 
that only the reflections with indices of different parity are strongly broadened. 
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Mic-File: Pd3MnD0.8

!  MICRO-STRUCTURAL ANALYSIS FROM FULLPROF (still under development!)
!  ==================================================================
!  Pattern No:  1 Phase No:   1 Pd3MnD.8 - CFC
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
!  Integral breadths are given in reciprocal lattice units (1/angstroms)x 1000
!  Apparent sizes are given in the same units as lambda (angstroms) …
!  Apparent strains are given in %% (x 10000) (Strain= 1/2 * beta * d)
!  An apparent size equal to 99999 means no size broadening
!  The following items are output:
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
! The apparent sizes/strains are calculated for each reflection using the formula:
!
!  App-size (Angstroms) =  1/(Beta-size)
!  App-strain (%%) =  1/2 (Beta-strain) * d(hkl)
!
!  (Beta-size) is obtained from the size parameters contributing to the FWHM:
!          FWHM^2 (G-size) = Hgz^2 = IG/cos^2(theta)
!          FWHM   (L-size) = Hlz   = ( Y + F(Sz))/cos(theta)
!(Beta-strain) is obtained from the strain parameters contributing to the FWHM:
!          FWHM^2 (G-strain) = Hgs^2 =   = (U+[(1-z)DST]^2) tan^2(theta)
!          FWHM   (L-strain) = Hls   = (X+ z DST) tan(theta)
!
!   In both cases (H,eta) are calculated from TCH formula and then
!   Beta-pV is calculated from:
!
!            beta-pV= 0.5*H/( eta/pi+(1.0-eta)/sqrt(pi/Ln2))
!
!  The standard deviations appearing in the global average apparent size and 
!  strain is calculated using the different reciprocal lattice directions.
!  It is a measure of the degree of anisotropy, not of the estimated error

...   betaG     betaL ...  App-size App-strain    h     k     l     twtet ...

...  1.4817   11.5859 ...     93.58   41.6395     1     0     0 17.7931 ...

...  2.0954   11.9584 ...     93.58   41.6395     1     1     0 25.2665 ...

...  2.5664    1.5573 ...  99999.00   41.6395     1     1     1 31.0743 ...

...  2.9634    1.7982 ...  99999.00   41.6395     2     0     0 36.0343 ...

...  3.3132   12.6973 ...     93.58   41.6395     2     1     0 40.4625 ...

...  3.6294   12.8892 ...     93.58   41.6395     2     1     1 44.5207 ...

...  4.1909    2.5431 ...  99999.00   41.6395     2     2     0 51.8786 ...

...  4.4451   13.3842 ...     93.58   41.6395     3     0     0 55.2849 ...

...  4.4451   13.3842 ...     93.58   41.6395     2     2     1 55.2850 ...

...  4.6855   13.5301 ...     93.58   41.6395     3     1     0 58.5562 ...

...  4.9142    2.9820 ...  99999.00   41.6395     3     1     1 61.7169 ...

...  5.1327    3.1146 ...  99999.00   41.6395     2     2     2 64.7864 ...

...  5.3423   13.9286 ...     93.58   41.6395     3     2     0 67.7802 ...

...  5.5440   14.0510 ...     93.58   41.6395     3     2     1 70.7114 ...

.............................................................................
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Ca2MnO4     (I 41/acd), RT
a=5.187 Å,  c=24.123 Å

Broadening: (hkl), l=2n+3

Selective size broadening observed by neutron diffraction at room temperature (3T2, 
LLB) for superstructure reflections in Ca2MnO4. (top) Size parameter fixed to zero. 
(bottom) Single size parameter according to the rule (hkl), l=2n+3. 
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Spherical harmonics to simulate the average form of crystallites

An arbitrary shape of crystallites can be simulated using 
spherical harmonics. To access this option in FullProf one 
needs to select the variable IsizeModel= 15 to 22

( )
cos1 cos ; /
sinlmp lm

lmp

m
a P p

mD
Φ 

= Θ = + − Φ 
∑ h

h
hh

( ),Θ Φh h : Polar angles of reciprocal vector h w.r.t. crystal frame

( )
cos

cos
sincos lmp lm

lmp

mkFWHM a P
m

λ
θ

Φ 
= Θ  Φ 

∑ h
h

h
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ISizeModel = 15:  Monoclinic with unique b-axis up to 4th-order Ylm's:
:  Y00,Y22+,Y22-,Y20,Y44+,Y44-,Y42+,Y42-,Y40
:  Spacegroups 3-15 (Laue class 2/m)

ISizeModel = 16:  Trigonal with hexagonal setting, unique axis c
:  Spacegroups 149-167(Laue class -3 m)
:  Ylm's up to 6th order: Y00,Y20,Y40,Y43-,Y60,Y63-,Y66+

ISizeModel = 17:  Cubic - x,y,z along a,b and c.
:  No restriction for spacegroups 195-206 (Laue class  m -3)
:  For spacegroups 207-230 coefficient of K62=0 (Laue class  m -3 m)
:  Cubic harmonics Klm's up to 8th order: K00,K41,K61,K62,K81

ISizeModel = 18:  Orthorhombic - Spacegroups 16-74 (Laue class mmm)
:  Ylm's up to 4th order: Y00,Y20,Y22+,Y40,Y42+,Y44+

ISizeModel = 19:  Hexagonal - Spacegroups 168-194
:  For spacegroups 177-194,coefficient of Y66=0 (Laue class 6/mmmm).
:  No restriction for spacegroups 168-176 (Laue class 6/m )
:  Spherical harmonics Ylm's up to 6th order: Y00,Y20,Y40,Y60,Y66+,Y66-

ISizeModel = 20:  Trigonal with hexagonal setting, unique axis c
:  Spacegroups 143-148 (Laue class -3)
:  Ylm's up to 4th order: Y00,Y20,Y40,Y43-,Y43+

ISizeModel = 21:  Tetragonal - Spacegroups 75-142
:  For spacegroups 89-142 coefficients of Y44-=0, Y64=0 (Laue class 4/mmm)
:  No restriction for spacegroups 75-88 (Laue class 4/m)
:  Ylm's up to 6th order: Y00,Y20,Y40,Y44+,Y44-,Y60,Y64+,Y64-

ISizeModel = 22:  Triclinic
:  Spacegroups 1-2 (Laue class -1)
:  Ylm's up to 2th order: Y00,Y20,Y21+,Y21-,Y22+,Y22-

Spherical harmonic options for size broadening (Lorentzian)
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Example: Simulated data of anisotropic size 
effects using Spherical Harmonics 
(based in unpublished real data)

Simulated data for an Al-oxide (ex. spherical harmonics)
! Current global Chi2 (Bragg contrib.) =      93.78
NPATT      1
W_PAT   1.000
!Nph Dum Ias Nre Cry Opt Aut

1   0   0   0   0   0   1
!Job Npr Nba Nex Nsc Nor Iwg Ilo Res Ste Uni Cor

0   7   0   1   0   1   0   0   1   0   0   0
!File names of data(patterns) files
siz-sph.dat
!
!  Resolution file for Pattern#   1
xray-res.irf
!Mat Pcr NLI Rpa Sym Sho

0   1   0   0   1   1
!Ipr Ppl Ioc Ls1 Ls2 Ls3 Prf Ins Hkl Fou Ana

0   0   1   0   4   0   3   0   0   0   0
. . . . . . . . 
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Simple example of a file containing the 
Instrumental Resolution Function
in form a Caglioti-like parameters 

This is the file: xray-res.irf

Approximate resolution function of a conventional
! X-ray diffractometer with CuKalpha1,2
!   Uins     Vins         Wins      Xins      Yins      Zins
0.007621  -0.008895   0.010214   0.003352    0.0       0.0
0.007621  -0.008895   0.010214   0.003352    0.0       0.0 

Running the program without refining the profile 
parameters gives you an idea of the peak broadening
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Comparison of the experimental pattern with the 
resolution function of the diffractometer
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Refinement using isotropic Lorentzian and Gaussian 
parameters: Average crystallite size 58.3 Å
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PCR-file treating anisotropic size effects using 
Spherical Harmonics 

…………… 
I 41/a m d               <--Space group symbol
!Atom Typ       X        Y        Z     Biso      Occ     In Fin N_t Spc /Codes
16h  o-2     0.00000  0.02789  0.25409  1.88354  0.50000   0   0   0   0

0.00     0.00     0.00     0.00     0.00
. . . . . . . . . . . . . . . . . . .
16g  al+3    0.21293  0.46293  0.87500  0.66821  0.11416   0   0 0    0

0.00     0.00     0.00     0.00     0.00
!-------> Profile Parameters for Pattern #  1
!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model
0.15556E-01   0.00000   0.00000   0.00000   0.00000   0.00000       0

11.00000     0.000     0.000     0.000     0.000     0.000
!       U         V          W           X          Y        GauSiz   LorSiz Size-Model

0.000000   0.000000   0.000000   0.000000   0.000000   0.905546 0.000000 21
0.000      0.000      0.000      0.000      0.000    101.000 0.000

!     a          b         c        alpha      beta       gamma
5.627625   5.627625   7.782376  90.000000  90.000000  90.000000
0.00000    0.00000    0.00000    0.00000    0.00000    0.00000

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L D_L
1.00000  0.00000  0.00096  0.00144  0.00000  0.00000  0.02907 0.02907

0.00     0.00     0.00     0.00     0.00     0.00     0.00 0.00
!   Y00        Y20         Y40        Y44+        Y44- Y60

11.372407  -5.957819  -0.839027   2.933409   0.000000   3.458423
51.00      61.00      71.00      81.00       0.00      91.00

!   Y64+       Y64-+
0.000000   0.000000

0.00       0.00
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Refinement using isotropic Lorentzian and Gaussian 
parameters: Average crystallite size (anisotropy): 56.31 (7.74)
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c

a

a

b

b

c The visualization of the average crystallite 
shape is done by using GFOURIER to read 
the binary file: myPCR_size_n.bin 
generated when an IRF file is used and Jvi=5

35 Å

70 Å

43 Å

Anisotropic crystallite size



Durban, August 24, 2003 ECM-21 Software Workshop

3D visualization of the average crystallite shape
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New option to relax some profile parameters of 
special reflections 

This option works with Constant Wavelength and Time of Flight diffraction 
patterns. 

The user may select few reflections from the pattern to treat them in a special 
manner: an additional Gaussian and Lorentzian broadening with respect to the 
values calculated with the resolution parameters, as well as the shift with respect 
to the calculated position (from cell parameters) can be fitted. 

This situation may be found in cases of defective materials for which the law 
governing the shifts and broadening is not known in advance, or in cases of 
instrumental defects (slight change of wavelength across the pattern, etc).

At present 50 reflections per phase and per pattern is the maximum allowed.
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New option to relax some profile parameters of 
special reflections 

The program expect to read a list Nspec_ref lines containing:
h   k   l  nvk   D-HG^2    Cod_D-HG^2  D-HL   Cod_D-HL    Shift   Cod_Shift
The list starts at the end of the profile parameters for a given pattern.

The Gaussian FWHM^2 for a special reflections is calculated as:
FWHM^2 =  FWHM^2(resolution parameters) + D-HG^2      (CW)       
Sigma^2= Sigma^2(resolution parameters) + D-HG^2      (TOF)

D-HG^2 is treated as a free parameter.

The Lorentzian FWHM for a special reflections is calculated as:
FWHM =  FWHM(resolution parameters) + D-HL     (CW)

Gamma = Gamma(resolution parameters) + D-HL     (TOF)
D-HL is treated as a free parameter.

The position of a special reflections is calculated as:
2Theta(degrees) =  2Theta(cell parameters,zero,etc.)    + Shift

TOF(micro-scnds) = TOF(cell parameters,zero,dtt1,dtt2,etc.) + Shift
Shift is treated as a free parameter.
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New option to relax some profile parameters of 
special reflections (Example)

!-----------------------------------------------------------------------
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:  1.06
!-----------------------------------------------------------------------
Myphase

!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth     ATZ   Nvk Npr More

6   0   0 0.0 0.0 1.0   0   0   0   0   0     5050.20   0   7 1
!
!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref

0   0   0   0   0   0  1.0000  0.0000  0.0000  0.0000   1   3
!
P 3 1 c                  <--Space group symbol
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L D_L

0.00000  0.00000  0.07373  0.01902  0.00000  0.00000  0.00000 0.00000
0.00     0.00   251.00   241.00     0.00     0.00     0.00 0.00

! Special reflections:
!  h   k   l  nvk   D-HG^2    Cod_D-HG^2  D-HL   Cod_D-HL    Shift   Cod_Shift

1   0   1    0  0.00000       0.000  0.04417   551.000  -0.01236    561.000
2   0   0    0  0.00000       0.000  0.03056   571.000  -0.00274    581.000
3   0   1    0  0.00000       0.000  0.00759   591.000  -0.00119    601.000
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Na2Ca3Al2F14: shifts of peaks due to complex T.O.F. versus d-spacing
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Na2Ca3Al2F14: shifts of peaks due to complex T.O.F. versus d-spacing.
Effect of relaxing some peak positions
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Abstract: The classical approach for solving magnetic structures is the “trial and error” (TE) 
method. The reason is that many studies have been performed on relatively simple systems and the 
fact that the dominant isotropic exchange interactions, in absence of frustration, favour simple 
collinear structures. The improvement of the resolution of neutron powder diffractometers has 
allowed handling complex incommensurate magnetic systems. For solving complex magnetic 
structures the TE method is unable to provide appropriate results and other methods have to be 
used. In this communication the techniques for magnetic structure determination from neutron 
powder diffraction (NPD) data are reviewed. In the general case the magnetic moment of an atom in 
the crystal is given as a Fourier series. The Fourier coefficients, S , are complex vectors 
constituting the “unknowns” to be determined. These vectors define the magnetic structure and they 
correspond to the “atom positions” of an unknown crystal structure. The steps for solving magnetic 
structures from NPD are the following: i) Search for the propagation vector(s) {k}. The set {k} 
provides the translation symmetry of the spin configuration. ii) Symmetry analysis is needed to find 
the smallest set of free parameters. In general the vectors S  are linear combinations of the basis 
functions of the irreducible representations of the wave vector group G

jk

jk

k. iii) Use an appropriate 
method for determining the coefficients of the above linear combinations. This implies an 
evaluation of the observed versus calculated intensity of the magnetic reflections. The use of a 
Patterson-like function or direct methods is not appropriate for magnetic structure determination 
due to the small number of useful reflections. The simulated annealing technique is more efficient 
in this field. We have improved and extended this method to the case of incommensurate magnetic 
structures. 
 
Introduction 

In the last thirty years the Rietveld method, added to the increased performance of powder 
diffractometers, has allowed great progress in the analysis of powder diffraction data. The 
multiphase refinement of incommensurate structures, with the possibility of varying peak shape 
parameters depending on a particular class of reflections, give information not only on the magnetic 
structure, but also on the correlation lengths along particular directions in reciprocal space. 
Nowadays, the analysis taking into account all the details of the full profile is the usual way of 
reporting magnetic structure refinements from powder data. But the prior condition to apply the 
Rietveld Method is to have an initial model for the magnetic structure. In this paper we shall be 
concerned with the resolution of magnetic structures from powder data. 



 
The formalism of propagation vectors for describing magnetic structures. 
 
The reader interested in the basis of the elastic magnetic scattering in relation with magnetic 
structures may consult the references [1, 2]. Here we will follow the reference [3] but using a 
different convention for the sign of phases and a somewhat different notation. The intensity of a 
Bragg reflection for non polarised neutrons is given by: 

*
hhhhh MM ⊥⊥ ⋅+= *NNI       (1) 

Where is the nuclear structure factor and the magnetic interaction vector is defined as: hN hM ⊥

( )( ) ( ) ( )( )hMeehMehMeM h ⋅−=××=⊥       (2) 
M(h) is the magnetic structure factor, and e is the unit vector along the scattering vector h=H+k. 
where H is a reciprocal lattice vector of the crystal structure and k the propagation vector 
corresponding to the current magnetic reflection. For a pure magnetic reflection =0 hN
The magnetic structures that we are considering have a distribution of magnetic moments that can 
be expanded as a Fourier series: 

{ }
{ }
∑ −=

k
k kRSm ljlj iexp π2       (3) 

The sum is extended to all propagation vectors that could belong to different stars. The Fourier 
coefficients are, in general, complex vectors. The magnetic structure factor can be written as: jkS

( ) ( ) ( ){ jj
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c
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=

π2
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}     (4) 

The sum is over all the magnetic atoms in the crystallographic cell. The constant p = re γ/2 = 0.2695 
allows the conversion of the Fourier components of magnetic moments, given in Bohr magnetons to 
scattering lengths units of 10-12 cm. ( )kH +jf  is the magnetic form factor and  is the vector 
position of atom j. In the above expression the atoms have been considered at rest. If thermal motion 
is considered and if symmetry relations are established for coupling the different Fourier 
components, we obtain the general expression of the magnetic structure factor: 
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The sum over j concerns the atoms of the magnetic asymmetric unit for the wave vector k. So that j 
label different sites. The anisotropic temperature factor, , is not generally necessary to be used in 
magnetic refinements = 1. 

sjT

sjT
The sum over s concerns the different symmetry operators of the crystal space group that belong to 
the wave vector group. The matrix  transform the components of the Fourier term of the 
starting atom j to that numbered as js in the orbit of j. The phase factor 

jsM jkS

jskψ has two components:  
    jsjjs kkk φψ +Φ=     (6) 

jkΦ is a phase factor that is not determined by symmetry. It is a free parameter and it is significant 
only for an independent set of magnetic atoms (one orbit) which respect to another one. 

jskφ is a phase factor determined by symmetry. The Fourier component k of the magnetic moment of 
atom j is transformed to 

{ }jsjjsjs iexpM kkk SS φπ2−=        (7) 
The matrices  and phases jsM jskφ  can be deduced from the atomic basis functions, obtained by 
applying projection operator formulas, corresponding to the active representation(s) participating in 
the definition of the actual magnetic structure. The sign of jskφ  changes for -k. In the general case 



jkS is a complex vector with six components. These six components per magnetic orbit constitute 
the parameters that have to be refined from the diffraction data. Symmetry reduces the number of 
free parameters per orbit to be refined. An alternative expression of the magnetic structure factor 
can be written as a function of "mixing coefficients" (parameters to be refined) and the atomic 
components of the basis functions of the relevant representation [4]. The expression of the Fourier 
coefficients is given as: 

λ

( )jsC n
n

njs
ν
λ

λ

ν
λ

k
k SS ∑=        (8) 

Where ν labels the active irreducible representation, νΓ , of the of the propagation vector group, 
labels the component corresponding to the dimension of the representation , n is an index 

running between one and the number of times the representation 
νΓ

νΓ  is contained in the global 
magnetic representation MΓ . Finally ( )jsn

ν
λ

kS  are constant vectors obtained by the application of the 
projection operator formula to unit vectors along the directions of the unit cell basis. An addition 
sum over ν  is sometimes necessary when more than one irreducible representation is involved in 
the magnetic phase transition. See reference [4] for details. 
If the magnetic structure has several propagation vectors k, it is not possible to determine 
unambiguously the spin configuration, because the phase between the different Fourier components 
cannot be determined. Fortunately, nature often selects simple solutions and many magnetic 
structures have a single propagation vector, or display some symmetry constraints that reduce the 
complexity of the periodic magnetic structure given by Eq.3.  
 
The search for the propagation vector and symmetry analysis: the programs SuperCell and 
BasIreps. 
The first problem to be solved before attempting the resolution of the magnetic structure is the 
determination of the propagation vector(s), i.e. its "periodicity". To find k is necessary to index the 
magnetic reflections appearing below the ordering temperature (TC or TN). With a single crystal the 
task is somewhat easy, but is tedious for a powder because only the module of reciprocal vectors is 
available. Graphic or numerical procedures can be used. We have developed a method for searching 
the propagation vector of a commensurate or incommensurate structure implemented in the program 
SuperCell. Once an approximate propagation vector is obtained the symmetry analysis according to 
references [4] can be started. The program BasIreps may be used for obtaining the vectors ( )jsn

ν
λ

kS  
in Eq.8. These programs and the corresponding documentation can be obtained from the Web site of 
the LLB [5]. 
To solve the magnetic structure the integrated intensities of magnetic reflections are needed, and 
these may be obtained by the fitting of the full powder diffraction profile. The method of “profile 
matching" implemented in the program FullProf [3, 5] may be used simultaneously with the 
Rietveld method for the analysis of a diffraction pattern. This mixed procedure has to be used with 
caution: no structural parameter of the known phase must be refined. This is the usual case of 
neutron diffraction patterns of magnetically ordered compounds, where the nuclear reflections 
coexist with the magnetic reflections. With illustration purposes we show in Fig.1 the plot of the 
observed versus calculated pattern of the low angle part of the diffraction pattern of LiMn2O4 at low 
temperature after performing the extraction procedure. The magnetic structure has a propagation 
vector k=(0,0,δ) with δ ≈0.44 with respect to the charge ordered superlattice (a ≈ b ≈ 3ac, c ≈ ac, 
where ac is the lattice parameter of the cubic spinel sublattice, see [6] for details of the crystal 
structure). All reflections, except one magnetic impurity line, are indexed with h=H±k and h=H 
(k=0) of a small ferromagnetic component. 
 



Figure 1: Profile matching refinement of the LiMn2O4 neutron diffraction pattern at low temperature. The 
profile of the calculated nuclear contribution (upper reflection marks) is also displayed. 
 
The resolution of magnetic structures from powder data: the simulated annealing method 
 
The set of integrated intensities obtained with the full profile refinement method, must be analysed 
(and eventually modified) to tackle the problem of structure determination. To use the Simulated 
Annealing (SA) technique it is not necessary to seek sophisticated treatments of the reflection 
overlap. One can just add the dubious reflections treating the sum as one observation to which one 
or more independent reflections contribute. This is automatically performed using one of the options 
of the program FullProf [5]. The method described below is also valid for the analysis of single 
crystal data. 
The SA algorithm is a general-purpose optimisation technique for large combinatorial problems 
introduced in 1983 by Kirpatrick, Gelatt and Vecchi [7]. The function, E(ω) to be optimised with 
respect to the configuration described by the vector state ω is called the “cost” function. First we 
select an initial configuration, ωold, then each step of SA method consists of a slight change of the 
old configuration to a new one, ωnew. If ∆=E(ωnew)-E(ωold) ≤ 0 the new configuration serves as old 
configuration for the next step. If ∆ is positive, ωnew is accepted as current configuration only with 
certain probability that depends on the so-called “temperature”, T, parameter and ∆. The probability 
that a worse configuration is accepted is slowly decreased on “cooling”. The following pseudo-code 
summarises the SA algorithm, and shows the simplicity to implement it: 
 

Initialise (set to zero useful quantities, do preliminary calculations )  
  t = 1, set initial temperature T_ini=T(1) 
  do  
   do 
    Perturb the system: 
     ωold → ωnew, ∆=E(ωnew)-E(ωold) 
    if ∆ ≤ 0 then accept, else 
     if exp(-∆/Τ(t)) > random[0,1] then accept 
    if accept then Update (replace ωold by ωnew) 
   until equilibrium is approached closely enough (NCyclM) 
   T(t+1) = f(T(t)) (decrease temperature, usually T(t+1) = q T(t), q≈0.9) 
   t = t + 1 
  until stop criterion is true (maximum t, convergence, low % accepted...) 
 end 



For structure determination, the cost function can be chosen as the conventional crystallographic R-
factor, or some function related to it. In the new version of FullProf [5] the following expression is 
used: 
   E[ω(ß)] =  Σn | Iobs(n)- SΣj(n)Icalc(j)[ ω(ß)]| / IT 
The sum over n is extended for all the “observations”, and that over j(n) for all the reflections 
contributing to the observation n. IT = ΣnIobs(n) and S is a scale factor. The configuration ω is the 
list of all the components of the Fourier coefficients of magnetic atoms existing in the chemical unit 
cell and this list is obtained from the independent parameters ß (any symmetry constraint can be 
imposed) that are those really participating in the annealing procedure. In practice, for a 
commensurate magnetic structure, the vector ß may have the form: 
   ß = | θ1, φ1, S1, θ2, φ2, S2,.... θns, φns, Sns 〉 = | (θs, φs, Ss)s=1,...ns〉 
Where the index s labels the sites, θs and φs are the polar angles of the spin, and Ss is the modulus of 
the magnetic moment in site s. The most general case corresponds to a set of mixing coefficients of 
the linear combination given by Eq.8: 
    ß = |C1, C2, C3,  … CN〉 = | (Cs)s=1,...N〉 
To start solving a magnetic structure with the SA method one has to create the intensity file where 
the indices of each reflection and its intensity are written. This is performed automatically within 
FullProf by using profile matching modes and the option that outputs the overlapped reflection 
clusters in a file that can be used as input for the SA method. The usual PCR file [5] of FullProf is 
then used for controlling the algorithm. The SA parameters are those defining the limits of loops in 
the algorithm presented above (T_ini = initial temperature, N = maximum number of temperatures, 
NcyclM = number of Montecarlo cycles per temperature, Accept = Minimum percentage of 
accepted configurations) and the “cooling” schedule T(t+1) = q T(t) (q<1, q ≈ 0.9). The user may 
select either a fixed step for each variable (that are defined within a simulation box of hard or 
periodic limits) or a variable step (Corana’s algorithm) that is dynamically adapted in order to have 
an adequate rate of accepted configurations [8].  
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Figure 2. Typical behaviour of the average step in the 
Corana’s SA algorithm. See text for details 

The starting point may be an arbitrary 
configuration or a given one. At 
variance with least-squares 
optimisation methods, the SA 
algorithm never diverges. Always the 
algorithm proceeds roughly in two 
steps. The first step, at high 
temperatures, the algorithm is 
searching for the “basin of attraction” 
of the minimum in the configuration 
space, this part constitutes the 
“magnetic structure determination”. 
Once the region is attained, a more or 
less sharp drop in the average “energy” 
(R-factor) occurs. Then, the second 
step starts when the average R-factor is 
low enough, the algorithm enters in its 
phase of “refinement”, where the good 
configuration has been found, and 

performs a progressive improvement of the solution. This is clearly seen in the behaviour of the 
dynamic step as a function of the ordinal number (t) of the temperature parameter in Fig.2, 
illustrating the case of LiMn2O4 where the refined parameters correspond to phases in units of 2π. 



The plot of the phases shows that they oscillate around 0.5 (random average) at the first stages of 
the algorithm and progress toward definite values within the “refinement” region.  
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Figure 3. Behaviour of the magnetic phases of some particular 
atoms as a function of the inverse temperature. The value 
represented is the average of NcycM cycles per temperature. 

For a given set of constraints 
the final average R–factor 
should be reasonably good 
(below 20%) except for 
contradictory or false 
constraints. 
False minima are encountered 
when the number of free 
parameters is of the same order 
of magnitude than the number 
of observations and/or the 
observations are of bad quality 
(very weak magnetic reflections 
and large errors associated to 
them). Ambiguities can be 
easily discovered. When the 
intensity data do not depend on 
a parameter, this shows an 
anomalous behaviour: in a plot 
similar to that of Fig. 3, large 
oscillations persist even at low 
temperature. 
 
In conclusion, we have shown that the SA algorithm can be used for the magnetic structure 
determination even in the case of complex incommensurate magnetic structures. The method is 
straightforward and is fully implemented in the program FullProf that is publicly available [5]. 
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Preface 
 
 
This PDF document is the first serious attempt to a manual of the program FullProf. The manual is not 
yet totally finished and the author apologises for the errors it contents. The description of the main control 
file CODFIL.pcr is detailed in an appendix. A substantial part of the document is dedicated to the 
treatment of examples and the description of specialised problems. A beginner cannot start to use the 
program without any background in crystallography, magnetism, diffraction physics, and data analysis. 
Even an expert in these fields can experience difficulties the first time (or even the n-th time!) he (she) 
uses the program. An effort is presently being developed to facilitate the use of FullProf. For the moment 
only the new version FullProf 2000 under Windows 9x/2k/NT, which is distributed together with 
WinPLOTR, looks like a modern user-friendly application. A Linux version of the program WinPLOTR 
will be prepared in order to provide an efficient Graphic User Interface (GUI) to FullProf. At present a 
platform independent GUI (written in JAVA) exist but it is still in development and the performance is 
still low. 
 
The manual begins with a short description of the way to obtain FullProf from the anonymous ftp-area. 
It follows with a chapter where a brief description of the purpose of the program and the list of input and 
output files. The second chapter is dedicated to the description of strategies for using the program and the 
description of examples. The best way to start is using examples that work properly if the good 
parameters are provided to the program. To that end a kit of examples has been installed in an accessible 
area of the server charybde.saclay.cea.fr. This file (pcr_dat.zip) must be unzipped with the well-known 
WinZip program or a compatible product. The format of the files is for a PC, but they can be converted 
easily to UNIX with an editor or with a simple application like dos2unix. The Windows 9x/2k/NT version 
of FullProf is distributed in a single ZIP file containing the examples kit inside. 
In the third chapter the mathematical expressions used inside FullProf are written and discussed briefly. 
The rest of chapters are dedicated to the discussion of some specialised problems. 
 
 
 
 
 

Juan Rodríguez-Carvajal 
Saclay, July 2001 

 



 

Disclaimer 
 
The program FullProf is distributed in the hope that it will be useful, but WITHOUT ANY 
WARRANTY of being free of internal errors. In no event will the author be liable to you for damages, 
including any general, special, incidental or consequential damages arising out of the use or inability to 
use the program (including but not limited to loss of data or data being rendered inaccurate or losses 
sustained by you or third parties or a failure of the program to operate with any other programs). The 
author is not responsible for erroneous results obtained with FullProf. This manual cannot substitute the 
lack of knowledge of users on crystallography, magnetism, diffraction physics, and data analysis. Powder 
diffraction is becoming more and more powerful but FullProf is not an automatic (black-box) program, 
as is usually found in single crystal structure determination. No attempt has been made in order to predict 
the behaviour of the program against bad input data. The user must check his (her) data before claiming a 
malfunction of the program. The author acknowledges all suggestions and notification of possible bugs 
found in the program. 
 
 

Availabi ity of FullProf l
 
The old versions of FullProf, written in Fortran 77 and running in different platforms, are in the directory 
pub/divers/fullp of the anonymous ftp-area of the server charybde.saclay.cea.fr. Users interested in 
creating their own subroutines to link with the FULLP-library are asked to read the file fpreadme in the 
above-mentioned ftp-area. To access this area from the Internet, one has to type in the local host the 
following command: 
 

• LocalPrompt> ftp charybde.saclay.cea.fr <cr> 
 
Answer with the word: anonymous, to the Login request and password. Within the ftp prompt, do: 
 
From the local host: 
 

ftp>cd pub/divers/fullp  ! Go to FullProf area (Multi-platform) 
ftp>get fpreadme  ! Obtain the document 
ftp>bye    ! Return to host 

 
The most recent versions of FullProf, written in Fortran 90, are in one of the areas pub/divers/fullprof.9x 
of the same server. Or (example for getting the Windows version of FullProf.98) 
 

ftp>cd pub/divers/fullprof.98 ! Go to FullProf.98 (DOS, Windows9x/NT) 
ftp>cd windows   ! Go to Windows9x/NT directory 
ftp>get README  ! Get the installation guide 
ftp>binary   ! Switch to binary mode 
ftp>get winfp98.zip  ! Get programs and documentation 

 
Experienced users of ftp can go directly to the subdirectories and get the files they want. The structure of 
subdirectories matches the different platforms in which FullProf can be run. Details are given in the file 
fpreadme. The anonymous ftp-area can be accessed via the WEB through the URL of the LLB: 
 

http://www-llb.cea.fr/fullweb/powder.htm 
 

or 
 

ftp://charybde.saclay.cea.fr/pub/divers/ 
 

http://www-llb.cea.fr/fullweb/powder.htm
ftp://charybde.saclay.cea.fr/pub/divers/


 
Working with powder diffraction data cannot be properly treated without visual tools. It is of capital 
importance to have a plot program in order to visualise the observed versus calculated powder pattern and 
their difference. Such a program is not included in the FullProf executable code. Different freeware, 
shareware, or commercial programs can be user for this task. On the PC-world a very useful program is 
WinPLOTR (written by Thierry Roisnel in collaboration with the author at the LLB). WinPLOTR can be 
obtained in the same ftp-area as FullProf in the directory pub/divers/winplotr. The program WinPLOTR 
is also distributed with the Windows 9x/2k/NT version of FullProf. So users working with Windows 
9x/2k/NT can get the complete kit in the single file: 
 
ftp://charybde.saclay.cea.fr/pub/divers/fullprof.98/windows/winfp98.zip 
 
Or for the latest version handling multiple patterns simultaneously: 
 
ftp://charybde.saclay.cea.fr/pub/divers/fullprof.2k/windows/winfp2k.zip 
 
 
The structure of the directories of the Web site or the name of some files may be changed and be 
eventually different than those described here. One can also access to the FullProf / WinPLOTR areas 
through the CCP14 (http://www.ccp14.ac.uk) site that acts as a mirror of the Saclay site.  
 
To install correctly the program under Windows the user should read carefully the README file 
contained in the same area as winfp2k.zip, or use the install program included in the kit. In case of 
troubles the only important point that the user should know is that an environment variable, called 
FULLPROF, pointing to the directory where the executable program is placed, must be created. Another 
variable called WINPLOTR must also be created in order to use FullProf / WinPLOTR without troubles. 
This may be done by inserting the following lines in the file autoexec.bat (normally this file is in c:\, in 
Windows NT it may be non existent) : 
 
SET WINPLOTR=d:\My_FullProf_dir 
SET FULLPROF=d:\My_FullProf_dir 
Path=%Path%;d:\My_FullProf_dir 
 
The label of the disk (d:\) and the name of the directory should be selected by the user. 
 
 

Technical Support 
 

The author does not provide technical support to the users of the program. If you have any 
questions regarding the use of FullProf, troubles with its installation or running the program try the 
following steps in the given order. 

• Read the relevant manual sections carefully, paying particular attention to examples files. 
• Ask to someone who is an experienced user of the program in the surroundings. 
• Send an e-mail to one of the lists concerned with powder diffraction in the Internet. 
• Send an e-mail to juan@llb.saclay.cea.fr (response depends on availability of the 

author, so do not expect to receive an answer immediately!) 
 

ftp://charybde.saclay.cea.fr/pub/divers/fullprof.98/windows/winfp98.zip
ftp://charybde.saclay.cea.fr/pub/divers/fullprof.2k/windows/winfp2k.zip
mailto:juan@llb.saclay.cea.fr


General Information on FullProf 
 

Purpose, reference and documentation 

 
The program has been mainly developed for Rietveld analysis [H.M. Rietveld, Acta Cryst. 22, 151 
(1967); H.M. Rietveld, J. Applied Cryst. 2, 65 (1969); A.W. Hewat, Harwell Report No. 73/239, ILL 
Report No. 74/H62S; G. Malmros & J.O. Thomas, J. Applied Cryst. 10, 7 (1977); C.P. Khattak & D.E. 
Cox, J. Applied Cryst. 10, 405 (1977)] (structure profile refinement) of neutron (nuclear and magnetic 
scattering) or X-ray powder diffraction data collected at constant or variable step in scattering angle 2θ. 
The program can be also used as a Profile Matching (or pattern decomposition) tool, without the 
knowledge of the structure. Single Crystal refinements can also be performed alone or in combination 
with powder data. Time-of-flight (TOF) neutron data analysis is also available. Energy dispersive X-ray 
data cal also be treated but only for profile matching. 
The first versions of the program FullProf were based on the code of the DBW program, which, in turn, 
is also a major modification of the original Rietveld-Hewat program. An early version is discussed in the 
Young and Wiles article published in [D.B. Wiles & R.A. Young, J. Applied Cryst. 14, 149 (1981); D.B. 
Wiles & R.A. Young, J. Applied Cryst.  15, 430 (1982] and described in the user's guide distributed by 
R.A. Young. The program FullProf was developed starting with the code DBW3.2S (Versions 8711 and 
8804), but is has been so much modified that only the name of some basic subroutines and variables keep 
their original names. However, the main control input file created for use with DBW (and DBWS) 
program can be used by FullProf with minor modifications. This file is accepted by FullProf, that read it 
in "interpreted free format". The file generated, at the end of a run, by FullProf cannot be read by DBWS. 
If the first position of a line in the file contents the symbol ! the whole line is considered as a comment. 
The comments are useful for remembering the name of variables and flags and facilitate the use of the 
program. 

Two versions of the source code exist at present. The first corresponds to a source written in 
standard FORTRAN 77 (F77) language, and is organised as to be easily adapted to different computers. 
This version is that running in multiple platforms. The second version of the source code 
(FullProf.9x/2k) has been developed from the previous one, and it has been totally re-written in a subset 
(ELF90) of the new standard Fortran 95 (F95). It uses the new syntax and features of Fortran 95.  This 
last version has many more options that the F77 version, which is no more developed (Version 3.5d - 
Oct98) . The current version works with some allocatable arrays, in which the user can directly control 
the dimensions of important arrays at run time. The future development of FullProf will be continued 
only within the F95 version of the source code.  
 

Features of FullProf.9x/2k 

 
Some of the most important features of FullProf are summarised below: 
• X-ray diffraction data: laboratory and synchrotron sources. 
• Neutron diffraction data: Constant Wavelength (CW) and Time of Flight (TOF). 
• One or two wavelengths (eventually with different profile parameters). 
• The scattering variable may be 2θ in degrees, TOF in microseconds and Energy in KeV. 
• Background: fixed, refinable, adaptable, or with Fourier filtering. 
• Choice of peak shape for each phase: Gaussian, Lorentzian, modified Lorentzians, pseudo-Voigt, 

Pearson-VII, Thompson-Cox-Hastings (TCH) pseudo-Voigt, numerical, split pseudo-Voigt, 
convolution of a double exponential with a TCH pseudo-Voigt for TOF. 

• Multi-phase (up to 16 phases). 
• Preferred orientation: two functions available. 
• Absorption correction for a different geometries. Micro-absorption correction for Bragg-Brentano 

set-up. 
• Choice between three weighting schemes: standard least squares, maximum likelihood and unit 

weights. 



• Choice between automatic generation of hkl and/or symmetry operators and file given by user. 
• Magnetic structure refinement (crystallographic and spherical representation of the magnetic 

moments). Two methods: describing the magnetic structure in the magnetic unit cell of making use of 
the propagation vectors using the crystallographic cell. This second method is necessary for 
incommensurate magnetic structures.  

• Automatic generation of reflections for an incommensurate structure with up to 24 propagation 
vectors. Refinement of propagation vectors in reciprocal lattice units. 

• hkl-dependence of FWHM for strain and size effects. 
• hkl-dependence of the position shifts of Bragg reflections for special kind of defects. 
• Profile Matching. The full profile can be adjusted without prior knowledge of the structure (needs 

only good starting cell and profile parameters). 
• Quantitative analysis without need of structure factor calculations. 
• Chemical (distances and angles) and magnetic (magnetic moments) slack constraints. They can be 

generated automatically by the program. 
• The instrumental resolution function (Voigt function) may be supplied in a file. A microstructural 

analysis is then performed. 
• Form factor refinement of complex objects (plastic crystals). 
• Structural or magnetic model could be supplied by an external subroutine for special purposes (rigid 

body TLS is the default, polymers, small angle scattering of amphifilic crystals, description of 
incommensurate structures in real direct space, etc). 

• Single crystal data or integrated intensities can be used as observations (alone or in combination with 
a powder profile). 

• Neutron (or X-rays) powder patterns can be mixed with integrated intensities of X-rays (or neutron) 
from single crystal or powder data. 

• Full Multi-pattern capabilities. The user may mix several powder diffraction patterns (eventually 
heterogeneous: X-rays, TOF neutrons, etc.) with total control of the weighting scheme. 

• Montecarlo/Simulated Annealing algorithms have been introduced to search the starting parameters 
of a structural problem using integrated intensity data. 

 

Running the program 

 
The program FullProf exists in two forms under the operating system Window9x/2k/NT: the console 
mode program fp2k.exe or the Windows application wfp2k.exe. Both programs are identical but the 
Windows application can be run just by clicking on an alias put on the desktop or run from a graphic 
interface. In other operating systems only the console mode is available. 
 
To run the program in a DOS/Unix shell the user has to invoke the name of the executable file or an 
appropriate alias, for instance: 
 

FULLPROF <cr>, or FullProf <cr>, or fp2k <cr>...etc 
 
Of course, the executable file must be placed in an accessible path. FullProf can also be run from a 
command file. After invoking the execution of the program the following dialog appears in the current 
window: 
 
 

**********************************************************  
** PROGRAM FULLPROF.2k (Version 1.9c - May2001-LLB JRC) ** 
********************************************************** 

                       M U L T I -- P A T T E R N  
    Rietveld, Profile Matching & Integrated Intensity      

   Refinement of X-ray and/or Neutron Data           
                      (Multi_Pattern: DOS-version) 
 

==> Give the code of the files (xx for xx.pcr): 



 
After entering a value for xx, hereafter assumed to be CODFIL, the program prompts the following 
question: 
 

==> Give the name of data file (yy for yy.dat     ) 
(    or yy.uxd     ) 
(<cr> = CODFIL     ): 

 
 
If the user answer with <cr> the name of the data file is CODFIL.dat (or CODFIL.uxd). We assume, in 
the following, the user has attributed the value FILE to the item yy. The file CODFIL.pcr must be 
created (from the scratch or by modifying an existing one) with the help of an ASCII editor. This file 
contents the diffraction conditions and crystallographic information needed by the program. The optional 
file FILE.dat (or FILE.uxd) contents the profile intensity of the powder diffraction pattern. 

 
The program and input files can also be invoked directly in a single line as: 
 

LocalPrompt>FullProf  CODFIL  FILEDAT 
 
If FILEDAT is absent, the code of the data file is assumed to be the same as that of the CODFIL.pcr 
file. For using the Windows 9x/2k/NT version you may create a shortcut pointing to the program in the 
desktop and then double click on it, invoke the program from a DOS window, or run it from within 
WinPLOTR. 

For doing sequential refinements the user can run the program using a command file, or answer 
CYC to the prompt asking for the code of the files, or use CYC as CODFIL name when using direct 
invoking. 

In the last two cases another dialog opens: 
 

==> Code of the starting *.pcr file (xx for xx.pcr): 
 

Here the user should answer with the xx explicit name (let us assume that the code is CODFIL). 
 

==> Give the code of data files (yy for yynnn.dat,uxd,acq) 
(<cr> =CODFIL  ): 

 
As suggested by the question the name of the data files should have a part that constitutes the code 
followed by an ordinal number. The user should give here the code. Let us assume that the code is 
FILEDAT. 
 

==> Number of the starting *.dat file: 46 
==> Number of the     last *.dat file: 133 

 
The user should give the ordinal numbers of the first and last files to be processed. The program runs by 
using the file CODFIL.pcr to process the file FILEDAT46.dat. The updated CODFIL.pcr is then used 
to process the file FILEDAT47.dat, etc. At the end, when the file FILEDAT133.dat has been processed, 
the control file contents the parameters adequate to the last treated file. The results of the whole set of 
treatments are stored in file CODFIL.rpa. 

The user may create his (her) own scripts (or bat-files to be executed in a DOS shell) invoking 
the program to adapt the execution of the program in different contexts. For using scripts only the console 
version of the program should be used. It may be advantageous to take into account that the console 
version admits three arguments on the command line. For example: 

 
Fp2k  pbso4a    pbso4   pblog 
 

Means that the input control file pbso4a.pcr is read, as well as the data file pbso4.dat. The normal screen 
output is directed to the file pblog.log, so that one can run FullProf sequentially several times with 
different input files in batch mode. 
 



Input files 

 
In the following, references to some variables (writen in blue) are done without explicit explanations; this 
means that they are explained in the appendix, where it is described in detail the contain of the input files. 
The logical unit associated with each file is given to help the user in the case or runtime errors. 
Sometimes we shall give references to line numbers written in bold blue corresponding to labels the 
different items in the input control file that is described in the appendix. 
 
CODFIL.pcr      (logical unit:  i_pcr = 1) 
 

Input control file. It will be called sometimes PCR-file. It must be in the current 
directory to run the program. This file contains the title and crystallographic data and 
must be prepared by the user with the help of a file editor. There are two different 
formats for this file: the first one is free format and closely related to that of the 
DBWS program. The second is based on keywords and commands 1. Within the free 
format type of the file there are two slightly different ways of writing the PCR-file: 
the classical way adapted to treat only a single pattern, and the new way suitable to 
treat multiple pattern refinements.  

 
This file is normally updated, or written to CODFIL.new, every time you run the program. In the first 
stages of a refinement, it is wise to use the option generating a new file. The complete description of the 
file CODFIL.pcr is given in the appendix of this document. The text file FULLPROF.INS or in the 
HTML file fp_frame.htm to be used locally with a WEB browser correspond to older versions of 
FullProf . The current version of the program is totally compatible with older versions except in some 
particular points that are described in the text file fp2k.inf.  

 
The following files are optional: 

 
FILE.dat      (logical unit:  i_dat = 4) 

 
Intensity data file, its format depends on instrument. This corresponds to the profile 
intensity of a powder diffraction pattern. If you do not specify the name FILE, the 
program takes FILE=CODFIL. It is not necessary for pattern calculation modes. In the 
current version of the program the extension may be different from “dat”. The 
program recognises automatically (the extension is not given) the following 
extensions: dat, uxd, acq. The user may specify his own extension giving the 
complete name of the file. If multiple patterns are treated simultaneously a file 
FILE.dat exists with a different name for each pattern. 

 
 
FILE.bac (or CODFIL.bac) (logical unit:  i_bac = 12) 
 

Background file.  The program uses this file to calculate the background at each value 
of the scattering variable. There are two types of formats for this file:  
1. The first format is the same as that of FILE.dat for Ins=0: 

• First line: 2θ/TOF/Energy (initial)  step  2θ/TOF/Energy (final), any comment 
• Rest of lines: list of intensities in free format. 

2. The second format is the is adapted to the case were there is no fixed step in the 
scattering variable. The first line is a comment and the rest of lines are pairs of 
values, scatering variable – intensity, in free format. 

 
The program may generate this file, from refined polynomial or interpolated data, if 
the user asks for it. 

 

                                                           
1 This last format is not available at present 



 
CODFILn.hkl or hkln.hkl      (logical unit:  i_hkl = 15) 
 

Set of files with the reflections corresponding to phase n (n is the ordinal number of a 
phase). These files are optional and depend on the value of the parameter Irf(n). The 
program reads the list of reflections instead of generating them. 
 

 
MYRESOL.irf      (logical unit:  i_res = 13) 
 

File describing the instrumental resolution function. Any legal filename can be used 
and its content depends on the value of the parameter Res. 

 
 
global.shp or CODFIL.shp      (logical unit:  i_shp = 24) 
 

File providing a numerical table for calculating the peak shape and its derivatives.  
 
CODFIL.cor      (logical unit:  i_cor = 25) 
 

User-defined intensity corrections. Two types of corrections may be applied. 
• In the first case the corrections are applied to the integrated intensities as a 

multiplier constant. The file CODFIL.cor starts with a comment and in the rest 
of the file one pair Scattering Variable – Correction  is given per line. 

• In the second case the correction is applied to the profile intensities. The format 
depends on a number of variables. See appendix for details. 

 
CODFIL.int      (logical unit:  i_int = 26) 
 

Single integrated intensity file when the program is used for refining with Cry=1, 2, 3 and Irf=4. 
 

Output files 

 
Except for CODFIL.out and CODFIL.sum, the creation of output files depends on the value of a flag 
that is quoted in parenthesis. All possible values of the flags are given in the appendix. 
 

CODFIL.out      (logical unit:  i_out = 7) 
 

This is the main output file that contains all control variables and refined parameters. Its content 
depends on the values of flags set by the user. 

 
 

CODFIL.prf or CODFIL_p.prf       (logical unit:  i_prf = 17) (Prf different from zero) 
 

Observed and calculated profile: to be fed into visualisation programs. This file is 
used automatically by WinPLOTR. In case of multiple pattern refinements a file 
CODFIL_p.prf is created for each patern, where p is the ordinal number of the 
diffracttion pattern. 

 
 

CODFIL.rpa      (logical unit:  i_rpa = 2)  (Rpa=1) 
 

Summary of refined parameters. Short version of CODFIL.sum. This file has the “append” 
attribute, so if it exists the new output is appended. It is useful when running FullProf in cyclic 
modes. An auxiliar program can extract values of particular parameters as a function of 
temperature, numor, etc. 



 
 

CODFIL.sym      (logical unit:  i_sym = 3)  (Syo=Sym=1) 
 

List of symmetry operators  
 
CODFIL.sum      (logical unit:  i_sum = 8) 

 
Parameter list after last cycle: summary of the last parameters, their standard 
deviations and reliability factors. An analysis of the goodness of the refinement is 
included at the end if  Ana=1. 

 
 

CODFIL.fou      (logical unit:  i_fou = 9) 
 

(Fou=1) 
, ,h k l , Structure Factors in Cambridge (CCSL) format to be fed into 

FOURTK (FOURPL) to produce Fourier maps. It corresponds to the file 
usually called HKLFF.DAT but you must prepare the second file 
CRYST.cry. 

 (Fou=2) 
List of 'observed' structure factors in SHELXS format  
(3I4,2F8.2) 

, , , , ( )obs obsh k l F Fσ

 (Fou= -1 or -2) 
As above but the structure factors are calculated in another way. The calcF  in 
Fou>0 may depend on the peak shape and the integration interval, because 
they are obtained by integration of the calculated profile in the same way as 
the obsF  are obtained from obsI . If Fou is negative, calcF  are really the 
structure factors of the conventional cell in absolute units. 

 (Fou=3) 
Format suitable for the program FOURIER  

, , , , , , sin /obsh k l A B F θ λ  
A and B are the real and imaginary parts of the calculated structure factors. 
The observed Fobs and calculated structure factors of the conventional cell are 
in absolute units. 

 (Fou=4) 
Format suitable for the program GFOURIER  

, , , , ,obs calch k l F F Phase  

Phase  is the phase in degrees. The observed (Fobs) and calculated (Fcalc) 
structure factors of the conventional cell are in absolute units. 

 
CODFILn.ins      (logical unit:  i_shx = 21)  (Fou=2) 

 
Template of the input control file for the program SHELXS. 

 
 

CODFILn.inp      (logical unit:  i_shx = 21) (Fou=3, 4) 
 

Template of (G)FOURIER *.inp file. 
 
 

CODFILn.hkl      (logical unit:  i_shkl = 16) 
 

Files that can be input or output files. The content depends on the value of Irf(n) 



 
 

CODFIL.hkl      (logical unit:  i_ghkl = 10) 
 

Complete list of reflections of each phase. This file can be used as a CODFILn.HKL 
files for new runs. 
 
�� Hkl=1 

�� If Job < 2 
Code, h k , mult , FWHM, , , l , , 2hkld θ obsI , calcI , obs calcI I−  

�� If Job > 1 
, ,h k l ,  , , 2 ,calc hklmult I dθ

�� Hkl=2 
Output for EXPO 

, ,h k l ,  2 2,sin / , 2 , , , ( )mult FWHM F Fθ λ θ σ
�� Hkl=3,-3 

Output of real and imaginary part of structure factors (only for crystal structures) 
, ,h k l ,  , , , 2 ,real imagmult F F Intensityθ

 
If Hkl is negative the structure factors are given for the conventional cell, otherwise 
the structure factor corresponds to the non-centrosymmetric part of the primitive cell. 
 
�� Hkl=4 

Output of: . 2 2, , , , ( )h k l F Fσ
Where 2F  is the observed structure factor squared. The file may be used as an 
input for a pseudo-single crystal integrated intensity file using Cry=1 and Irf=4. 

�� Hkl=5 
Output of:  , , , , , , ,calc hkl hkl hklh k l mult F T d Q
Where Fcalc is the module of the calculated structure factor. This file can be used 
as an input for Jbt=-3 Irf=2 in order to perform quantitative analysis without re-
calculating the structure factors for each cycle. The Fcalc values are given in 
absolute units for the conventional unit cell. 

 
CODFIL.sav      (logical unit:  i_sav = 11)   (Rpa=2)  

 
List of reflections between two selected angles. This file is output only if an interval in the 
scattering variable is given. 

, ,h k l ,  , , 2 ,obs hklmult I dθ
 

CODFILn.dis      (logical unit:  i_dis = 28)   (JDIS=3) 
 

List of distances and angles (eventually bond valence calculations) for phase n. 
 
 
DCONSTRn.hlp      (logical unit:  i_cons = 99)   (JDIS=3) 

 
List of strings containing eventual distance and angle constraints for phase n. This file with fixed 
name, DCONSTR, is generated automatically when the user asks for angle/distance 
calculations. The user may edit this file and select the wished items, modify and paste them to 
the input control file CODFIL.pcr in order to provide soft constraints on distance and angles in 
a subsequent run. 

 
CODFILn.mic       (logical unit:  i_mic = 29) (Res ≠ 0) 



 
File containing microstructural information. The use of a resolution file, as well as the profile 
function Npr=7, is imperative to obtain this file. 

 
CODFIL.sim      (logical unit:  i_sim = 14)  (abs(Job) > 1 and Dum =1) 

 
File containing a simulated diffraction pattern. A Poissonian noise is added to the deterministic 
calculated pattern. The statistics is controlled by the value of the scale factor. This file may be 
renamed as a DAT-file and used for refinement in simulation work. The use of the same model 
as that used for generating the diffraction pattern should give a reduced chi-squared nearly equal 
to 1. 
 
CODFILn.sub      (logical unit:  i_sub = 23) (Ipr=2, 3) 

 
Files containing the calculated profile corresponding to the phase n. 

 
 
CODFILn.atm      (logical unit:  i_atm = 22) (More=1 and Jdi= ±1, 2) 

 
For Jdi=±1 it is supposed that a magnetic phase is concerned (Jbt= ±1, 5, 10).  
If Jdi=+1 the files contain the list of magnetic atom positions within a primitive unit cell 
corresponding to the phase n. 
If Jdi=-1 the file is suitable as input to the program MOMENT that calculates everything 
concerned with magnetic structures from the Fourier components and phases of magnetic 
moments.  
If Jdi= 2 a nuclear phase is concerned (Jbt=0, 4) and the files contain the list of atom positions 
within a conventional unit cell. 

 
CODFILn.sch      (logical unit:  i_sch = 18) (More=1 and Jvi=1, 2) 

 
Files suitable as input for the programs SCHAKAL (Jvi=1) and STRUPLO (Jvi=2) 
corresponding to the phase n. 

 
CODFILn.int      (logical unit:  i_int = 26)  (Jbt=2, More=1 and Jvi=11) 

 
Files suitable as input for integrated intensity refinements. The generated file contains a list of 
overlapped reflections obtained adding integrated intensities from profile matching refinement 
(Jbt=2) when they belong to a cluster. More details about this file is given in the appendix. The 
file corresponds to the phase n. 



The Rietveld Method in Practice 
 
In this chapter some simple rules for starting a Rietveld refinement are stated. After discussing some of 
these rules and comment about the problems the user can experience in running the program, a detailed 
description of the examples given in the file pcr_dat.zip is given. The examples treated in this chapter are 
quite simple. Experienced users may apply other procedures and more sophisticated sets of parameters of 
peak shapes that will not be discussed here. Recently, the Commission on Powder Diffraction of the 
International Union of Crystallography has published some guidelines for Rietveld refinement 
[L.B.McCusker et al., J. Appl. Cryst. 32, 36-50 (1999)] that can be used to complete the short notes 
provided in this paragraph. Rietveld refinement has nothing to do with structure determination. To 
start refining a structure an initial model (even if incomplete) is necessary. This model is supposed to be 
obtained from a crystal structure solver program or by any other mean. Special tutorial documents on 
Rietveld refinement will be included in the distribution of FullProf. 
 

Getting started 

 
For starting a profile refinement from the scratch, the best is to copy one of the PCR files accompanying 
the distribution of FullProf, and modify it according to the user’s case: x-ray or neutron diffraction, 
crystal or magnetic structure refinement, synchrotron, TOF neutrons, etc. The provided PCR files can 
then be used as templates. Of course the closer to the user’s case is the initial PCR file the easier is to 
modify it. An important aspect is the format of the data file that must be correctly given before attempting 
any kind of refinement. 
The least squares method used in Rietveld refinements is described in the mathematical section. The user 
must be aware of the way he(she) can control the refinement procedure: the number of parameters to be 
refined, fixing parameters, making constraints, etc. The control of the refined parameters is achieved by 
using codewords. These are the numbers that are entered for each refined parameter. A zero codeword 
means that the parameter is not being refined. For each refined parameter, the codeword is formed as: 

xC

 
 ( ) (10 )xC sign a p a= +

Maxs

  
 
where p specifies the ordinal number of the parameter x (i.e. p runs from 1 to ) and a (multiplier) is 
the factor by which the computed shift (see equation 3.5 in mathematical section) will be multiplied 
before use. 

The calculated shifts are also multiplied by a relaxation factor before being applied to the 
parameters. 
 

Rietveld refinement 

 
Although the principles behind the Rietveld profile refinement method are rather simple (see next 
chapter), the use of the technique requires some expertise. This results merely from the fact that Rietveld 
refinement uses a least-squares minimisation technique which, as any local search technique, gets easily 
stuck in false minima. Besides, correlation between model parameters, or a bad starting point, may easily 
cause divergence in early stages of the refinement. All these difficulties can actually be readily overcome 
by following a few simple prescriptions: 

• Use the best possible starting model: this can be easily done for background parameters and 
lattice constants. In some cases, in particular when the structural model is very crude, it is 
advisable to analyse first the pattern with the profile matching method in order to determine 
accurately the profile shape function, background and cell parameters before running the 
Rietveld method. 



• Do not start by refining all structural parameters at the same time. Some of them affect strongly 
the residuals (they must be refined first) while others produce only little improvement and 
should be held fixed till the latest stages of the analysis. 

• Before you start, collect all the information available both on your sample (approximate cell 
parameters and atomic positions) and on the diffractometer and experimental conditions of the 
data measurement: zero-shift and resolution function of the instrument, for instance. Then a 
sensible sequence of refinement of a crystal structure is the following: 

 
1. Scale factor. 
2. Scale factor, zero point of detector , 1rst background parameter and lattice constants. In 

case of very sloppy background, it may be wise to actually refine at least two 
background parameters, or better fix the background using linear interpolation between 
a set of fixed points provided by user. 

3. Add the refinement of atomic positions and (eventually) an overall Debye-Waller factor, 
especially for high temperature data. 

4. Add the peak shape and asymmetry parameters. 
5. Add atom occupancies (if required). 
6. Turn the overall temperature factor into individual isotropic thermal parameters. 
7. Include additional background parameters (if background is refined). 
8. Refine the individual anisotropic thermal parameters if the quality of the data is good 

enough. 
9. In case of constant wavelength data, the parameters Sycos and/or Sysin to correct for 

instrumental or physical  aberrations with a COS or SIN angular dependence. 2θ
10. Microstructural parameters: size and strain effects. 

 
In all cases, it is essential to plot frequently the observed and experimental patterns. The examination of 
the difference pattern is a quick and efficient method to detect blunders in the model or in the input file 
controlling the refinement process. I may also provide useful hints on the best sequence to refine the 
whole set of model parameters for each particular case. 

When large and unrealistic fluctuations of certain parameters occur from one cycle to the next, 
examine the correlation matrix: if large values (say larger than 50%) are observed, refine separately the 
corresponding parameters, at least in the early stages of the refinement. 

Finally it must be remembered that there is a limit to the amount of information that can be 
retrieved from a powder diffraction pattern. Indeed structures with up to a hundred or more structural 
parameters can be refined from neutron powder data but such refinements must be performed with great 
care; for refinements involving a large number of variables the physical significance of certain parameters 
must be carefully examined. For instance thermal and profile parameters can become poorly defined and 
act as a dumping ground for systematic errors; then it is preferable to fix their values to a physically 
reasonable number and exclude them from the refinement. 

When the uncertainty concerns the atomic parameters, it may help to provide some external 
information to the program. This can be achieved for instance by using strict constraints. For instance the 
displacement (thermal) parameters of chemically similar but crystallographically distinct atoms may be 
constrained to be identical, or the occupancy of two distinct and partly occupied sites of a structure may 
be compelled by the chemical analysis of the material. For complex structures it may be necessary to use 
slack (soft) constraints on distances and angles, or even rigid body constrains. 
 

Whole-pattern decomposition (Profile Matching) 

 
This procedure, that is also known as Lebail fitting [A. LeBail, H. Duroy and J.L. Fourquet, Mat. Res. 
Bull. 23, 447 (1988)], does not require any structural information except approximate unit cell and 
resolution parameters. A similar method developed by Pawley uses traditional least squares with 
constraints[ G.S. Pawley, J. Applied Cryst. 14, 357 (1981)]. A discussion about the profile matching 
algorithm involved in this kind of refinement may be found in [J. Rodríguez-Carvajal, Physica B 192, 55 
(1993)]. This method makes the data input much simpler and enlarges considerably the field of 
application of powder pattern profile refinement. However the constraints applied to the refinement are 
far less severe than for Rietveld refinement and profile matching is thereby more prone to instabilities if 



profile shape parameters or microstructural parameters are refined. In FullProf this refinement mode can 
be used in two ways: 
 
1. Profile Matching with constant scale factor (Jbt=2). In this mode the scale factor is not allowed to 

vary and integrated intensities are refined individually using iteratively the Rietveld formula for 
obtaining the integrated observed intensity. The recommended procedure is as follows: 
• For the first refinement, set Irf(n) of the phase n undergoing profile matching to 0 and the 

number of refined parameters (Maxs on line 13) to zero. Set to 0 the flag controlling the 
automatic assignement of refinement codes (Aut=0). Run FullProf for a few cycles (say 10). 
This will set up the hkl 's and intensity file CODFILn.hkl. 

• If the result of the above step is satisfactory (see plot!), rename the file CODFIL.new to 
CODFIL.pcr, or use directly CODFIL.pcr if it was automatically updated. Edit the new 
CODFIL.pcr file to select the parameters to refine. The progression of the refinement is very 
similar to that used for Rietveld refinement: zero point of detector, background parameters and 
lattice constants. 

 
In this mode of refinement FullProf cannot calculate theoretical line intensities and all hkl values 
permitted by the space group are considered and included in the refinement, which sometimes means 
a lot of reflections! Using this type of refinement one has to bear in mind that the starting cell 
parameters and resolution function determines to a large extend the obtained intensity parameters. 
One cannot expect to refine properly the cell parameters of a compound with a severe overlap of 
reflections if the starting parameters are of poor reliability. It is wise to start with low angle 
reflections (without refining the FWHM parameters) and progressively increase the angular domain. 
 

2. Profile Matching with constant relative intensities (Jbt=3). In this mode the intensities are held fixed 
and only the scale factor is varied. Since profile matching does not require the calculation of the 
structure factors it runs faster than Rietveld refinement. 

 

Hints and tricks 

 
Even if you follow carefully the recommendations mentioned above, you might experience difficulties to 
refine your data; most of them can be avoided by following a few simple rules: 
 
• If the number of measured reflections is limited, select carefully the refined parameters and keep the 

others fixed to physically reasonable values or introduce suitable constraints. 
• Exclude regions where the background is strongly distorted if any (e.g. background from sample 

environment may show odd variations) for the background functions used in the program may not be 
able to cope with it. 

• It is importan to know beforehand the best peak shape function adapted to your particular diffraction 
pattern. In general, for constant wavelength and energy dispersive data, the pseudo-Voigt function is 
well adapted for X-ray and neutron diffraction, with predominant Lorentzian character for the former 
and Gaussian for the latter. Remember to increase the range of the calculated profile (variable called 
Wdt) to large values (20-30 or more) for Lorentzian peaks; failure to increase properly this parameter 
will lead to discontinuities in the edges of the calculated profile [7]. For T.O.F. data the profile 
function Npr=8 (convolution of pseudo-Voigt with back-to-back exponentials) is normally well 
suited. 

• The FWHM parameters are sometimes difficult to refine especially for data spanning only a limited 
angular range or samples giving broad diffraction lines. The best method is, of course, to refine first a 
standard pattern with no sample broadening in order to determine the FWHM parameters of your 
instrument, create a resolution file and fit only the FWHM parameters (size and strain) characteristics 
of your sample. 

 

Trouble shooting 

 



• If you experience difficulties from the very beginning (for instance a singular matrix at the first 
refinement), start refining the scale factors only and examine the difference pattern with a plotting 
program. These will most of the time reveal a glaring blunder in the input data (zero-shift, step size, 
angular limits etc). 

• Owing to the complexity of the control file, error messages from the program are not always easy to 
decipher in that they do not necessarily point to the initial error but merely to one of its 
consequences. Most of the times, run time errors result from an error in the sequence of lines in the 
control file, e.g., an inadequacy between the number of atoms stated on line 19 and the number of 
atomic positions given on lines lines 25. 

 

Examples. Content of pcr_dat.zip 

 
To test the installation of the program, or for training purposes, a list of complete examples are provided 
together with FullProf. The file pcr_dat.zip can be obtained by anonymous ftp to the server 
charybde.saclay.cea.fr in the same area as the program. Set the mode to binary in order to get properly 
the file. The file pcr_dat.zip must be unzipped using PKWARE pkzip/pkunzip or WinZip. The resulting 
ASCII files are in PC/DOS format. They have to be converted to UNIX, Mac, or VMS using one of the 
appropriate utilities (dos2unix, editor...). 
 
The files contained in pcr_dat.zip can be used for testing FullProf. They have been selected in order to 
illustrate the use of FullProf in a variety of situations. In no way the proposed models pretend to be the 
most adequate to the data. In some cases there is a clear disagreement between the data and the model. 
The user may try to improve the models including new parameters that have a clear physical relevance. 
Increasing the number of parameters just for getting more nice fits may result in non sense values.  
 
For a quit test under DOS or under UNIX the user can type at the command line: 
 

fullprof_alias < tempo.inp 
 

FullProf will be executed for all files existing in file: tempo.inp where the answers expected by 
the program are collected. 
 

In a Windows 9x/2k/NT environment the user may execute the file test_fp.bat to run all examples. 
Verify first that the DOS-like version fp2k.exe is in a proper directory within the PATH environment 
variable. The Windows version of FullProf is not adequate for rapid tests because the program needs the 
intervention of the user to answer questions about the continuation or stop the refinement process. 
 
 
The number and nature of files within file pcr_dat.zip  may change with different releases. 
 
At present the files are: 
 

PCR Code Purpose Data File 
Ce1 refinement of a CeO2 standard ceo2.dat 
Ce2 " " 
Rutana Conventional X-ray diffraction pattern: Rutile+Anatase Rutana.dat 
Tbbaco Conventional X-ray diffraction pattern: Tb2BaCoO5 Tbbaco.dat 
Tbba Conventional X-ray diffraction pattern: Profile Matching " 
Tb Search for Tb,Ba and Co by Montecarlo with prev. output Tb.int 
PbSOx Crystal structure refinement of PbSO4 with X-rays Pbsox.dat 
PbSO Profile matching to obtain an overlapped intensity file " 
PbSOm Search for Pb by Montecarlo using previous output pbsom.int 
Pb Profile matching test of PbSO4 neutron data Pbso4.dat 
PbSO4 Crystal structure refinement of PbSO4 " 
PbSO4a Crystal structure refinement of PbSO4 (anisotropic b's) " 



Pb_ho Artificial multipattern refinement Pbso4.dat,Pbsox.dat,
Hobk.dat  

Pb_sing Example of new format of PCR file adapted for multipattern 
refinements 

Pbso4.dat 

Pb_san Example of Simulated Annealing: solves the structure of PbSO4 Pb_san.int 
C60s Compares C60 x-tal data to form-factor SPHS sin(Qr)/Qr C60.int 
C60 Refinement of C60 x-tal data using symmetry adapted cubic 

harmonics. Form-factor type SASH. 
C60.int 

Dy Four different ways of refining the crystal Dy.dat 
Dya and magnetic structure of DyMn6Ge6 " 
Dyb  " 
Dyc  " 
Hocu Refinement of the magnetic structure of Ho2Cu2O5 (D1B data) Hocu.dat 
Hobb Refinement with integrated intensities (Nuc+mag) Hobb.int 
Hob Montecarlo search for mag. moments in Ho2BaNiO5 " 
Hobk1 Three different ways of refining the crystal Hobk.dat 
Hobk2 and magnetic structure of Ho2BaNiO5 " 
Hobk3  " 
Cuf1k Refinement of crystal & magnetic structrure of CuF2. 

Microstructural effects (D1A data) 
Cuf1k.dat  

Pb_san Example of Simulated Annealing: solves the structure of PbSO4 Pb_san.int 
La Two ways for strain refinement in La2NiO4 (D1B) La.dat 
Lab with low resolution neutron powder data " 
Monte Montecarlo test with single crystal data Monte.int 
Hmt Rigid body-TLS refinement of published single X-tal data Hmt.int 
Urea Test Rigid body with satellites (simulated data) Urea.dat 
Pyr Test Rigid body with general TLS refinement (sim. data) Pyr.dat 
Ycbacu YBaCuO with Ca. Data from D1A Ycbacu.dat 
Arg_si Corrected TOF data of Si from SEPD at Argonne Arg_si.dat 
Cecoal TOF data from POLARIS at ISIS Cecoal 
Cecua1 TOF data from POLARIS at ISIS Cecua1.dat 
Lamn_3t2 Constant wavelenght neutron data from 3T2 (LLB) of LaMnO3 Lamn_3t2.dat 
Lamn_pol TOF data from POLARIS at ISIS on the RT phase of LaMnO3 Lamn_pol.dat 
Si3n4r Quantitative phase analysis. Two polymorphs of Si3N4. (Studvik) Si3n4r.dat 
Sin_3t2 As above but data taken at 3T2 (LLB) Sin_3t2 
Pb_san Example of Simulated Annealing: solves the structure of PbSO4 Pb_san.int 
Maghem Refinement of Fe2O3-Fe3O4 at RT (D1A data) Maghem 

 
 
In general, the user must first run the program to verify that the provided pcr-files behave correctly. After 
that, the user should make a copy of the control files for saving them before running his(her) own options. 
The best way is to modify the given values for different sets of parameters and run the program. The 
beginner must make extensive use of editor-plot cycles. The plot of the file CODFIL.prf is of absolutely 
necessity for knowing the behaviour of the program under bad (or inaccurate) input parameters. 
 
To use the above files for training, the inexperienced user must start with the simplest cases, that is 
ce1.pcr and ce2.pcr used to process the file ceo2.dat. This file corresponds to a data collection on cerium 
oxide with a laboratory X-ray powder diffractometer, using CuKα doublets. Other simple examples with 
conventional X-rays are: the Rutile-Anatase mixture, that allow a quantitative analysis of the relative 
fraction of each component, and the diffraction pattern of Tb2BaCoO5 presenting micro-absorption effects 
that produce some negative temperature factors. The user can modify the input file in order to input the 
micro-absorption correction and look for the changes in the results. The next files to be processed are 
those of PbSO4. The data file correspond to a laboratory X-ray diffraction pattern (pbsox.dat) and to a 
neutron powder diffraction pattern (pbso4.dat) obtained on D1A (ILL) that was used in a Round Robin 
on Rietveld refinement (R.J. Hill (1992), J.Appl.Cryst  25, 589). For a person working mainly with crystal 
structures the next files to be studied are: ycbacu, hmt and urea for powder diffraction. 



 
Some files to be used with single crystal data are also given: c60. The first one uses a simplistic model 
(just a spherical shell) for describing the C60 molecule that gives relatively good results. The user can try 
this file as an example of special form factor refinement. The free parameter is the radius of the C60 
molecule. The file monte corresponds to an artificial use of the Montecarlo technique for searching a 
starting set of initial parameters. Data are from neutron diffraction on a single crystal of oxidised 
Pr2NiO4+δ. 
 

People interested in magnetic structures may use the rest of the files in the following order. 
 
• la, lab: refinement of the low temperature phase crystal and magnetic structure of La2NiO4. The 

data are from a medium-low resolution neutron powder diffractometer (D1B at ILL). This phase 
present a microstrain that is refined using two equivalent methods in the two files. The magnetic 
structure is very simple. A peak from an impurity phase is near the first magnetic peak. 

• The files hobb, hob, hobk1, hobk2, hobk3 concern the refinement of the crystal and magnetic 
structures of Ho2BaNiO5 at 1.5K, using different methods and conditions. The user can verify 
that hob.pcr can solve the magnetic structure of Ho2BaNiO5 just testing random configurations. 
This is a very favourable case and this method cannot be applied for general magnetic structure 
determination. The data are from D1B at ILL.  

• Hocu: refinement of the magnetic structure of Ho2Cu2O5. The data have been taken on D1B 
diffractometer at the ILL. Magnetic scattering dominates nuclear scattering. The crystal structure 
cannot be refined with these data. 

• Cuf1k: refinement of the magnetic structure of CuF2. The data have been taken on D1A 
diffractometer when it was installed provisionally at the LLB. Nuclear scattering dominates 
magnetic scattering. The diffraction pattern cannot be refined properly without taking into 
account microstructural effects. 

• The files dy, dya, dyb, dyc use different methods to refine the incommensurate magnetic 
structure of DyMn6Ge6. This is a conical structure that can be refined using a real space 
approach as in dy and  dya or using Fourier components of the magnetic moments, which is the 
general formalism of FullProf for handling magnetic structures. This is the case of files dyb and 
dyc. 

 
 
An example of simulated annealing application is given. The file is Pb_san.pcr, where the user finds a 
particular case of how to prepare a PCR file adapted for simulated annealing. The user may play with the 
different parameters (starting temperature, number of Montecarlo cycles per temperature, type of 
algorithm, number of reflections to be used, etc) to experience when the method is able to solve the 
PbSO4 structure. 
 

The only right way to learn about crystal and magnetic structure refinements is practising with real 
data as these are. However, it is better when the user try with its own data on a problem of interest to 
him(her). 
 



ADDITIONAL NOTES 
 

Magnetic Refinements 

 
For a commensurate structure two descriptions of the magnetic structure are possible: the general 
formalism using Fourier components of magnetic moments through the propagation vectors or a 
crystallographic-like description using the magnetic unit cell. The simplest one, for a non-expert user, is 
to describe the magnetic structure in the magnetic unit cell. In that case the following important points 
must be taken into account: 
• For magnetic structures described in a magnetic unit cell larger than the crystallographic cell, the co-

ordinates of atoms must be changed consequently, as well as the unit cell parameters. The codes for 
common (or related) parameter with the crystallographic counterpart must be changed applying the 
correct multiplier factor. It is worth stressing that codes for cell parameters are actually applied to the 
"cell constants" (A, B, C, D, E, F) defined by the expression: 

 
1/d2 =  A h2 + B k2 + C l2 + D kl + E hl + F hk 

 
Therefore, if you are dealing with an orthorhombic structure which has a magnetic structure with 
propagation vector k=(1/2, 0, 0) you have to use the magnetic unit cell 2×a, b, c and if the codes of the 
crystallographic unit cell a,b,c are for example: 
 
    Cell         a       b        c         90      90     90 
    CodeCell   81.00    91.00   101.00       0       0      0 
 
             the corresponding values for the magnetic counterpart are: 
 
    Cell        2a       b        c         90      90     90 
    CodeCell   80.25    91.00   101.00       0       0      0 
 
The reason is that the crystallographic cell constant A is in this case: Ac=1/a2 and the magnetic cell 
constant is Am=1/(2a)2= 0.25Ac. As explained above, the multiplier factor is applied to shifts of 
parameters. 
 
• The scale factors of the crystallographic and magnetic parts have to be related in some way in order 

to get good values of magnetic moments. This relation depends on the way the users describes the 
magnetic structure, however several rules can be useful to avoid bulk errors: 

 
1. Use the correct occupation numbers in the crystallographic part (=multiplicity of special 

position/general multiplicity) 
2. The number of magnetic atoms in the chemical unit cell must coincide with the description above, 

therefore the occupation numbers in the magnetic part are related to the number of symmetry 
operators given and the centrosymmetry (or not) of the magnetic structure. 

 
If these requirements are satisfied and the magnetic unit cell is the same as the chemical one, the scale 
factors are strictly the same numbers; and, therefore represent the same parameter with a shift equal to 
unity. If the magnetic unit cell is a multiple one, and the above requirements are satisfied, the relation 
between the scale factors is a multiplier factor relating the two scale factors given by: 
 

Sm = 1.0/(Vm/Vc)2 Sc =(Vc/Vm)2 Sc 
 
Where Sc is the crystallographic scale factor and Sm the magnetic scale factor. In the case of large 
magnetic cells it can be more convenient to modify the occupation numbers of magnetic atoms in such a 
way that the two scale factors coincide. 
 



For incommensurate magnetic structures the general formalism must be applied. When the magnetic 
structure is described using the formalism of propagation vectors, the components Mx, My, Mz no longer 
represent true magnetic moments (see mathematical section). The user should be cautious in interpreting 
the output files. The modulus of the "magnetic moment" represents the Fourier component modulus of an 
atomic magnetic moment which have to be calculated externally. The calculation of the intensity is based 
on the expression of magnetic structure factor given in mathematical section; therefore the user knows 
how to play with his input items in order to obtain physically sound results. 
 
For the spherical description of the magnetic moments the following must be taken into account: 
 
• The orthonormal system with respect to which are defined the spherical angles verifies: 

 
X axis coincides with the crystallographic a-axis 
Y axis belongs to the plane a-b 
Z-axis is perpendicular to the plane a-b 

 
The particular implementation of spherical components in magnetic structure refinements is that the Z-
axis must coincide with c. This works in all crystallographic systems except for triclinic. The monoclinic 
setting must be changed to the setting 1 1 2/m to satisfy the above prescription. 
 

Propagation vectors 

 
A complete list of reflections can be generated when propagation vectors of an incommensurate structure 
are present. To each fundamental reflection it is added the corresponding satellites. For n propagation 
vectors k1, k2,... kn, there are n satellites obtained from each fundamental reciprocal lattice vector h: 
 
Fundamental reflection:  h = (h, k, l) 
Satellites   h1=h+ k1, h2=h+ k2,... hn=h+ kn 
 
In the present version of the program no symmetry analysis is performed. We recommend to use the 
triclinic space group of symbol L -1 (where L = P, A, B, C, F, I, R) in order to have a full set of reflections 
with the proper multiplicity when the true magnetic symmetry is not known. 
The program generates first a list of unique reflections corresponding to the required space group and 
then adds the satellites. This method had to be modified for reflections belonging to the boundary planes 
and lines of the asymmetric region of the reciprocal space in order to obtain the correct number of 
reflections and not miss (or repeat) some of them. Be careful with propagation vectors k equivalent to -k! 
Two vectors k1 and k2 are "equivalent" if k1-k2 is a vector of the reciprocal lattice. So, for k1≡-k2, if 
H=2k1 belongs to the reciprocal lattice, k1 is single and belongs to a point of high symmetry of the 
Brillouin Zone. In such cases only ONE propagation vectors should be introduced Nvk=1, if the user puts 
Nvk =-1, the satellite reflections are not correctly generated. 
For centred cells a propagation vector k having components ±1/2, verifies that 2k has integer 
components, but that does not mean that k and -k are equivalent, because 2k could not belong to the 
reciprocal lattice. For a C lattice the propagation vector k1=(1/2 0 0) is not equivalent to k2=(-1/2 0 0) 
because K=2k1=k1-k2=(1 0 0) does not belong to the reciprocal lattice: h+k=2n is the lattice C condition 
for components (hkl). On the contrary, the vector (0 0 1/2) is single because (001) is a reciprocal lattice 
point of the C lattice. 
 

Microstrains and domain size effects. HKL-dependent shifts and asymmetry 

 
The microstructural effects within FullProf are treated using the Voigt approximation: both instrumental 
and sample intrinsic profile are supposed to be described approximately by a convolution of Lorentzian 
and Gaussian components. The TCH pseudo-Voigt profile function (Thompson, Cox and Hastings, J. 
Appl. Cryst. 20, 79 (1987)) is used to mimic the exact Voigt function and it includes the Finger‘s 
treatment of the axial divergence  (L.W. Finger, J. Appl. Cryst. 31, 111 (1998)). The integral breadth 



method to obtain volume averages of sizes and strains is used to output a microstructural file where an 
analysis of the size and strain contribution to each reflection is written. No physical interpretation is given 
by the program, only a phenomenological treatment of line broadening in terms of coherent domain size 
and strains due to structural defects is performed. The user should consult the existing broad literature to 
go further in the interpretation of the results. A recent book (Microstructure Analysis from Diffraction, 
edited by R. L. Snyder, H. J. Bunge, and J. Fiala, International Union of Crystallography, 1999), 
gathering different articles, is a good introduction to microstructural problems. 
The new file containing information about the microstructure is output only if the user provides an input 
file containing the instrumental resolution function (IRF, see manual for the different ways of giving 
resolution parameters). At present, this option works only for constant wavelength mode. 
The FWHM of the Gaussian ( GH ) and Lorentzian ( LH ) components of the peak profile have an angular 
dependence given by: 
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If the user provides a file with the IRF, the user should fix V and W to zero, then the rest of parameters in 
the above formula have a meaning in terms of strains (U ) or size (Y I ) . The functions 

 and 
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(ST DD α ( ZF α  have different expressions depending on the particular model used of strain and 

size contribution to broadening. The parameter ξ  is a mixing coefficient to mimic Lorentzian 
contribution to strains.  
 
The anisotropic strain broadening is modeled using a quartic form in reciprocal space. This correspond to 
an interpretation of the strains as due to static fluctuations and correlations between metric parameters (J. 
Rodríguez-Carvajal, M.T. Fernández-Díaz and J.L. Martínez, J. Phys: Condensed Matter 3, 3215 (1991)).  
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Where the non diagonal terms may be written as product of standard deviations multiplied by correlation 
terms: . This original formulation can be used with a total control of the correlation 
terms that must belong to the interval [-1, 1]. When using this formulation the user cannot refine all 
parameters (up to 21) because some of them contributes to the same term in the quartic form in reciprocal 

( , )ij i jC S S corr i j=



space, however this allows a better interpretation of the final results. Taking the appropriate caution one 
can test different degrees of correlation between metric parameters. There are several special 
formulations, within FullProf, for working with direct cell parameters instead of using reciprocal 
parameters. 
Another formulation and a useful notation corresponding to a grouping of terms was proposed by 
Stephens (P. W. Stephens, J. Appl. Cryst. 32, 281 (1999)) who also included a phenomenological 
Lorentzian contribution to the microstrains (the parameter ξ ). The final grouping of terms simplifies to: 
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The Stephens’ notation can also be used within FullProf. A maximum of 15 parameters can be refined for 
the triclinic case. Whatever the model used for microstrains the mixing Lorentzian parameter, ξ , may be 

used. In FullProf the function , being  the set of parameters C or , is given by: 2 (ST DD α ) Dα ij HKLS
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An example of anisotropic strain refined using this formulation is shown in Figure 1, where the neutron 
diffraction pattern of the low temperature phase of Nd2NiO4 is refined using the diffractometer D2B at 
ILL. 
 



Concerning anisotropic size broadening it is possible to use a very general phenomenological model, 
using the Scherrer formula, that considers the size broadening can be written as a linear combination of 
spherical harmonics (SPH). At present the anisotropic size is supposed to contribute to the Lorentzian 
component of the total Voigt function. A Gaussian contribution will be introduced using a mixing 

parameter similar to that used for anisotropic strain. The explicit formula for the SPH treatment of size 
broadening is the following: 

  S_400     S_040      S_004     S_220
22.04(78) 17.74(57)  0.016(2)  -38.8(1.2)
Lorentzian Parameter:  0.093(2)

Nd2NiO4, LT

A-strain h k l
43.4585  0 1 2
48.1172  1 0 2
 7.1018  1 1 0
 5.9724  1 1 1
 4.1383  1 1 2
 9.7952  0 0 4
 4.0162  1 1 3
79.5271  0 2 0
87.5578  2 0 0

Figure 1: High angle part of the neutron powder diffraction pattern (D2B, ILL) of the low temperature phase 
of Nd2NiO4 [M. T. Fernández-Díaz, M. Medarde and J. Rodríguez-Carvajal (unpublished)]. (top) Comparison 
of the observed pattern with the calculated pattern using the resolution function of the diffractometer. (bottom) 
Observed and calculated pattern using an anisotropic model of strains with non-null values given in the panel. 
A list of apparent strains (x 10-4), extracted from the microstructure file, for a selected number of reflections is 
also given. 
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Where βh  is the size contribution to the integral breadth of reflection h,   are the real 
spherical harmonics with normalization as in [M. Jarvinen, J. Appl. Cryst. 26, 527 (1993)]. The 
arguments are the polar angles of the vector h with respect to the Cartesian crystallographic frame. After 
refinement of the coefficients  the program calculates the apparent size (in angstroms) along each 
reciprocal lattice vectors if the IRF is provided in a separate file. 
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Figure 2: Portion of the neutron diffraction pattern of Pd3MnD0.8 at room temperature obtained on 3T2 (LLB, 
λ = 1.22 Å). On top, the comparison with the calculated profile using the resolution function of the instrument.
Below the fit using IsizeModel = -14. Notice that only the reflections with indices of different parity are
strongly broadened. An isotropic strain, due to the disorder of deuterium atoms, is also included for all kind of
reflections. 

An important type of defects that give rise to size-like peak broadening is the presence of anti-phase 
domains and stacking faults. These defects produce selective peak broadening that cannot be accounted 
using a small number of coefficients in a SPH expansion. In fact only a family of reflections verifying 
particular rules suffers from broadening. For such cases there is a number of size models built into 
FullProf corresponding to particular sets of reflections that are affected from broadening. In figure 2 it is 
represented the case of Pd3MnD0.8 [P.Onnerud, Y. Andersson, R. Tellgren, P. Norblad, F. Bourée and G. 
André, Solid State Comm. 101, 433 (1997)] of structure similar to Au3Mn and showing the same kind of 
defects: anti-phase domains [B.E. Warren, “X-ray Diffraction”, Dover Publications, Inc., New York, 
1990]. In figure 3 a portion of the final microstructural file is shown. 
 



 

 

!  MICRO-STRUCTURAL ANALYSIS FROM FULLPROF (still under development!) 
!  ================================================================== 
!  Pattern No:  1 Phase No:   1 Pd3MnD.8 - CFC 
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
!  Integral breadths are given in reciprocal lattice units (1/angstroms)x 1000 
!  Apparent sizes are given in the same units as lambda (angstroms) … 
!  Apparent strains are given in %% (x 10000) (Strain= 1/2 * beta * d) 
!  An apparent size equal to 99999 means no size broadening 
!  The following items are output: 
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
! The apparent sizes/strains are calculated for each reflection using the formula: 
! 
!  App-size (Angstroms) =  1/(Beta-size) 
!  App-strain (%%) =  1/2 (Beta-strain) * d(hkl) 
! 
!  (Beta-size) is obtained from the size parameters contributing to the FWHM: 
!          FWHM^2 (G-size) = Hgz^2 = IG/cos^2(theta) 
!          FWHM   (L-size) = Hlz   = ( Y + F(Sz))/cos(theta) 
!(Beta-strain) is obtained from the strain parameters contributing to the FWHM: 
!          FWHM^2 (G-strain) = Hgs^2 =   = (U+[(1-z)DST]^2) tan^2(theta) 
!          FWHM   (L-strain) = Hls   = (X+ z DST) tan(theta) 
! 
!   In both cases (H,eta) are calculated from TCH formula and then 
!   Beta-pV is calculated from: 
! 
!            beta-pV= 0.5*H/( eta/pi+(1.0-eta)/sqrt(pi/Ln2)) 
! 
!  The standard deviations appearing in the global average apparent size and  
!  strain is calculated using the different reciprocal lattice directions. 
!  It is a measure of the degree of anisotropy, not of the estimated error 
 
 ...   betaG     betaL ...  App-size App-strain    h     k     l     twtet ... 
 ...  1.4817   11.5859 ...     93.58   41.6395     1     0     0   17.7931 ... 
 ...  2.0954   11.9584 ...     93.58   41.6395     1     1     0   25.2665 ... 
 ...  2.5664    1.5573 ...  99999.00   41.6395     1     1     1   31.0743 ... 
 ...  2.9634    1.7982 ...  99999.00   41.6395     2     0     0   36.0343 ... 
 ...  3.3132   12.6973 ...     93.58   41.6395     2     1     0   40.4625 ... 
 ...  3.6294   12.8892 ...     93.58   41.6395     2     1     1   44.5207 ... 
 ...  4.1909    2.5431 ...  99999.00   41.6395     2     2     0   51.8786 ... 
 ...  4.4451   13.3842 ...     93.58   41.6395     3     0     0   55.2849 ... 
 ...  4.4451   13.3842 ...     93.58   41.6395     2     2     1   55.2850 ... 
 ...  4.6855   13.5301 ...     93.58   41.6395     3     1     0   58.5562 ... 
 ...  4.9142    2.9820 ...  99999.00   41.6395     3     1     1   61.7169 ... 
 ...  5.1327    3.1146 ...  99999.00   41.6395     2     2     2   64.7864 ... 
 ...  5.3423   13.9286 ...     93.58   41.6395     3     2     0   67.7802 ... 
 ...  5.5440   14.0510 ...     93.58   41.6395     3     2     1   70.7114 ... 
 ............................................................................. 
 
Figure 3:  Portion of the microstructural file (extension mic) corresponding to the fitting of the neutron 
diffraction pattern in figure 2.  

Other models for size broadening in FullProf following particular rules for each (hkl) are available. 
Moreover an anisotropic size broadening modeled with a quadratic form in reciprocal space is also 
available. The expression presently used in FullProf is the following: 
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Where ks is defined as ks=360/π2 × λ 10-3 for the 2θ space and ks=2/π × Dtt1 10-3 for TOF and Energy 
space. Simple crystallite shapes as infinite platelets and needles (IsizeModel = 1, -1 respectively) are 
also available. 
 



Together with the size broadening models built into FullProf and described above, there is another way of 
fitting independent size-like parameters for different sets of reflections. The user may introduce his(her) 
own rule to be satisfied by the indices of reflections provided the rule can be written as a linear equality 

of the form: . Where  is an arbitrary integer and n i  are 
integers given by the user. A size parameter is associated to each rule (a maximum of nine rules may be 
given per phase) that may be refined freely or constrained using the codewords appropriately. 

1 2 3 4n h n k n l n n n+ + = + 5 n ( 1,2,...5)i =

 
To access this option in FullProf the value of IsizeModel should be in the interval [-2,-9]. The 
absolute value of IsizeModel corresponds to the number of rules (independent parameters) to be 
given. If all ni=0 the rule is not used. To give a single rule one must put IsizeModel = -2 and put zeros 
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Ca2MnO4     (I 41/acd), RT
a=5.187 Å,  c=24.123 Å

Broadening: (hkl), l=2n+3

 
 
Figure 4: Selective size broadening observed by neutron diffraction at room temperature (3T2, LLB) for 
superstructure reflections in Ca2MnO4[C. Autret et al. (unpublished)]. (top) Size parameter fixed to zero. 
(bottom) Single size parameter according to the rule (hkl), l=2n+3. The indices of the most intense Bragg 
reflections affected by size broadening are also given. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
! Selective Size-Broadening: 
! hkl cond.      (n1.h + n2.k + n3.l=n n4 +/- n5)   Size-par      Code 
  0  0  0          0      0      1      2      3     9.61440   661.000 
  0  0  0          0      0      0      0      0     0.00000     0.000 
 

Figure 5: Portion of the PCR file for IsizeModel = -2 corresponding to the refinement in Figure 
4. The first set of zeros below the text ‘hkl cond.’ is not used at present. 



for the last condition. This is needed in order to avoid the confusion with the case of an infinite needle. In 
Figure 4 we give an example using IsizeModel = -2 and if Figure 5 the relevant part of the PCR file is 
written. 
 
Finally, a general formulation for peak shifts, due to defects or to residual stresses, has also been 
implemented. For Sol≠0, the lines corresponding to shift parameters are read in the PCR file. Selective 
shifts can be selected when ModS <-1. For this option a set of up to ABS(ModS) (≤10) lines can be given. 
The lines define rules to be satisfied by reflections undergoing shifts with respect to the theoretical Bragg 
position due to some kind of defects (stacking and twin faults for instance).  The rules are similar to those 
of selective size broadening discussed above. The position of the reflections satisfying the rules are 
displaced according to the expressions: 

 
2θS  =2θB + 2 SHIFT d2 tanθ × 10-2  (2θ space) 

TOFS=TOFB − SHIFT d3 Dtt1 × 10-2  (T.O.F. space) 
ES=EB − SHIFT/(2d) Dtt1 × 10-2  (Energy space) 

 
Where the index B stands for the theoretical Bragg position of the non defective material and SHIFT is 
the shift parameter to be refined.  
The shift of Bragg reflections may also be due to external stresses or residual stresses. For those cases it is 
more appropriate to use the following generalized model for shifts. The model is implemented for ModS 
= 100+NumLaue (with NumLaue the number of the Laue class according to FullProf manual, see 
appendix) , and a set of parameters corresponding up to quartic form in hkl can be refined. The position of 
a reflection is displaced according to the expressions: 
 

2θS  =2θB + 2 Sh d2 tanθ × 10-2  (2θ space) 
TOFS=TOFB − Sh d3 Dtt1 × 10-2  (T.O.F. space) 

ES=EB − Sh /(2d) Dtt1 × 10-2  (Energy space) 
 
The expression used for calculating the scalar Sh for reflection h is given by: 
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The free parameters for this option are the sets and . To refine these parameters the 
average cell parameters of the non-stressed material should be  fixed during the refinement. 

2HKLD 4HKLD

 
 

FROM HERE TO THE STARTING OF MATHEMATICAL 
PART THE TEXT NEED TO BE CORRECTED, UPDATED 
AND COMPLETED 
 
For anisotropic contributions {DST(STR) and LorSiz} the actual version of FullProf has the following set 
of microstructural models: 
 
  Size effect:{only Lorentzian component is taken into account for anisotropic broadening of size origin 
through LorSiz} 
 
   Str=0 and IsizeModel<>0 {Integer to select a particular model for LorSiz in subroutine SIZE} 
 
   IsizeModel = 1   Platelet coherent domains. LorSiz is assumed to be of the form LorSiz=SZ*cos(phi), 
where SZ is the refined parameter and phi is the acute angle between the scattering vector (h,k,l) and the 
vector defining the platelet shape of domains {[Sz1, Sz2, Sz3] in line 36} 



   IsizeModel =-1   Needle-like coherent domains. LorSiz is assumed to be of the form 
LorSiz=SZ*sin(phi), where SZ is the refined parameter and phi is the acute angle between the scattering 
vector (h,k,l) and the vector defining the needle shape of domains {[Sz1,Sz2,Sz3] in line 11-9*} 
   IsizeModel = 2 to 7, in these cases the broadening is considered only for reflections of the form: 
(00l),(0k0),(h00), (hk0), (h0l) and (0kl). The function is: LorSiz=SZ. 
   IsizeModel =8    Only satellites reflections are considered to be broadened. In this case also LorSiz=SZ. 
 
   IsizeModel =9    Reflections (HKL) with H=2n+1 and K=2m+1 are broadened. In this case also 
LorSiz=SZ. 
 
   IsizeModel =10   Reflections (H0L) with H+L=2n are broadened. 
                    In this case also LorSiz=SZ. 
 
   IsizeModel =11   Reflections (HKL) except (HHL) are broadened. 
                    In this case also LorSiz=SZ. 
 
   IsizeModel =12   Reflections (HKL) with H=2n+1 are broadened. 
                    In this case also LorSiz=SZ. 
 
   IsizeModel =13   Reflections (HKL) with H=2n and K=2m+1 are broadened. 
                    In this case also LorSiz=SZ. 
 
   Str > 1  : A generalised formulation of the size effect is applied and the size parameters (up to six) are 
given in line 11-14*. 
               In that case the LorSiz function is given by: 
 
           F(p1...p6) = 0.180 Lambda / {pi*d(hkl)* Quad(p1...p6)} 
 
    Quad = Sqrt{p1 h^2 + p2 k^2 + p3 l^2 + 2 (p4 hk + p5 hl +p6 kl)} 
 
           where the size parameters are p1,p2,...p6. 
 
           This formulation assumes that the average diameter <Dhkl> can be expressed as an ellipsoid of 
refinable parameters p1..p6. Therefore 
 
                             <Dhkl>= d(hkl) * Quad 
 
  Strain effects:{only Gaussian component is taken into account for anisotropic 
                  broadening due to strains through DST(STR)} 
 
   Str=0 and IstrainModel<>0 {Integer to select a particular model for DST(STR) 
                                in subroutine STRAIN} 
 
          FWHM(strain) = DST tanTheta = c Sigma(1/d^2)/(1/d^2) tanTheta 
 
    the constant c is equal to 2 sqrt(Ln2) (180/pi). In the program the effective value used is c*10e-3, 
therefore it is necessary to divide the refined strain parameters by 1000. The user can consult the modules 
    FDUM's.FOR for details and reference 17. 
 
 
   IstrainModel = 1   Orthorhombic strain in a tetragonal lattice. 
                      Refined parameter STR1. 
 
 
   IstrainModel = 2   Strain along "a" in an orthorhombic lattice. 
                      Refined parameter STR1. 
 



   IstrainModel = 3   Strain along a diagonal of the ab plane in an orthorhombic lattice for which an 
equivalent monoclinic double cell has been used. 
                      Refined parameter STR1. 
 
   IstrainModel = 4   Same as 3 but strains along the two diagonals. 
                      Refined parameters STR1, STR2. 
 
   IstrainModel = 5   Strain in an orthorhombic lattice with fluctuations along "a" and "b" and correlation 
between "a" and "b". 
                      Refined parameters Str1, Str2, Str3. 
 
   IstrainModel = 6   Strain in an orthorhombic lattice with fluctuations along "a", "b" and "c" and 
corr(a,b)=-1, corr(a,c)=1, and corr(b,c)=0. 
                      Refined parameters Str1, Str2, Str3. 
 
 
   IstrainModel = 7   Uniaxial microstrain. DST(STR) is assumed to be of the form 
DST(STR)=STR1*cos(phi), where STR1 is the refined parameter and phi is the angle between the 
scattering vector (h,k,l) and the vector defining the axial direction of strains {[St1, St2, St3] in line 37} 
 
   IstrainModel = 8   General anisotropic strain of hexagonal symmetry. 
                      (See ref. 17) 
 
           STR1= Saa=Sigma(A), STR2= Scc=Sigma(C)  STR3= Cac=Correl(A,C) 
 
                     1/d^2 = SQ = A (h^2+k^2+hk) + C l^2 = A m^2 + C l^2 
 
                     Var(SQ)= Saa^2 m^2 + Scc^2 l^4 + 2 Saa Scc Cac m l^2 
 
                      FWHM^2 (strain)= Var(SQ) (P/SQ)^2 
                     {P=180/pi*sqrt(8Ln2) 1.E-03 tan(theta)} 
 
 
   IstrainModel = 9    Strain adapted for compounds LaNi5-like. Formula by: 
                       P.Thompson et al, J.Less Comm Met 129, 105-114 (1987) 
 
             Four parameters: Gaussian FWHM=Sqrt(Sumj[S(j)]) tan(theta) 
 
      STR1   -> S(1) =                                   x   Par(1) 
      STR2   -> S(2) =  l^4             /(h^2+k^2+l^2)   x   Par(2) 
      STR3   -> S(3) = (h^2 k^2+k^2 l^2)/(h^2+k^2+l^2)   x   Par(3) 
      STR4   -> S(4) =  h^2 k^2         /(h^2+k^2+l^2)   x   Par(4) 
 
   IstrainModel =10   General anisotropic strain for orthorhombic symmetry. 
                      (See ref. 17) 
 
                      6 strain parameters corresponding to : 
 
             STR1=Saa=Sigma(A),   STR2=Sbb=Sigma(B),   STR3=Scc=Sigma(C), 
             STR4=Cab=Corr(A,B),  STR5=Cac=Corr(A,C),  STR6=Cbc=Corr(B,C) 
 
              Where: 
 
                           SQ = A h^2+ B k^2 + C l^2 
 
             Var(SQ)= Saa^2 h^4 + Sbb^2 k^4 + Scc^2 l^4 + 
                      2 Saa Sbb Cab h^2 k^2 + 
                      2 Saa Scc Cac h^2 l^2 + 



                      2 Sbb Scc Cbc k^2 l^2 
 
                      FWHM^2= Var(SQ)(P/SQ)^2 
 
                 {P=180/pi*sqrt(8Ln2) 1.E-03 tan(theta)} 
 
 
   IstrainModel =11   General anisotropic strain for monoclinic symmetry being the setting gamma><0 (2-
fold axis along 001) 
                      (See ref. 17) 
                      {limited to 8 parameter by putting arbitrarily zero 
                       two correlation values (Cad=Cbd=0)} 
 
                      8 strain parameters corresponding to : 
 
STR1=Saa=Sigma(A),  STR2=Sbb=Sigma(B),  STR3=Scc=Sigma(C),  STR4=Sdd=Sigma(D), 
STR5=Cab=Corr(A,B), STR6=Cac=Corr(A,C) ,STR7=Cbc=Corr(B,C), STR8=Ccd=Corr(C,D) 
 
 
              Where: 
 
                      SQ = A h^2+ B k^2 + C l^2  + D hk 
 
                             {    Saa^2  SaaSbbCab  SaaSccCac    0  }  (h^2) 
                            { SaaSbbCab    Sbb^2    SbbSccCbc    0   } (k^2) 
Var(SQ)=( h^2, k^2,l^2,hk){                                          } 
                            { SaaSccCac  SbbSccCbc   Scc^2  SccSddCcd} (l^2) 
                             {     0        0      SccSddCcd   Sdd^2}   (hk) 
 
 
                      FWHM^2= Var(SQ)(P/SQ)^2 
 
                 {P=180/pi*sqrt(8Ln2) 1.E-03 tan(theta)} 
 
 
 
    Str=1,3  The generalised formulation of the strain broadening is used and 10 parameter are read in line 
11-13*. The formalism is that described in reference 17. The strain parameters correspond to the 
fluctuations and correlations of direct cell parameters. The lower symmetry is monoclinic with the 
conventional setting. The hexagonal lattice is treated as a special case. 
 
               Strain parameters:   Px = sigma(x),         x,y = a,b,c, beta 
                                    corr(x,y) = sin(Pxy) 
 
The parameter Pxy is an angle in degrees. This particular description is for taking into account that 
corr(x,y)=covar(x,y)/(sigma(x).sigma(y)) and must belong to the interval [-1,1]. The strain parameters are 
read in the following order: 
 
                   Pa,       Pb,    Pc,    Pbeta,      Pab 
                  Pac,   Pabeta,   Pbc,   Pbbeta,   Pcbeta 
 
 
  Note: 
In some cases the use of size-strain options of the program, the computing time is greatly increased. This 
is related to the fact that the number  of reflections contributing to each particular point of the diagram 
increases because the broadening is quite important. An excessive computing time may indicate a 
divergence of the refinement that has attributed a too much large FWHM to some reflections. 
 



 

HKL-dependent shifts. 

 
As a part of microstructural effects, the program can handle some cases of peak-shifts and asymmetry 
effects. No hkl-dependent asymmetry model is currently available. Two models are available for peak-
shifts: 
 
  ModS = 1/-1 
         Uniaxial shifts along a direction [S1,S2,S3] 
          Shift of Bragg reflections of the form: 
                  Shift(hkl) = Shift1 * cos(Phi(hkl))    (ModS= 1) 
               or Shift(hkl) = Shift1 * sin(Phi(hkl))    (ModS=-1) 
          Where Phi is the angle: between [hkl] and [S1,S2,S3] 
 
  ModS = 2 
              Shift(hkl) = Shift1 * Coeff(hkl) * tan(Theta(hkl)) 
 
The parameter Coeff(hkl) must be given by user in the file from which Bragg reflection indices and 
multiplicities are read. This option cannot be used simultaneously with the output of a Fourier file, so Fou 
is set to zero by the program. 
 
 

Quantitative phase analysis 

 
For quantitative analysis it is essential that two conditions be fulfilled: 
- sample must be carefully prepared to comply to the definition of a powder: homogeneity, sufficient 
number of particles with random orientation 
- structure factors must be correctly calculated 
According to Brindley, it is convenient to classify mixed powders according to the value of the product 
mD where m is the linear absorption coefficient and D a measure of the linear size of a particle. Four 
cases must be considered: 
- fine powders: mD < 0.01 
The individual particles of the powder have negligible absorption and no correction has to be applied to 
the data 
- medium powders: 0.01 < mD < 0.1 
- coarse powders: 0.1 < mD < 1 
- very coarse powders: mD > 1 
 
In a mixture of N crystalline phases the weight fraction Wj of phase j is given by: 
            Wj ={ Sj Zj Mj Vj / tj} / Sum(i)[Si Zi Mi Vi /ti] 
 
 where  Sj is the scale factor of phase j 
Zj is the number of formula units per unit cell for phase j, Mj is the mass of the formula unit, Vj is the 
unit cell volume tj is the Brindley particle absorption contrast factor for phase j defined as: 
 
              tj = (1/Vj) Integ[ exp{-(mj-mu)x}  dVj] 
 
 where      Vj is the volume of a particle of phase j mj is the particle linear absorption coefficient mu is the 
mean linear absorption coefficient of the solid material of the powder x is the path of the radiation in the 
particle of phase j when reflected by the volume element dVj 
The latter parameter accounts for microabsorption effects that become important when the compounds of 
the powder have rather different linear absorption coefficients. Its calculation requires only the 
knowledge of the particle radius R and linear absorption coefficient m. Values of t as a function of the 
product (mj-mu)R have been tabulated by Brindley and are reproduced below: 



 
 (mj-mu)R  t(2Theta=0)  t(2Theta=90) t(2Theta=180)  (mj-mu)R  t(2Theta=0) t(2Theta=90)  
t(2Theta=180) 
----------------------------------------------------------------------------- 
  -0.50     2.068     2.036     2.029    -0.40     1.813     1.807     1.827 
  -0.30     1.508     1.573     1.585    -0.20     1.352     1.353     1.362 
  -0.10     1.159     1.162     1.163    -0.09     1.142     1.143     1.144 
  -0.08     1.124     1.125     1.125    -0.07     1.107     1.108     1.108 
  -0.06     1.090     1.091     1.091    -0.05     1.074     1.073     1.074 
  -0.04     1.059     1.058     1.059    -0.03     1.043     1.042     1.042 
  -0.02     1.028     1.027     1.027    -0.01     1.014     1.014     1.014 
   0.00     1.000     1.000     1.000     0.01     0.986     0.986     0.986 
   0.02     0.972     0.973     0.973     0.03     0.959     0.960     0.960 
   0.04     0.945     0.946     0.947     0.05     0.932     0.933     0.934 
   0.06     0.918     0.919     0.921     0.07     0.905     0.906     0.908 
   0.08     0.892     0.893     0.895     0.09     0.878     0.879     0.882 
   0.10     0.865     0.866     0.870     0.20     0.742     0.753     0.760 
   0.30     0.640     0.653     0.671     0.40     0.545     0.569     0.587 
   0.50     0.468     0.496     0.529 
 
 
 R.J. Hill & C.J. Howard, J. Appl. Cryst. 20, 467-476 (1987) 
 G.W. Brindley, Phil. Mag. 36, 347-369 (1945) 
 
 

User-supplied parameters & subroutines for structure-factor calculation 

 
Some powder diffraction applications need user-supplied parameters and subroutines calculating the 
structure factors. Examples of this kind of applications are the following: 
 
    - Form factor determination. 
    - Rigid body-generalised co-ordinates refinements. 
    - TLS refinements. 
    - Description of incommensurate phases in real space (not Fourier 
      components) by some simple parameters. 
    - Anharmonic displacement parameters. 
 
To do that, the user can prepare his(her) own subroutines and link the object FDUM1,FDUM2,FDUM3,... 
with the rest of the modules and the FullProf library. 
 
For crystal structures the subroutine to calculate the structure factor squared for a reflection (hkl) must be 
called STRMOD. For a magnetic phase the name is MAGMOD. Examples of these are contained in the 
public source code FDUM's.FOR. 
The user can also modify or introduce new models for strains and size effects in the subroutines SIZE and 
STRAIN which are also included in FDUM's.FOR 
Useful information for users concerning the internal parameters: 
The parameters (refinable variables) used in FullProf are divided in three categories: Global parameters, 
Atom parameters and  Phase parameters. For each category there is an array to store the values: GLB, XL 
and PAR. 
The global parameters are the following: 
GLB(J) : J=1,2....40 
            J=1     :  T0              Zero 
            J=2,...7:  b1,b2,...b6     Background parameters 
            J=8,9   :  SYCOS,SYSIN     Systematic 2Theta-shifts/ DTT1,DTT2 for TOF 
            J=10..15:  Bc1,.....Bc6    Background coefficients for Debye- 
                                       like function: DBback 



            J=16..21:  d1,..... d6     distances in Angstroms in DBback 
            J=22,23,24,25: a,b,c,d     Background transforming coefficients 
            J=26 : Flambda             Wavelength (for CW neutron)/ 2SinTheta for TOF 
            J=27,28,29: P0,Cp,Tau      Microabsorption coefficients 
            J=30..35:                  Additional background parameters 
            J=36..40:                  Not used at present 
 
   XL(I,J): Atom parameters, the index I runs over atoms 
 
            I=1,2,..N1,N1+1,N1+2,....N1+N2,N1+N2+1,....N1+N2+N3....N 
 
            N1: number of atoms of phase 1 
 
            N2: number of atoms of phase 2 
            ............................................... 
            N : total number of atoms : N1+N2+N3+...+N(Nph) 
 
            The index J represents different atom parameters 
 
            J=1,2,3 : (x,y,z)        fractional co-ordinates 
            J=4     :  B             isotropic temperature factor 
            J=5     :  Occ.          Occupation factor. 
            J=6....8: (Mx,My,Mz)     Magnetic moment components 
              9...11: (Mxi,Myi,Mzi)  Imaginary Magnetic moment components 
            J=12    :  MagPh         Magnetic phase of the atom 
            J=13..18: (betas11,22..) Anisotropic thermal factors 
            J=19..32:                Coefficients of generalised form-factors 
 
These atomic parameters can be used by the subroutines STRMOD and MAGMOD for other purposes. 
 
Moreover, there are other non-atomic parameters which can be used also for defining generalised co-
ordinates. They are internally stored in the array PAR(K,J) where the index K run over the phases and J 
represents different parameters: 
 
        PAR(K,J):K=1,2,....Nph 
 
               J=1         : S             Scale factor 
               J=2         : Bov           Overall temperature factor 
               J=3,4,5     : U,V,W         Halfwidth parameters 
               J=6,..11    : A,B,C,D,E,F   Cell constants 
               J=12,13     : G1,G2         Preferred orientation parameters 
               J=14        : As1           First Asymmetry parameter 
               J=15,16     : X,Y           Shape parameters (depend on Npr) 
               J=17        : eta(m)        Shape parameter of p-Voigt(Pearson) 
               J=18..27    : Str1...Str10  Strain parameters 
               J=28        : GausSiz            Isotropic Gaussian size parameter 
               J=29..34    : Siz1...Siz6   Anisotropic size parameters 
               J=35,36,37  : As2,As3,As4   Additional asymmetry parameters 
               J=38        : Asymhkl       HKL-dependent asymmetry parameter 
               J=39,40     : Shf1,Shf2     HKL-dependent shift parameters 
               J=41,42     : Shap1,Shap2   Additional shape parameters 
               J=43,44,45  : U2, V2, W2.    U,V,W parameters for lambda(2) 
               J=46,47,48  : Ud,Vd,Wd      U,V,W for right part of SpV(x) 
               J=49,50     : Eta0d, Xd     Eta and X for  right part of SpV(x) 
               J=51,..59   : CYi           Coefficients of Spherical Harmonics (size broad.) 
               J=60..MPAR  : P1,P2,....    User-supplied parameters 
               LASTMPAR=59                 Number of the Last parameter used internally. To be used as offset 
for user-supplied subroutines. 



 
 
Examples of user-supplied subroutines for structure-factor calculation 
 
CRYSTAL STRUCTURE REFINEMENTS 
 
In FullProf the default Jbt=4 option is an updated subroutine written by V.Rodriguez which handles rigid 
body objects. 
 
Guide for the General Rigid-Body-Constraints/TLS Subroutine for Rietveld Refinements 
                           ********************** 
                             V1.4 (January 1997) 
 
 
                               Dr V.Rodriguez 
 
           Laboratoire de Spectroscopie Moleculaire et cristalline * 
                               (U.A.124 CNRS) 
               Universite de Bordeaux I, 351 cours de la Liberation 
                            F-33405 TALENCE Cedex 
 
                           Tel : (33) 56.84.63.61 
                           Fax : (33) 56.84.84.02 
                    e-mail: vincent@loriot.lsmc.u-bordeaux.fr 
                        http://loriot.lsmc.u-bordeaux.fr 
 
           * UMR Physico-Chimie Moleculaire since January 1st 1997 
                            ********************* 
 
        For further details see 
 
     "A routine for crystal-structure refinements based on rigid-body 
      model with constrained generalised co-ordinates and mean thermal 
      displacements" 
      Rodriguez V. and Rodriguez-Carvajal J., 
      J. Applied Cryst., (to be published) 
 
                            ********************* 
 
 
In the present version of Fullprof the default Jbt=4 option refers to a subroutine which handles rigid body 
objects. Here we give a short guide in order to facilitate the use of this subroutine. This routine should be 
used with caution and the user should be familiar enough with "conventional" Rietveld refinements. The 
subroutine is still under improvement. At this time, all the options have been well tested except option Nr 
4 (see below). I acknowledge all suggestions and notifications of possible bugs found in the program. 
 
It should be pointed out that option Jbt=4 is not restricted to "perfect" rigid-body-groups. In the standard 
definition of Rietveld atomic positions, reduced co-ordinates are used. Within this subroutine, molecules 
or atomic groups are defined by spherical internal co-ordinates and six additional parameters, which 
define the groups' position and orientation in the crystal. 
In addition, this extended version of Rietveld refinement allows distorting groups in a final refinement 
step if required. 
 
Note: Each parameter referring to the orthonormal crystal system is recognised by the appended "c". Each 
parameter referring to the orthonormal molecular system is recognised by the appended "m". 
 
Description of the parameters 
 



- Any kind of rigid body groups built from atoms can be generated. 
- All parameters described below are refinable except optional parameters P6 (always true) and P16 
(specific to "satellite" rigid body groups). 
- Each group of atoms (rigid body group, RBG) is identified by 1 or 2 letters and a number from 1 to 99 
(both compatible with the standard DBWS format and the free format of Fullprof). The number indicates 
that a RBG is defined. The Atom(two letters max.) and the number of the atom must not be separated. 
 
 
- Representation of RBG is performed as follow : 
1) Definition of the isolated group in an orthonormal molecular system. Each atomic position (xm,ym,zm) 
is defined through spherical co-ordinates (dm=distance, thetam, phim). The centre of this molecular 
system may or may not coincide with an atom. 
2) Definition of the absolute position (Xc,Yc,Zc) and orientation (angles THETAc, PHIc and CHIc) of 
the molecular orthonormal system in the crystallographic orthonormal system. These are standard 
EULER angles definitions. In this way, each group is entirely defined within a crystal. 
 
- Anti-clockwise rotations are always applied to spherical angles. These standard spherical angles are 
defined as follow : 
      THETAc / thetam     : inclination with respect to the Zc/zm axis of the 
                            corresponding orthonormal system [-Pi, Pi]. 
      PHIc / CHIc and phim: rotation around the Zc/zm axis of the corresponding 
                            orthonormal system [0, 2*Pi]. 
- The orthonormal crystallographic system, with respect to which the spherical angles THETAc, PHIc and 
CHIc of any RBG are defined, fulfils the following conditions: 
               Xc axis coincides with the crystallographic direction a 
               Yc axis belongs to the plane (a, b) 
               Zc axis is perpendicular to the plane (a, b) (parallel to c*) 
 
One can imagine how to place a rigid molecule in the correct position in the unit cell by making the 
following operations: 
     - The RBG has been completely defined by the spherical co-ordinates (dm,thetam,phim) of each atom 
in the internal orthogonal system, that coincides at the beginning with the orthogonal crystallographic 
system. 
     - Perform a rotation CHIc of the whole RBG around the zm axis of matrix: 
 
                  ( COS(CHIc)      -SIN(CHIc)        0   ) 
 
             M1=  ( SIN(CHIc)       COS(CHIc)        0   ) 
 
                  (    0                0            1   ) 
 
     - Perform a rotation of the whole RBG inclining their z-axis to 
       the angles THETAc and PHIc of matrix: 
 
          ( COS(THETAc)*COS(PHIc)     -SIN(PHIc)    SIN(THETAc)*COS(PHIc)  ) 
 
     M2=  ( COS(THETAc)*SIN(PHIc)      COS(PHIc)    SIN(THETAc)*SIN(PHIc)  ) 
 
          (    -SIN(THETAc)               0              COS(THETAc)       ) 
 
      - Translate the origin of the RBG to the position (Xc,Yc,Zc) which are transformed in reduced co-
ordinates (xo, yo, zo) with xo=Xc/a, yo=Yc/b, zo=Zc/c 
 
- "Free atoms" (unconstrained or isolated) can be added with number 0 or without number. Each isolated 
atom has the same definition of parameters as described in the Fullprof manual (see lines 11.4.1 and 
11.4.3 of the Fullprof guide). Current information about "free atoms" is printed to the screen when 
parameter P6 (see below) is set to any negative value. Note that the following parameters: P6, P7, P8, P15 
and P16, are obsolete in this case. 



 
- Rigid body satellite groups (RBSG) can be also included in this version, for example a methyl group 
within a rigid group such as [N(CH3)4]+(tetramethyl ammonium). The definition and the structure of the 
parameters are almost the same as those for a main RBG. The co-ordinates of the centre of the satellite 
group should not be specified since they are specified through the knowledge of its absolute position in 
the input file "x.pcr". The orientation THETAc,PHIc of satellites groups is also defined following the 
value of parameter P16 of the 1st satellite atom (see below, option abs(P6)=2). 
One easy external degree of freedom of the RBSG is the rotation around the z-molecular axis i.e. the N-C 
bond. This degree of freedom is accessible through the EULER angle PHIc that can be refined. 
 
-  All output is identical for isolated and/or constrained atoms. 
- Every atom has 16 items stored in (X(Iphase,j),j=1,16) and each parameter is denoted here as P1, P2, 
...P16. The reading of these parameters is described in lines 11-4-1 and 11-4-3 of the Fullprof guide. 
 
Example: 
 
                      P1      P2      P3      P4      P5    P6   P7-THETAc P8-PHIc 
 TD1  N            .38900  .54090  .28796 4.00000 0.16667  1.000   -.290    .142 
                      .00     .00     .00     .00     .00    .00   71.00   61.00 
  1.49300 1.57080 -.95532  .33333  .66667  .25000 1.04100      0 
      .00     .00     .00     .00     .00     .00   51.00 
 
  P9-dm P10-thetam P11-phim P12-xo  P13-yo  P14-zo P15-CHIc   P16 
                      x       y       z 
 TD2  C            .47744  .84054  .28796 4.00000 0.16667  .000    .000    .000 
                      .00     .00     .00     .00     .00   .00     .00     .00 
   .75000 1.57080 1.57080  .00000  .00000  .00000  .00000 
      .00     .00     .00     .00     .00     .00     .00 
  P9-dm P10-thetam P11-phim 
 
                  x        y        z 
 O    O        .28146  -.04125   .41456   .00000  1.00000  -1.000   .000    .000 
                  .00      .00      .00      .00      .00     .00    .00    .00 
      .03957   .07078   .09069   .00314   .01571  -.01501       0 
         .00      .00      .00      .00      .00      .00 
      beta11   beta22   beta33   beta12   beta13   beta23 
 
    -> In a RBG (here, the generic name is TD) each atom (TD1 and TD2) 
       has its internal co-ordinates stored in the following items: 
 
            distance to the centre dm : P9 
            Spherical angle thetam    : P10 
            Spherical angle phim      : P11 
 
       The atomic reduced co-ordinates are only for information with option 1 
       (RBG), see below for details. 
 
            Reduced co-ordinate x  : P1 
            Reduced co-ordinate y  : P2 
            Reduced co-ordinate z  : P3 
 
       The parameters P4 and P5 have their usual meaning for each atom: 
 
            Isotropic temperature factor: P4 
            Occupation number            : P5 
 
 



-> The first atom of each RBG (atom No 1, here TD1) contains the fractional co-ordinates (xo, yo, zo) of 
the centre of the RBG (P12, P13, P14) and the three EULER orientation angles THETAc, PHIc and CHIc 
(in radians, respectively P7=-.290, P8=.142 and P15=1.041) of the whole group. Here, the centre of the 
RBG does not coincide with an atom (N or C in this example) since the first atom has a non-zero value 
dm=P9=1.493. Of course, it is possible to build a RBG with an atom coinciding with the centre of the 
RBG. 
 
-> The third atom (oxygen, Number 0 (or none which is equivalent to 0)) is unconstrained ("free atom") 
and its items are the standard ones : here, reduced co-ordinates (x, y, z) + atomic temperature parameters 
(betaij). 
 
-> No terminal output is required for the whole RBG TD (P6>0). Terminal output at each cycle is 
required for "free atom" oxygen (P6<0). 
 
Practical details 
 
1- The item abs(P6) of the first atom indicates the option selected. If P6<0, the current information is 
printed on the screen and in the file CODFIL.OUT. (file x.out). If the value of P6 is 0 for a RBG, the 
parameter defaults to "1", corresponding to the standard RBG option. 
2- The distance are expressed in the same unit as wavelength and cell parameters (usually in angstroms) 
and the angles are always expressed in radians: 
3- The listing of the different options is a function of the main optional parameter P6. In the following, 
the temperature parameters are exclusively Boveral or Biso (isotropic Debye-Waller factors) except for 
TLS option with abs(P6)=5. 
abs(P6)= 1.0x  : Normal rigid body option. If x=1 the fractional co-ordinates of the center of mass is 
output. That supposes that every atom of the Molecule has been given explicitly in the asymmetric unit. 
2.xx  : Satellite group (RBSG) option (Int(abs(P6))=2). The integer value xx=100*(int(abs(P6))-2) gives 
the absolute number of the reference group (as they appear following the writing order, whatever the 
number of phase). 
--> The parameter P15 is assigned to the rotation CHIc of RBSG as for RBG. 
--> The parameter P16 of the first atom of the RBSG is defined as follows: P16 = N1.N2 with N1=      
Int(P16)  : Nr of the first reference atom of the reference RBG. 
                 N2=100*(P16-Int(P16)): Nr of the second reference atom 
                                        of the reference RBG. 
 
                   N1: Centre of the RBSG 
                   N2: Optional (if N2 is given then N1-N2 defines 
                                 the internal z-axis) 
 
Example: 3.02  1st reference atom = Nr 3 2nd reference atom = Nr 2 Atom Nr 3 is the centre of the RBSG 
and the  z-axis of the RBSG is oriented in the  direction: atom Nr 2-> atom Nr 3. Of course, the (xo, yo, 
zo) fractional co-ordinates of the  RBSG are not needed. The program calculates automatically the 
corresponding values. 
a) If the second atom is defined (N2#0), the spherical angles of the RBSG are calculated from these two 
reference atoms. 
b) If the second atom is not defined (N2=0), the centre of the main RBG is taken as the second reference 
atom of the RBSG. 
c) If N2=N1, the spherical orientation angles of the RBSG are those of the main reference RBG. 
Apart from these constraints, a RBSG is treated as a normal RBG with as many atoms as desired. The 
refinement of the centre of the RBSG as well as the orientation angles THETAc and PHIc are performed 
in the main RBG. 
 
3.0x  : The spherical co-ordinates (parameters P9, P10 and P11) are generated from the reduced co-
ordinates (P1, P2 and P3) at the first cycle. Then the parameter P6 is automatically set to 1 and the sign of 
the option is kept i.e. the next option is RBG. For selecting the internal orthogonal system the user has to 
give in the parameters (P12,P13,P14) the origin of the internal orthogonal frame and in (P9,P10,P11) the 
co-ordinates of an atom (that may be fictitious) for defining the plane "xz". The (P1,P2,P3) co-ordinates 
of the first atom defines the z-axis of the internal frame, which is in the direction V3=(P1-P12,P2-P13,P3-



P14) in the conventional crystal frame (fractional components). the "y" axis in perpendicular to the plane 
"xz" defined by the vectors: 
                    V3=(P1,P2,P3)-(P12,P13,P14)   -> z-axis 
                    V1=(P9,P10,P11)-(P12,P13,P14) -> within the xz plane y-axis is in the direction V3 x V1 
This option is very useful as it facilitates the use of standard input file with Jbt#4, the conversion of 
published structures into spherical internal co-ordinate systems, etc... If x=1 the fractional co-ordinates of 
the center of mass is output as in option 1. 
 
4.xx  : Option to generate an idealised molecule like aliphatic chains, planar or helical molecules..., where 
xx is the number of atomic planes along the RBG Zc axis which is the reference axis. The spherical co-
ordinates are calculated from three parameters P9,P10 and P11. These parameters are lost after 
processing. They are defined as: 
                   P9  - distance of one atom to the center of the axis 
                   P10 - angle between two atoms lying in consecutive planes and the corresponding mid-point 
lying along the Zc-axis. 
                   P11 - order of the generating axis (integer) 
                   Examples: 1-For an aliphatic chain Cn along Zc in the 
                             (Xc, Zc) plane (conformation all trans). 
                             distance   = 1.54/2.      (angstroms) 
                             angle      = 114.*pi/180. (radians) 
                             axis order = 2 
 
                             2-For benzene lying in the plane (Xc, Yc) 
                             distance   # 1.40*2.      (angstroms) 
                             angle      = 0.*pi/180.   (radians) 
                             axis order = 6 
 
The parameter P15 is assigned to CHIz as in the RBG option and the parameter abs(P6) is set to 1 in the 
1st cycle, the sign of the option is kept. Therefore, the generated group is treated as a normal RBG in the 
next cycles. 
Remark : Further improvements are scheduled for this option that is not very reliable at the present time. 
 
5.0x  : TLS option for RBG including satellite groups, if any. This TLS version is based on the formalism 
of V.Schomaker and K.N.Trueblood, Acta Cryst.(1968), B24, p-63. In this case, the refinement is 
performed with the so-called one step process i.e. atomic positions and temperature factors TLS are 
refined together. 
The origin of the main RBG must be the centre of mass of the entire group concerned !!! The subroutine 
calculates the centre of mass of the molecule if x=1. This option MUST be set when the centre of the 
group does not coincide with the centre of mass. In this case, make sure that all atoms constituting the 
RBG are defined in the input file since the RBG option does not generate atomic positions. Such a 
situation can occur in non-centrosymmetric space group, as in urea SPG: P -4 21 M ,since the molecule is 
located on a C2v site (mm.). Here, one must enter the entire molecule in the asymmetric unit. 
The elements of the T(6), L(6) and S(9) matrices are read in "further parameters Furth" (see Fullprof 
guide, line 11.12) following the usual order i.e. 11 22 33 12 13 and 23 for T and L. As the S matrix is not 
symmetric, 9 elements can be required in the general case. The six first elements are as defined 
previously, and the three last ones are respectively S21, S31 and S32. 
Similarly to the atomic temperature parameters betaij, the components of the TLS matrices have 
symmetry constraints, which are imposed by the symmetry of the crystallographic site (not the molecular 
symmetry !). These symmetry relations can be found in the paper by Schomaker and Trueblood (1968). 
The T elements are expressed in angstroms^2, the Lcomponents in radians^2 and the S ones in 
angstroms*radians. For convenience, the output to the screen and to unit 7 (x.out) of the TLS components 
are expressed in the following units: angstroms^2 for T, in degrees^2 for L and degrees*angstroms for S. 
Remark : When using this option, one refines the observed  structure factors by assuming that the atomic 
temperature factors are constrained ab initio to satisfy the rigid-body hypothesis. It is well known that the 
RBG/TLS can greatly reduce the number of atomic and thermal parameters, especially when the molecule 
is located at a site of high symmetry, but the user should be familiar enough with the TLS hypothesis not 
to perform inconsistent refinements. 
 



4- It is advised to use specific rigid body refinement codes as damping parameters, especially for the 
rotational parameter which need to be currently three time higher than the other ones. It is highly 
recommended to use the options with screen output (P6 with a negative value) to control each RBG 
refinement steps since good constrained refinements are not so easy to perform. 
 
5- Concerning the refinements: when a main RBG has satellites groups, the derivatives of the general 
RBG parameters, i.e. the 3 orientation angles THETAc, PHIc and CHIc and the co-ordinates (xo, yo, zo) 
of the centre of the group, contain the contributions of the satellites groups. In contrast, the derivatives of 
the internal spherical parameters do not account for these contributions. 
 
6- When this subroutine is used, three additional files of fixed names are created at the end: x#.m, x#.bs 
and x#.ortep (where # stands for the number of the phase), containing atomic parameters in a format 
suitable to be used with well-known software packages (Molview, Balls & Sticks and ORTEP). Note that 
files for Molview are directly executable. The output for the two other software are incomplete in the 
sense that they contain either Cartesian co-ordinates (Balls & Sticks) or reduced co-ordinates + atomic 
temperature parameters (ORTEP) of atoms located in the asymmetric unit. 
 
 
MAGNETIC STRUCTURE REFINEMENTS 
 
In the present version of FullProf the default Jbt=5 option corresponds to the calculation of the magnetic 
structure factor for a conical magnetic structure. The magnetic intensities are calculated following 
standard formula as given, for instance, in the paper by J.M.Hasting & L.M.Corliss published is PhysRev 
126(2),556 (1962). No symmetry operation can be introduced: all the magnetic atoms within a primitive 
unit cell must be given (constraints have to be introduced through the codes of the parameters). The 
subroutine MAGMOD, in this case, does not take into account symmetry for calculations (see the 
modules FDUM's.FOR for details). However Isy must be set to 1, the value of the four parameters Nsym, 
Cen, Laue, MagMat should be: 0  1  1  0. 
 
The atom parameters correspond to the following variables: 
 
       -> P1,P2,P3,P4 and P5 correspond to x,y,z,B,occ of the atom 
       -> P6 is the magnetic moment of the atom (in Bohr magnetons) 
       -> P7 is the half-angle cone of the atom (degrees) 
       -> P8 is the magnetic phase of the atom (in fractions of 2 pi) 
       -> P9    of the first atom correspond to Phi (degrees) 
       -> P10   of the first atom correspond to Theta (degrees) 
         (Phi,Theta) are the spherical angles(degrees) of the cone axis 
 
The orthonormal system with respect to which are defined the spherical angles verifies: 
 
       X axis coincides with the crystallographic A 
       Y axis belongs to the plane A,B 
       Z axis is perpendicular to the plane A,B 
 
The particular implementation of spherical components in magnetic structure refinements is that Z axis 
must coincide with C. That works in all crystallographic systems except for triclinic. The monoclinic 
setting must be changed to -> 1 1 2/m 
 
It is recommended to generate the reflections using P-1 as Space group symbol and use for conical 
structures the value Irf=0 (Generates satellites+ fundamentals). For a pure helix Irf=-1 (only satellites are 
generated). The number of propagations vectors must be set to -1 (to generate + and - satellites). For 
calculating the magnetic moments in different cells the following formula should be used: 
 
The magnetic intensity is given by the following formula: 
 
 Fm**2 =(p.sinw)**2.Sum(j){m(j) f(H,j) cos(bj) exp(2pii.H rj)} 
 Fm**2 =p**2.(1+cosw**2)/4.Sum(j){m(j) f(H+-k,j) sin(bj) exp(2pii.Hrj-+fj)} 



 
The correspondence with the parameters P1,..P10 is the following: 
 
    rj = ( P1, P2, P3)j 
    f(H+-k,j) = P5j. FormFactor(H+-k,j) exp (-P4j(sintheta/lamda)**2) 
    m(j) = P6j 
    bj = P7j 
    fj = P8j 
 
    The unitary vector defining the axis of the cone is given by: 
 
    n = (cos P9 sin P10, sin P9 sin P10, cos P10) 
 
    cos w = n . Q/mod(Q) , where Q is the scattering vector 
 
 



Mathematical Information 
 
In this chapter the basic equations concerned with the calculations performed in FullProf are discussed. It 
is supposed that the reader has a good knowledge of powder diffraction, so the explanations given below 
concern mainly the description of the terms involved in the formulae. The references to numbered lines 
(e.g. LINE 3, Line 11-4-1) correspond to lines of the input control file CODFIL.pcr described in the 
appendix. 
 

The Rietveld Method. Calculated profile 

 
A powder diffraction pattern can be recorded in numerical form for a discrete set of scattering angles, 
times of flight or energies. We will refer to this scattering variable as . Then, the experimental powder 
diffraction pattern is usually given as two arrays 

T
{ } 1,...,

,i i i
T y

= n
. In the case of data that have been 

manipulated  or normalised in some way the three arrays { } 1,...,
, ,

i=i iT y iσ
n

b+

, where is the standard 

deviation of the profile intensity , are needed in order to properly weight the residuals in the least 

squares procedure. The profile can be modelled using the calculated counts  at the ith step by 
summing the contribution from neighbouring Bragg reflections plus the background: 

iσ

iy

ciy

 
  (3.1) , , ,

h

( )h hc i i iy S I T Tφ φ φ
φ

= Ω −� �

 
The vector  labels the Bragg reflections, the subscript (= , = + )orh H H k φ  labels the phase and vary 
from 1 up to the number of phases existing in the model. In FullProf the term phase is synonymous of a 
same procedure for calculating the integrated intensities ,Iφ h . This includes the usual meaning of a 
phase and also the case of the magnetic contribution to scattering (treated usually as a different phase) 
coming from a single crystallographic phase in the sample. The general expression of the integrated 
intensity is: 
 

 { }2
, ,h h

I L APC Fφ φ
=  (3.2) 

 
For simplicity we will drop the φ -index. Sometimes we will refer to the whole arrays { }iy and { }ciy  as 

 and  respectively. The meaning of the different terms appearing in (3.1) and (3.2) is the 
following: 

obsy calcy

• Sφ  is the scale factor of the phase φ  

• Lh  contains the Lorentz, polarisation and multiplicity factors 

• Fh  is the structure factor1 

•  is the absorption correction Ah

• Ph  is the preferred orientation function 
•  is the reflection profile function that models both instrumental and sample effects Ω

                                                           
1 The ratio of the intensities for the two wavelengths handled by the program is absorbed in the calculation of 

2Fh , so that only a 

single scale factor is required. For magnetic scattering
2Fh  is the square of the magnetic interaction vector (see b ). elow



•  includes special corrections (non linearity, efficiencies, special absorption corrections, 
extinction, etc) 

hC

•  is the background intensity ib
 
In the following sections we discussed the different terms in more detail. The Rietveld Method consist of 
refining a crystal (and/or magnetic) structure by minimising the weighted squared difference between the 

observed { } 1,...,i i
y

= n
 and the calculated (3.1) pattern { }, 1,...,

( )αc i i
y

= n
 against the parameter vector 

1 2 3, ,...( , )α pα α α α= . The function minimised in the Rietveld Method is: 
 

  (3.3) { 22
,

1

( )α
n

i i c i
i

w y yχ
=

= −� }
 
 with 2

1
i

iw
σ

= , being  the variance of the "observation" . In more complex cases the user may 

consider several diffraction patterns, or some chemical constraints. For those cases the general expression 
of the function to be minimised is: 

2
iσ iy

 

 

{ } { } 222 2 2
2

1 1 1 1

1( ) ( )α α
N N n m

T P P G P i i ci j cj
P p i j gjP

w y y c g gχ ω χ χ ω
σ= = = =

� �= + = − + −� �
� �

� � � �  (3.4) 

 
Where 2

Pχ  and 2
Gχ are the chi-square of the pattern P and the chi-square of soft constraints. The weight 

factors pω  are provided by the user and are internally normalised in order to get , for the N 

patterns. The quantity 
1

1
N

P
P

ω
=

=�

jg is the prescribed value of a constraint (distance, angle, valence, magnetic 

moment, etc) with standard deviation gjσ .The smaller the value of gjσ  the higher is the strength of the 

constraint. The calculated value of the constraint  is performed as a function of a subset of 
components of the vector parameter .The normalisation constant c is taken as the current value of the 
global reduced chi-square for all the diffraction patterns. For simplicity we shall consider the expression 
(3.3) to explain some standard points concerning the least squares optimisation. If the optimum set of free 
parameters is ,the necessary condition for a minimum of (3.3) is that the gradient of 

( )αcjg
α

optα 2χ should be 

zero: 
2χ∂

∂α
0

� �
� �
� � opt

=
αα=

 

A Taylor expansion of  around an initial guest  allows the application of an iterative process. 

The shifts to be applied to the parameters at each cycle for improving 

( )icy α 0α
2χ are obtained by solving a linear 

system of equations (normal equations) 
 

0
A =δα b      (3.5) 

where the components of the p p×  matrix A  and vector b  in the Gauss-Newton algorithm, used 
within FullProf, are given by the expressions: 

, 0 , 0

, 0
,

( ) ( )

( )
( )

c i c i
kl i

i k

c i
k i i c i

i k

y y
A w

y
b w y y

α α

α

∂ ∂
=

∂ ∂
∂

= −
∂

�

�

α α

α
l    (3.6) 



The shifts of the parameters obtained by solving the normal equations are added to the starting 

parameters giving rise to a new set α α . The new parameters are considered as the starting 
ones in the next cycle and the process is repeated until a convergence criterion is satisfied.  The shifts 
applied to the current parameters may be pre-multiplied by a user defined factor that depend on each 
individual parameter (through the codeword) and a relaxation factor depending on a whole class of 
parameters (see appendix). The standard deviations of the adjusted parameters are calculated by the 
expression: 

0αδ

01 0= +δα

1( ) ( )Ak k kka 2
νσ α χ−=     (3.7) 

Where the reduced chi-square is defined as: 
2

2

n - pν
χχ =      (3.8) 

The quantity ak is the coefficient of the codeword for the parameter . The kα 2
νχ  quantity used in the 

above formula is always calculated for the points in the pattern having Bragg contributions, thus σi could 
be greater than the corresponding value calculated with other programs. In FullProf the quantity 2

νχ  is 
also calculated for all points considered in the refinement, so the user can easily re-calculate the 
alternative value of the standard deviation. 
In normal least square refinements the weighting scheme is based in fixed variances of the profile 
intensities. This is appropriate when the statistics is good enough to be considered as Gaussian. For low 
counting statistics a maximum likelihood refinement is more appropriate. This is equivalent to calculate 
the variance according to the model instead of using experimental fixed variances that are very bad 
estimated when low counting rate is dominant. Maximum likelihood can be used by setting the variable  
to 1. In such a case the weights of the observations are calculated at each cycle as: 

2
,1i caw σ= lc i supposing a Poissonian distribution and correcting for eventual normalisation factors used 

in the input data file to estimate the experimental variances. 
 

Agreement factors 

 
The quality of the agreement between observed and calculated profiles is measured by a set of nowadays-
conventional factors. In FullProf two sets of indices are calculated, according to the meaning of the 
integer n. In the first set n is the total number of points used in the refinement (n =NPTS-NEXC = total 
number of points in the pattern minus total number of excluded points). In the second set only those 
points where there are Bragg contributions are taken into account. The definition of the indices is as 
follows: 
 
Profile Factor: 

 
,

1,

1,

100
i c

i n
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y y
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−
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 (3.9) 

 
Weighted Profile Factor: 
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Expected Weighted Profile Factor: 



 

1/ 2

2100exp
i i

i

n pR
w y

� �
−� �=

� �
� �� �
�

 (3.11) 

 
Goodness of fit indicator:  

 wp

exp

R
S

R
=  

Reduced chi-square: 

 

2

2 wp

exp

R
S

Rνχ
� �

= =� �
� �

2  (3.12) 

 
Bragg Factor: 
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Crystallographic RF-Factor: 

 
, ,

,

' '
100

' '

h
h

h
h

obs k calc

F
obs

F F
R

F

−
=

�

�
 (3.14) 

 
where n-p is the number of degrees of freedom. The meaning of n has been given above and p is the 
number of refined parameters. 
The experimental points within the excluded regions are always excluded from the calculation of all 
agreement factors. Conventional Rietveld R-Factors: pcR ,  are calculated as above but using 

background-corrected counts. In the denominators the quantity is changed to . The magnetic 

R-factor is defined as the Bragg 

wpcR

iy iy b− i

BR -factor but is applied to magnetic intensities. 

The observed integrated intensity '  is in fact calculated from the Rietveld formula: ,hobsI '

 , ,
,

( )(' '
( )

h
h h

i i
obs calc

i c i i

T T y bI I
y b

� �Ω − −� �= � −� �� �
�

)i
�

'

 (3.15) 

 
This formula is equivalent to a proportional sharing of the integrated intensity of a cluster between its 
components according to the actual model. Then, if the model contains a strictly zero integrated intensity 
for the reflection h ( =0), the observed integrated intensity is also zeroed: =0, even if it is 

obvious that  is non zero from the experimental pattern. This has as a consequence that the 

reflections with =0 do not contribute to the Bragg R-factor. 

,hcalcI
'

,hc

,' hobsI

,' hobsI

calI
 
The observed structure factor appearing in (3.14) is obtained from (3.15) correcting for multiplicity and 
the Lorentz-polarisation factor using the formula: 
 

 ,
,

' '
' ' h

h
h

obs
obs

I
F

L
=  (3.16) 

In other programs the correction Lh is set to 1, so be careful when comparing RF values. 



Although commonly used, the pR , wpR  agreement factors are not satisfactory from a statistical point of 
view. Therefore, a number of statistically more significant parameters are calculated by FullProf: 
 
• The deviance [A. Antoniadis, J. Berruyer & A. Filhol, Acta Cryst. A46, 692 (1990)] is defined as: 
 
 { },2 ln( / ) (i i c i i c i

i

D y y y y y= −� , )−  (3.17) 

 
• From the deviance, one can derive two other measures of discrepancy which are useful as model 

selection criteria (somewhat analogous to Hamilton's criterion). These criteria take account of both 
the goodness of fit of a model and of the number of parameters used to achieve that fit. They take the 
form: 

 
  (3.18) Q D a p= + ⋅
 

where p is the number of refined parameters and a represents the cost of fitting an additional 
parameter. Akaike's information criterion uses a=2 while Schwarz's criterion has a=ln(p). 

 
• The Durbin-Watson statistic parameters: d and QD. The use of these two quantities to assess the 

quality of the refinement has be advocated by Hill and Flack [R.J. Hill & H.D. Flack, J. Applied 
Cryst. 20, 356 (1987)]. This statistic which measures the correlation between adjacent residuals 
(serial correlation) is defined as: 

 

 { } { }2
, 1 1 , 1 ,

2

( ) ( ) / ( )
n

i i c i i i c i i i c i
i i

d w y y w y y w y y− − −
=

= − − − −� � �� � �� �
2
��  (3.19) 

 
Serial correlation is tested (at the 99.9% confidence level) by comparing the value of d to that of QD 
that is given by the relation: 

 { }2 ( 1) /( ) 3.0901/ 2DQ n n p n= − − − +  (3.20) 

 
Three cases may occur: 
1) If d < QD, there is positive serial correlation: successive values of the residuals tend to have the same 

sign. This is the most common situation in profile refinement. 
2) If QD < d < 4- QD, there is no correlation 
3) If d > 4-QD, there is negative serial correlation: successive values of the residuals tend to have 

opposite sign. 
 
 
 

Background 

 
The background intensity  at the ith step is obtained (see biy Nba on LINE 4 and the lines LINE 10 or 
LINE 17) either from an user-supplied table of background intensities, or from a refinable background 
functions: 
 

 
11 6

0 1

sin( )
( 1) i jmi

bi m Cj
m j i j

Q rTy B B
BKPOS Q r= =

= − +� �  (3.4) 

 

 
11

0

cos( )i
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The origin of the background polynomial in (3.4) is given by a selectable input parameter Bkpos (LINE 
8) and should be supplied by the user. The second sum is used only if Nba=-1 (see appendix for details). 
The parameters to be refined are: 0B , 1B ,..., 11B , 1CB ,..., 6CB , ,..., r .  is the modulus of the 

scattering vector  at the ith step, and is given by: 
1r 6 iQ

( 2π=Q )h
 

 
sin4 i

iQ θπ
λ

=  or 
2

i
id
π=Q   (3.5) 

 
where in the case of two different wavelength contributing to the diffraction pattern. The 

parameters  are distances in Å. 
1λ λ=

jr
The 12-terms Fourier cosine series (3.4’) contains a constant C that depends on the type of powder 
diffraction pattern in use. For constant wavelength (2θ scale) C=180/π and for TOF or energy dispersive 
techniques C=Tmax. 
 
When the user provides a table with values of the scattering variable and the corresponding background 
value there are two possibilities: 1) use the given values for the background with linear interpolation for 
intermediate values 2) refine the individual background points together with the linear interpolation. For 
using this last option the user must provide codewords to refine the values. 
 
The background can be also read from a supplied file FILE.bac. The actual background is calculated 
from the read background applying the following formula: 
 
 [1 3(2 ) (1 )2 ]4 2Bacground b Backg b b bθ θ= + + +

−

]

 (3.6) 
 
The background parameters and codes, given in Line 10-2*, correspond to the coefficients of the above 
formula in the order: , , , . If  is given as zero, the program puts b . Limits against 

divergence are fixed by program. The parameter b  is allowed to vary up to a maximum value 

 and  is kept below 3 degrees . The user can check the excursion of 
those parameters out of the allowed range when they are strictly zero and their standard deviation is (fixed 
arbitrarily to) 0.99999. This option is useful when complicated background shapes are present due to 
sample environment. 

1b 2b 3b

4 )

4b 1b 1 1=

3

3( ) 0.1ABS b = (ABS b (2 )θ

Another procedure for treating the background has also been introduced. The background is 
adjusted iteratively at each cycle by using a Fourier filtering technique. The starting background is read 
from the file FILE.bac. At cycle n the new background is calculated from the old one, cycle n-1, with 
help of the formula: 
 
  (3.7) ( ) ( 1) [ ]( 1)obs calBackground n Background n Filtered y y n= − + −
 
where [ obs calFiltered y y−  is a strongly smoothed version of  . The parameter controlling 
the smoothing is 

obs caly y−
FWINDOW that is equivalent to PST used in subroutine SMOOFT described in 

Numerical Recipes (see [Numerical Recipes, by W.H. Press, B.P. Flanery, S.A. Teukolsky and W.T. 
Vetterling (Fortran version), Cambridge University Press, 1990]). The implementation of SMOOFT in 
FullProf is not the same as in Numerical Recipes. When using this method it is wise to draw the final 
background to see if it is really a smooth curve. If the FWINDOW parameter is too small the calculated 
background enters into the regions inside Bragg peaks giving rise to a wrong estimation of structural 
parameters. This option is only justifiable in cases of a very wavy background. The starting background 
should be close to the real one.  
The use of refinable background points in a user provided list may behave similarly to the Fourier 
filtering technique if there is a large number of background points. 
 



 

Peak-shape functions for constant wavelength data 

 
The profile function  is selected by the control variable Ω Npr (LINE 2). All the profile functions used in 

FullProf are normalised to 1 (i.e. ( ) 1x dx
+∞

−∞
Ω� = ). The variable is x T T= − h , the FWHM will be 

called H. The definition of (i )xΩ , where the subscript i stands for the value of the variable Npr, is the 
following: 
 
  (3.8) 2

0: ( ) ( ) exp( )G GGAUSSIAN x G x a b xΩ = = −
where: 
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2 ln 2 4ln 2
G Ga b

H Hπ
= =  
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where: 
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The integral breadth of the Lorentzian function is: 
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where: 
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where: 
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where: 
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  (3.13) 5: ( ) ( ) ( ) (1 ) ( ) 0PSEUDO VOIGT x pV x L x G xη η′ ′− Ω = = + − ≤



 
The ( )pV x  function is a linear combination of a Lorentzian ( )L′  and a Gaussian  of the same 
FWHM 

( )G′
( )H 2, so there are two parameters characterising the peak shape: ( ) ( , , )pV x x HpV η= . If 

L’(x) and G’(x) are normalised, ( )pV x  is also normalised. The integral breadth of a normalised pseudo-
Voigt function is just the inverse of the maximum value. The FWHM is the same for L(x), G(x) and 
pV(x). If the function is multiplied by a constant (integrated intensity) the integral breadth doesn’t change: 

( ) ( ) 1
(0) (0) (0)

2
(1 ) ln 2

i
pV

i

pV

x dx I pV x dx

I pV pV
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β

πβ
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Ω
= = =

Ω

=
+ −
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The profile function Npr=4, 4 ( )xΩ , is a superposition of three ( )pV x  functions (see below (3.22)). 
The difference between Npr=5 and Npr=7 is that in the later the parameter η  is not directly refinable but 

calculated from LH  and GH . Let us precise this point. The pseudo-Voigt function is an approximation 
to the Voigt function defined as the convolution of a Lorentzian and a Gaussian: 
 

  (3.14) : ( ) ( ) ( ) ( ) ( )VOIGT V x L x G x L x u G u du
+∞

−∞
= ⊗ = −�

where ( )L x  and G x  have different FWHM (( ) LH  and GH , respectively). The ( )pV x  function is an 

approximation that substitutes the two shape parameters LH  and GH  by the pair ( , )Hη .  

( ) ( ) ( ) ( ) ( )V x L x G x L x u G u du
+∞

−∞
= ⊗ = −�  

The Voigt function can be  written in a closed form in terms of the complex error function and the 
integral breaths of the Lorentzian ( Lβ ) and Gaussian components ( Gβ ): 

( ) ( , , ) ( , , )L G L GV x V x H H V x β β= =  
 

 1( ) Re L
G

G G

V x erf x iπ ββ
β β π

−
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= +� ��� ��
� �	 
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 (3.15) 

where: 
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2( )
x terf x e dt

π
−= �  

 
Numerically is more easy to calculate the pseudo-Voigt approximation (3.13) using a numerical 
approximation relating the pairs ( ,L G )H H  and ( , )Hη  (see [24]): 

( , ) ( , )G LH F H Hη =  
 

 5 4 3 2 2 3 4( 2.69269 2.42843 4.47163 0.07842 )G G L G L G L G L
5
LH H H H H H H H H H= + + + + + H  

  (3.16) 
 

 
2 3

1.36603 0.47719 0.11116L LH H
H H
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H �

                                                          

 (3.17) 

 
The inversion of the above two expressions leads to the relations: 

 
2 The reader can verify that the FWHM of pV(x) is also H. 



1( , ) ( ,G LH H F H )η−=  
 

 20.72928 0.19289 0.07783LH 3

H
η η= + + η  (3.18) 

 

 2(1 0.74417 0.24781 0.00810 )GH 3 1/ 2

H
η η η= − − −  (3.19) 

 
The difference between the pV-functions calculated with Npr=5 or Npr=7 concerns only the 
parameterisation of η and H which can be simply related to significant physical parameters using Npr=7. 
 

The dependence of the peak-shape parameters (including FWHM) on the scattering variable (2θ 
for constant wavelength diffractometers) is parameterised mainly through the variables defined in Line 
11-6-1: U V . , , , , , ,G ZW X Y I S

For profiles Npr=0 to Npr=6 : 
 

 2 2 2
2( ) tan tan

cos
G

ST
IH U D V Wθ θ

θ
= + + + +  (3.20) 

 
For Npr=5 (pseudo-Voigt) the η parameter can be dependent on X through the formula: 

 0 2Xη η= + θ  (3.21) 
 
For Npr=4 (tripled pseudo-Voigt), the three components are assumed to have the same 0η  and FWHM, 

so the effective total width depends on the additional shape parameter  (see Line 11-8-3). The profile 
function is given by the formula: 

1hS

 
 4 4( ) ( ) ( ) (1 ) ( ) ( )x p x XpV x D X Y pV x YpV x DΩ = = − + − − + +  (3.22) 
where: 

 1

cos
hSD

d θ
=  

 
So, apart from the FWHM that is calculated from U V  and , , , STW D GI  parameters for a single 

component, the profile function has FOUR shape parameters  and . This function is adapted 
for medium resolution neutron powder diffractometers having defects on the monochromator and/or the 
spectral distribution that gives rise to a non-Gaussian distribution of wavelengths. 

0 , ,X Yη 1hS

For Npr = 6 (Pearson-VII) the m parameter can be dependent on X and Y through the formula: 
 

 0 2100 10000
2 (
X Ym m
θ θ

= + +
2 )

 (3.23) 

 
For Npr=7, the FWHM of the Gaussian ( GH ) and Lorentzian ( LH ) components is calculated 

as: 
 

 2 2 2
2( ) tan tan

cos
G

G ST
IH U D V Wθ θ

θ
= + + + +  (3.24) 
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The units of parameters U V  are ( . The physical meaning of , , , GW I 22degrees θ ) T

2,G SI D  and 

( )ZF S  is briefly discussed in FULLPROF.INS. 
 
 
------------------------------------------------------------------- 

For profiles 0 to 6 and 12: 
 
 2 2 2( ) tan tan coFWHM U DST V W IGθ θ= + + + + 2s θ  
 
For Npr = 4 (tripled pseudo-Voigt), the three components are assumed to have the same 0η  and 
FWHM, so the effective total width depends on the additional shape parameter Shape1. The 
profile function is given by the formula: 
 
 4( ) ( ) (1 ) ( ) ( )p x XpV x D X Y pV x YpV x D= − + − − + +  
 
where 
  1/ cosD Shape d θ=
 0 0( ) ( ) (1 ) ( )pV x L x G xη η= + −  
 
So, apart from the FWHM that is calculated from U, V, W, DST and GausSiz parameters for a 
single component, the profile function has FOUR shape parameters 0η , X, Y and Shape1. This 
function is adapted for medium resolution neutron powder diffractometers having defects on the 
monochromator and/or the guide spatial spectral distribution giving rise to a non-Gaussian 
distribution of wavelengths. 

 
For Npr = 5 and 12 (pseudo-Voigt) the η  parameter can be dependent on X through the formula: 
 ( ) ( ) (1 ) ( )pV x L x G xη η= + −  

 0 2Xη η θ= + ⋅  
 
For Npr = 11 (split pseudo-Voigt) DST and GausSiz are common to the left and right parts of the 
profile. Moreover additional FWHM parameters are used as new shape parameters, so the 
expression of the left FWHM(L) for Npr=11 is 

 
2 2 2 2( ) ( ) tan tan cos 1/ tan 2FWHM L Ul DST Vl Wl IG Shapeθ θ θ= + + + + + 2 θ  

 
Shape1 is applied only for  <= 90º. The value of 2θ η  for the left part is given by: 

 0 2l Xlη η θ= + ⋅  
 

The expression of the right part is: 
 

2 2 2 2( ) ( ) tan tan cos 2 / tan 2FWHM R Ur DST Vr Wr IG Shapeθ θ θ= + + + + + 2 θ  
 

 
Shape2 is applied only for  >90º. The value of 2θ η  for the right part is given by: 
 
 0 2r rXη η θ= + ⋅  

 
The FWHM and shape parameters for the right part are read in next lines 
 



For Npr = 6 (Pearson-VII) the m parameter can be dependent on X and Y through the formula: 
 
  2

0 100 / 2 1000 / 2m m X Yθ θ= + +
 

For Npr = 7, the FWHM of the two components is calculated as 
 

2 2 2( ) ( ) tan tan cosFWHM Gaussian U DST V W IGθ θ= + + + + 2 θ
cos

 

[ ]2 ( ) tan ( ) /FWHM Lorentzian X Y F SZθ θ= + +  
 
To be completed and corrected (List of Formulae to include): 
 
New formulae: 
 

2 2 2 2
2( (1 ) ) tan tan

cos
G

G ST
IH U D V Wξ θ θ

θ
= + − + + +  

[ (( ) tan
cos

Z
L ST

Y F SH X Dξ θ
θ

+= + + )]
 

 
2

2cos
G

GS
IH

θ
=  

[ (
cos

Z
LS

Y F SH
θ

+= )]

)

 

For a particular reflection one can calculate, using the relations between the FWHM(=H) and η of the 
pseudo-Voigt function and the Gaussian and Lorentzian components of the Voigt function 
( , ) ( ,S S GS LSH F H Hη =  
Substituting the expressions of the G and L size we obtain similar expressions where HG and HL are 
replaced by  
SQRT(GausSiz)=I1/2

G and YL=Y+LorSiz respectively. The term in 1/cosθ cancels out if we call HS= 
ZS/cosθ 
 

5 5/ 2 2 3/ 2 2 3 1/ 2 4 52.69269 2.42843 4.47163 0.07842S G G L G L G L G L L

 
2 3

1.36603 0.47719 0.11116L L
S

S S

Y Y
Z Z

η
� � � �

= − +� � � �
� � � �

L

S

Y
Z

 

I I Y I Y I Y I Y= + + + + +Y  Z

 
From ZS and ηS we obtain the integral breadth corresponding to size effects just from the corresponding 
expression for the  normalised pseudo-Voigt function. 

2 1( ) ( )
180 cos(1 ) ln 2

S
pV

S S

ZSize π πβ
θη η π

= ×
+ −

×

 
If ZS and ηS have been calculated from the values of GausSiz and Y as refined in FullProf, they are 
expressed in degrees, so we have to transform to radians, as written above, in order to get the apparent 
size in the correct units. From the Scherrer formula we have: 
 

2 1( ) ( )
cos 180 cos(1 ) ln 2

S
PV

S S

Zsize
D

πλ πβ β
θ θη η π

= = = × ×
+ −h

h

 

 

 



So, the apparent size considering both Gaussian and Lorentzian components, and under the 
hypothesis of pseudo-Voigt (Voigt) peak shape, is given by the expression:  

2

(1 ) ln 2 360( )S S

S

D
Z

η η π
π

+ −= ×h
λ

 

Where ZS and ηS have been obtained from IG=GausSiz and YL=Y+LorSiz using the TCH formula. 
 
 
Note: Non-normalised pseudo-Voigt appears in many papers. 
Let us call the non-normalised function as: 

( ) ( ) (1 ) ( )n n n n n

where: 

2

1( ) (0) 1
1n n

L

L x L
b x

= =
+

 

pV x L x G xη η= + −    (0) 1npV =

2( ) exp( ) (0) 1n G nG x b x G= − =
 
The integral breadth of a non-normalised pseudo-Voigt function of peak intensity I0 and FWHM=H is 
given by: 

 

0

0

( ) ( ) ( )

(0) (0) 1

( ) (1 ) ( )

1 1(1 ) (1 )
2 2

n n
pVn

n

pVn n n n n

pVn n n n n
L G

x dx I pV x dx pV x dx

I pV

L x dx G x dx

H H
a a

β

β η η

π πβ η η η η

Ω
= = =

Ω

= + −

= + − = + −

� � �

� �

ln 2
 
The integral breadth of a particular peak is independent of the formulation of the pseudo-Voigt function. 
Both descriptions gives the same FWHM and the same integral breath, so the numerical relation between 
the η values is given by: 
 

 

Non-normalised: (1 )
2 2pVn n n
H Hπ πβ η η= + −

ln 2
 

Normalised: 
2

(1 ) ln 2pV
Hπβ

η η π
=

+ −
 

2(1 )
2 2 ln 2 (1 ) ln 2n n
H H Hπ π πη η

π η η π
+ − =

+ −
 

(1 ) ln 2n

 

1(1 )
ln 2

n

n n

ηη
η η

π
=

+ −

 

 
 

ηη
η η π

=
+ −

 

 

 

 

 



Peak-shape functions for Neutron Time of Flight  

 
The profile function Ω  for TOF corresponds to the control variable Npr=9, 10. The peak shape is the 
same in both cases but the TOF position of the Bragg peaks are calculated in different ways for the two 
functions. 
 
 

Monochromator, Lorentz and geometrical corrections 

 
 
Bragg-Brentano or Debye-Scherrer geometry 
 

Monochromator polarisation correction  (Cthm and K in LINE 4); the Lorentz polarisation factor 
Lp is calculated as : 
 
 

 
2 2

2

1 cos 2 cos 2
2sin cos

MonokK KLp θ θ
θ θ

− +=  (3.26) 

 
with . For instance with a Graphite monochromator, 2cos 2 MonokCTHM θ= Cthm = 0.8351 and 0.7998 

for CuK  and  respectively. β CuKα

Note that K is used only for synchrotron data (Ilo=3) and does not have to be input for other kind 
of data taken with the specified geometry. 

• For neutrons, K=0.0. 
• For characteristic x-ray radiation (non-polarised beam), K=0.5. 
• For synchrotron radiation, K must be given (K ≈ 0.1) 

 
 
Transmission flat-plate geometry 
 

In the transmission geometry, flat plate with the scattering vector within the plate  (Stoe 
geometry for X-rays, Ilo=2) the Lorentz factor is: 
 

 
1

sin 2
L

θ
=  (3.27) 

 
and the polarisation correction is given by: 
 

 
2 2

1

1 2

1 cos 2 1 cos 2(1 )
1 1
c cp K K

c c
θ θ+ += + −

+ +
2  (3.28) 

where 
 

 1 cos 2 Monokc Cθ= = THM

THM

 

  2
2 cos 2 Monokc Cθ= =

K = fraction of perfect crystal contribution 
 
 



Asymmetry 

 
The default asymmetry correction is a multiplier term to the peak shape. The asymmetry correction 
adopts the form: 
 

 1 2 3 4( ) ( ) ( ) ( )( ) 1
tanh tanh 2

a b a
s

bPF z P F z P F z P F zA z
θ θ

+ += + +
h h

 (3.29) 

 
where 
 

 
2 2i sS

z hf

FWHM
θ θ− −

= h  

 

shfS  includes the zero-point and other shifting terms, 
 
 2 2( ) 2 exp( ), ( ) 2(2 3) ( )a b aF z z z F z z F= − = − z

4

 
 
The asymmetry correction (3.29) has four independent parameters, ( 1 2 3, , ,P P P P ) which are read in 
Line 11-8-1. 
If Nph$<$0 the method proposed by C.J.Howard (see [11]), is used. The approximation of the 
convolution integral is performed using the Bode's rule (Simpson's formula for five points). The profile is 
calculated as a superposition of five profile functions ( )g x  (only pseudo-Voigt Npr=5 and Npr=7 are 
implemented for this correction) calculated at displaced points: 
 

 { }2 3 4
1( ) 7 ( ) 32 ( ) 12 ( ) 32 ( ) 7 ( )

90 5x g x g x c P g x c P g x c P g x c PΩ = + + + + + + + +  (3.30) 

 
where 2 2i shfx Sθ θ= − −h , P is the asymmetry parameter and 16

92 3 4cot 2 16 4c c cθ = = = = 5c . 

The parameters 1 2,P P  normally suffice for neutron diffraction. The starting value of these parameters 
should be significantly lower than unity (e.g. 0.01) to get good results. If the value of the asymmetry 
parameter used in the Rietveld's formula (see [2]) is kept fixed in FullProf the refinement may be very 
bad and may not converge. 
 
 

Preferred orientation 

 
Only two preferred orientation functions are currently implemented in the program: 
 

• Nor=0 → the exponential function: 
 
  (3.31) 2

2 2 1(1 )exp( )P G G Gα= + −h h
 
 
Where  and G  are refinable parameters and  is the acute angle between the 

scattering vector and the normal to the crystallites (platy habit). Note that setting G  to any 
number >99.0 for a phase causes the program to generate, for that phase, only those 

1G 2 αh

1



reflections for which [  is parallel to the preferred orientation vector ]*hkl Pr1 Pr2 Pr3 
specified in Line 11-2. 

(1= + −h

0.0368−

T =h

T T�

0( )hP P

• Nor=1 → Modified March's function: 
 

 ( )
3/ 22

2
2 2 1

1

sin) cosP G G G
G

αα
−

� �
+�

� �

h
h  (3.32) �

 
Where  and G  are refinable parameters. This expression is adapted to both fibber and 
platy habits: 

1G 2

��G : Platy habit (α is the acute angle between the scattering vector and the normal 
to the crystallites) 

1 1<

��G : No preferred orientation 1 1=
��G : Needle-like habit (α is the acute angle between the scattering vector and the 

fibber axis direction) 
1 1>

 
Note that these values of  correspond to the Bragg-Brentano geometry of usual X-ray powder 
diffractometers; for the Debye-Scherrer geometry of most neutron powder diffractometers the opposite 
holds. 

1G

The parameter  represents the fraction of the sample that is not textured. The program put its 
value between 0 and 1 in case of divergence. 

2G

 
 

Absorption and micro-absorption 

 
For Debye-Scherrer data, intensities may be corrected for the effects of sample absorption by applying the 
following transmission factor: 
 

 { }2 2exp (1.7133 sin ) (0.0927 0.375sin )( )T Rθ µ θ µ= − + +h h  (3.33) 2Rh

 
Where µ  is the linear absorption coefficient and R the radius of the cylindrical sample. 

For a flat plate in transmission geometry for X-rays (Ilo=2) the absorption correction is 
implemented as: 
 

 
exp( / cos )

cos
mt θ

θ
− h

h

 (3.34) 

 
Where t is the "effective" thickness of the sample. The product mt is given in the same place as Rµ . 

For Bragg-Brentano geometry in X-rays an angular-dependent microabsorption correction has 
been introduced following [25] and [26]. The factor T  becomes: h
 
  (3.35) ( ) (1 ( ))rS T P= −h h hh h
 
Where  is given by the formula 6 of [25] (or  is given by formula 17 of [26]). ( )rS h ( )P h

 1
sin sinh h

pC τ τ
θ θ

� �
= + −�

� �
�  (3.36) 

 



The limitations and degree of applicability of the above formula are explained in the cited references. 
 
 

Systematic line-shifts 

 
Powder diffraction data are sometimes affected by systematic aberrations resulting from the sample itself 
or from an improper setting of the sample or diffractometer. FullProf gives the possibility to correct for 
two of the most commonly occurring errors by refining the parameters called Sycos and Sysin (Line 10-
1). These parameters relate to errors having a  and  dependency, respectively. The 
corresponding errors originate from a different physical or/and geometrical problem depending on the 
diffraction geometry. They are summarised below: 

cosθ sinθ

 
Bragg-Brentano parafocusing arrangement 
 
The two largest systematic aberrations of  powder diffractometers operating in this geometry 
arise from specimen displacement and transparency; the sample displacement error is one of the largest 
systematic errors affecting line positions in this geometry. It is given by: 

2θ − θ

 

 
22 cos [s in radians]
R

θ θ−∆ =  (3.37) 

 
where s is the displacement of the sample surface with respect to the axis of the goniometer and R the 
radius of the goniometer circle. The negative sign means that a displacement away from the centre of the 
focusing circle moves the diffraction lines to lower  angle. The refinable parameter is 

. This is by far the largest systematic aberration in this geometry. As the angles are 
expressed in degrees in FullProf, the sample offset can be calculated as: 

2θ
2 /SYCOS s R= −

 

 
180

s R SYCOSπ=  

 
The transparency correction is given by the relation: 

 

 
12 sin 2 [

2
in radians

R
θ θ

µ
∆ = ]  (3.38) 

 
where µ is the linear absorption coefficient of the sample. This relation holds in the case of thick 
absorbing samples and the refinable parameter is 1/(2 )SYSIN Rµ= . For thin transparent samples, the 
correction would write: 
 

 2 cos [t in radians]
R

θ θ∆ =  (3.39) 

 
where t is the sample thickness; this (less usual) correction is not explicitly included in the code but can 
be accounted for by the displacement correction which turns out to show the same  dependency. Note 
however that samples requiring that kind of correction would also give biased integrated intensities; 
correction for this effect is not implemented in FullProf. For further details on systematic aberrations in 
Bragg-Brentano geometry, see [16]. 

2θ

 
Debye-Scherrer 
 



The largest shifts of Debye-Scherrer rings result from sample off centring and absorption. Eccentricity 
perpendicular to the incident beam direction is normally a second order effect if both sides of the Debye-
Scherrer ring are measured. 

If only one side of the cone is measured, the line shift takes the form: 
 

 2 cos [e in radians]
R

θ θ∆ =  (3.40) 

 
where e denotes the eccentricity, that is the refined parameter is . /SYCOS e R=

Eccentricity in the incident beam direction is observed in both cases and takes the form: 
 

 2 sin 2 [e in radians]
R

θ θ∆ =  (3.41) 

 
i.e., the refined parameter is . The correction is negative for a shift along the beam 
direction towards the detector. For highly absorbing specimen with radius r, diffraction is limited to a 
cylindrical surface layer resulting in a maximum peak shift: 

/SYSIN e R=

 

 2 cos [r in radians]
R

θ θ∆ =  (3.42) 

 
i.e., in this case, . The latter effect also leads to asymmetric line profiles. /SYCOS r R=
 
 
Curved position sensitive detector with flat plate sample 
 
For the asymmetric geometry of diffractometers using a curved position sensitive detector (CPSD) with a 
flat-plate sample, the displacement correction takes the form: 
 

 2 sin 2 [
sin

e in radians]
R

θ θ
α

−∆ =  (3.43) 

 
where R is the radius of the CPSD and α  the incident beam angle (in degrees) at sample surface. Thus, 
the parameter refined by FullProf is . The negative sign means, as in the case 
of Bragg-Brentano geometry, that a displacement away from the center of the focusing circle moves the 
diffraction lines to lower  angle; the value of the sample offset is given by: 

/( sin )SYSIN s R α= −

2θ
 

 sin
180

s R SYSIπ α= N  

 
 

Crystal structure factors 

 
The crystallographic structure factor Fh  is calculated in FullProf by using the formula: 
 

 ({
1 1

( ) exp( / 4) ( ) exp 2
n m

T T
j j j js s j s

j s

F O f B T i Sπ
= =

= −� �h h h h h r h )}+ t  (3.44) 

 



where n is the number of atoms in the asymmetric unit, m is the number of the reduced set of symmetry 
operators (centring lattice translations and inversion center operators removed). O  is the occupation 

factor,  is the scattering length (in electron units for X-rays, in 10 cm for neutrons), 

j

( )jf h 12−
jB  is the 

isotropic temperature parameter given in Å2, and  is the position vector of atom j. The symmetry 

operator 

jr

{ } { }s s s
S S=t

Th

t

)

 is applied to the scattering vector h (treated here as a column matrix) instead 

of the position vector.  is a row matrix with elements . The temperature factor T  is given 
by: 

(hkl (js h)

 

 { }( ) exp T T
js s j sT S β= −h h S h  (3.45) 

 
where jβ  is the symmetrical matrix representing the anisotropic temperature parameters of the atom j. 

For the first atom position ( ) the expression of the anisotropic temperature factor is the well-
known expression: 

1sS = = I

 

 { }2 2 2
11 22 33 12 13 23( ) exp ( 2 2 2 )T hkl h k l hk hl klβ β β β β β= − + + + + +  (3.46) 

 
where the subscript j has been dropped for simplicity. Of course, if the isotropic temperature factor 

 is used the parameters 2( ) exp( sin / )j jT iso B θ λ= − 2
jαββ  should be set to zero. The β's have no 

direct physical meaning. They have to be converted to a Cartesian U-matrix that provides, after 
diagonalisation, the r.m.s (root mean squares) atom displacements (see [17]). FullProf does this work at 
the end of the refinement, the results are given in the file CODFIL.out. 
 
Apart from the standard scattering factor for individual atoms existing in an internal library of FullProf, 
the version 3.2 and higher can handle complex form-factors as a standard option. In the general 
expression of the nuclear structure factor (see (3.44)) the form factor  is normally dependent on 
the module of h. For molecular plastic crystals the treatment of rotating molecules cannot be done using 
an atomic description. The approach of a molecular form-factor that takes into account the particular 
dynamics of the object is more reliable.  depends on a series of parameters for different types of 
objects. Coefficients of Symmetry Adapted Spherical Harmonics, geometrical parameters (radius of a 
sphere, length and radius of a cylinder or disk, etc), scattering density, for instance, may serve for 
describing the scattering factor of a complex object. In the present version of FullProf the available (or 
projected) objects are the following: spherical shell (SPHS), dense sphere (SPHE), ellipsoid (ELLI), 
cylinder/disk  of elliptical section (DISK), etc. 

( )jf h

( )jf h

For the calculation of the integrated intensities (3.2) two types of factors are applied to 2Fh . 

One is an overall temperature factor { }(  and the other is the constant: )
)

exp / 2ovB− h
2(NLAT LAT ICEN= � , where LAT is the number of centring translations (1 for P, 2 for A,B,C and 

I, 3 for R and 4 for F) and ICEN=2 for centrosymmetric and ICEN=1 for non-centrosymmetric space 
groups. 
 
 

Magnetic scattering calculations 

 
For a magnetic phase 2Fh  is calculated using the general formula of Halpern and Johnson: 
 



 (2 22 ( ) ( ) ( )m mF ⊥= = − ⋅h F h F h e F h )2
 (3.47) 

 
where  is the magnetic structure factor, and e is the unit vector along the scattering vector h. Here 

the scattering vector is written as  where H is a reciprocal lattice vector of the crystal 
structure and k the propagation vector corresponding to the current magnetic reflection. The magnetic 
structures that can be refined with FullProf must have a distribution of magnetic moments that can be 
expanded as a Fourier series: 

( )mF h
h = H + k

 
 { }

{ }
exp 2lj j liµ = −� k

k
S π kR

}j

)

 (3.48) 

 
In such a case the magnetic structure factor is given by: 
 

  (3.49) {
1

( ) ( ) exp 2 ( )
cn

m j j
j

p f iπ
=

= � kF H + k H + k S H + k r

 
The sum is over all the atoms in the crystallographic cell. The constant  is 0.2695 and 

allows the conversion of the Fourier components of magnetic moments, given in Bohr magnetons 

( / 2ep r γ=

Bµ  to 

scattering lengths units of 10 cm.  is the magnetic form factor and r  is the vector 
position of atom j. In the above expression the atoms have been considered at rest. If thermal motion is 
considered and if symmetry relations are established for coupling the different Fourier components , 
we obtain the general expression of the magnetic structure factor used in FullProf for the reflection with 
scattering vector : 

12−

k

(jf H + k) j

jkS

h = H +
 
 

 { }{ }
1

( ) ( ) ( ) exp 2
n

m j j j js j js js
j s

p O f T iso M T i Sπ
=

jsψ� �= −� �� � k kF h h S h t r  (3.50) 

 
The sum over j concerns the atoms of the magnetic asymmetric unit for the wave vector k (the Fourier 
component with index k contributes only to the k-satellite). The sum over s concerns the different 
symmetry operators of the crystal space group that belong to the wave vector group. The matrix jsM  

transform the components of the Fourier term  of the starting atom j1 to that numbered as js in the 

orbit of j. The anisotropic temperature factor, T , is simplified in the calculation to only diagonal terms 

(

jkS

js

ααβ ), but it is not generally necessary to use these terms in magnetic refinements. The phase factor jsψk  
has two components: 
 
 js j jsψ φ= Φ +k k k  (3.51) 
 
 

jΦk  is a phase factor that is not determined by symmetry. It is a refinable parameter and it is significant 

only for an independent set of magnetic atoms with respect to another one. jsφk  is a phase factor 

determined by symmetry. The Fourier component k of the magnetic moment of atom j1, , is 
transformed to 

jkS

 

 { }exp 2js js j jsM πiφ= −k kS S k  (3.52) 



 
The sign of jsφk  changes for -k. The reflection  has the negative sign indicated in the above 

formulae and the reflection  has the positive sign. 

H + k
−H k

In the general case  is a complex vector (in general there are six components. The magnetic 

phases are given in fractions of . For the scattering vector H  the Fourier component is the 
complex conjugate of that used for calculating the structure factor for H + . The program takes into 
account automatically this fact. If k is at the interior of the Brillouin Zone a factor 1/2 is applied to the 
Fourier coefficient. 

jkS
2π −k

k

Let us consider a single index j for all the magnetic atoms in the unit cell as in (3.50). The Fourier 
coefficient for the sublattice j is explicitly given by: 
 

 { } {1 2 3 1 2 3
1 exp 2
2j xj yj zj xj yj zj }jR R R i I I I iπ φ� �= + + + + + −� �k kS e e e e e e  (3.53) 

 
The vector -k must also be given either explicitly or implicitly by giving Nvk < 0 (see Nvk on Line 11-2 
). If Nvk < 0 the program applies the factor 1/2 because it is supposed that k is non equivalent to -k even 
if  k belong to the surface of the Brillouin zone. If the option Hel=1 is used, the number of free 
parameters per magnetic atom is reduced. The Fourier coefficients are considered of the form: 
 

 {1 2
1 exp 2
2j j j j jm im iπ }jφ� �= + −� �kS u v k

2 j

2 j

 (3.54) 

 
where  and  are orthogonal unit vectors. If   the magnetic structure for the sublattice j 
corresponds to a classical helix (or spiral) of cylindrical envelope. All j atoms have a magnetic moment 
equal to . If  the helix has an elliptical envelope and the moments have values between 

 and . If  the magnetic structure corresponds to a modulated 

sinusoid of amplitude . 

ju

m

1 ,

jv

2 )j

1 jm m=

0
0

jm m
1 jm m≠

max(
A =

min( 1 2, )j jm m

1 jm
2 jm =

In general, the user has to calculate the real magnetic moments from the refined values of the 
Fourier components: the term "Magnetic Moment" in the output file means the modulus of the 
corresponding Fourier component. The program MOMENT has been written in order to help the user 
with these calculations. In any case, the calculation of the magnetic moment of the atom j in the unit cell 
of index l, should be done by using the formula: 
 
 { }

{ }
exp 2lj j liµ π= −� k

k
S kR  

 

 { }
{ }

cos 2 sin 2lj j l j j l jµ π ψ π ψ� � �= + + �+� � �� k k k
k

R kR I kR �k  

 
where the last sum is extended for half the number of propagation vectors, i.e. over the number of pairs 
(k,-k). 
If the propagation vector k is commensurate (rational components) one can use the magnetic unit cell and 

 can be identified with the magnetic moment at site j . In this case it is possible to describe the 

magnetic structure with  and , being H an integer vector of the reciprocal lattice of the 

magnetic cell. If 

jkS
0jΨ =k Q = H

1
2=k H , the use of the chemical unit cell and real magnetic moments is also possible. 

In such a case only one propagation vector is needed: if Nvk is given as negative the generation of 
magnetic reflections could be in error. For centred crystallographic unit cells one can use only the content 
of a primitive cell and generate the satellites from the symbol of the centring followed by -1 (e.g. I -1 for 
a I-centred cell). In order to take the advantage of the crystallographic conventions (propagation vector 



given with respect to the reciprocal basis of the conventional cell) one can use the dimensions and the 
metrics of the conventional cell provided that, putting the content of a primitive cell in the conventional 
cell frame, the occupation factors are multiplied by the number of centring vectors. See the files hob*.pcr 
in the example directory of the anonymous FTP-area. 
 

Analysis of the refinement 

 
An empirical analysis of the refinement has been introduced at the end of the file CODFIL.SUM. A part 
from some subjective comments that could appear in that analysis there are some important quantities that 
have to be known by the users because they have not been published yet. 
 
• Expected Rp factors are calculated supposing the best possible model. 

 , ,100 / ,p obs i calc i obs i
i i

R y y= −� � y

,

 (3.68) 

 
where  is calculated with the help of a Poissonian function, Genpoi , from . The 
argument of Genpoi is an integer value representing an observation which is equal to their variance, 
Genpoi returns another possible value compatible with the deterministic value x of variance x. The 
value of x is calculated form  and  as follows: 

,calc iy ( )x ,obs iy

,obs iy ,varobs i

  1 , / var( )obs i obs ic y y=
 , 1obs ix y c=  

  , 1( ) /calc iy Genpoi x c=
 
 
• The percentage of the contribution to the total integrated intensity. (Sum(Iobs) for all phases) of each 

phase is now written. 
 
• The number of refined parameters distributed in three classes are written: 

Nglb: Number of global parameters (not depending of the phase index) 
Nprofp: Number of profile parameters. the meaning of the integer 
Nintdp: Number of intensity-dependent parameters (x,y,z,B,occ, Mx...). The preferred 

orientation parameters are included in this class. 
 
• An effective number of reflections is calculated in order to get the ratio  Refni=(Effective Number of 

Reflections)/Nintdp = Enref/Nintdp. 
 
• The concept of effective number of reflections is introduced in order to take into account the effect of 

the resolution in the refinement. It is clear that well separated independent reflections give better 
results that when the reflections are overlapped. The program calculates a global effective number of 
reflections. For each phase, a similar indicator is written.  

 
A reflection contributes as x/(x+nearest), where "x" is the fraction of the total area of the current 
phase and "nearest" is the number of adjacent reflections verifying the formula: 
 
2theta-p*FWHM <= 2theta(adjacent) <= 2theta+p*FWHM 
 
"nearest" is weighted by the corresponding "x(s)", and p is a parameter lower than unity. 
 
The general formula for calculating the global effective number of reflections is: 
 
Enref = Sum(i){ x[ph:i]/Sum(ni){x[ph:ni]} } 
 



where Sum(i) is a sum over all the reflections contributing to the allowed areas of the diffraction 
pattern. Sum(ni) is the sum extended to the reflections near to the reflection "i" (including this 
reflection). The symbol x[ph:i] is the "x"-value of the phase to which the reflection "i" belongs. 
The same formula restricted to reflections of a single phase is applied to calculate Enref(Iphase): 
Effective number of reflections of the phase Iphase. 
The program calculates these numbers (Enref's) and the ratios (Refni's) for three values of the 
parameter p (1, 1/2 and 1/4). 

 
 
 

SINGLE CRYSTAL AND INTEGRATED INTENSITY 
REFINEMENTS 
 
 

General comments 

 
FullProf permits the refinement of integrated intensity data. Single crystal and/or powder 

integrated intensities can be included (or used alone) as observations for refining a structural model. The 
structure factor calculation is exactly the same as in powder diffraction, except that for powder diffraction 
there is a simplification due to the fact that the reflections h and –h are always orvelapped, so all the 
available features can be directly used with integrated intensity data. 
The function optimised when using integrated intensities is: 
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The index n runs over the observations (1,..Nobs). The index k runs over the reflections contributing to the 
observation n.  is the square of the structure factor (intensity corrected for Lp-factor). In case of 
powder diffraction G I , so clusters of integrated intensities are used. 
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The R-factors in single crystal work are calculated according to the following formulae: 

 
RF2 -factor: 
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Notice that RF2w for w(n)=1.0 is not the same value as RF2. 
 
When the option Iwg=2 (unit weights) is used. The inverse of the normal matrix is not multiplied by Chi2 
as is usual in weighted refinements. 
 

The extinction correction 

 
At present only the "empirical correction" (a single parameter), as used in SHELX, has been 
implemented. I hope to have time for putting the anisotropic Becker-Coppens extinction coefficients into 
the program. 
 

Mixed refinements 

 
This option is still in an exploring stage. For the moment only a single powder diffraction profile can be 
used with different sets of integrated intensity data that are related to each phase. A global powder 
diffraction pattern can be given as primary information, and some "phases" can be given in addition with 
their own integrated intensity data. For mixing X-ray and neutron refinement, the best thing to do is to 
provide a "powder" neutron diffraction pattern as the global data information and a set of integrated 
intensities for the crystallographic phase to be refined. A present it is necessary to "repeat" the same 
phase, as in that modelling the neutron pattern, using the appropriate constraints in the refined parameters 
(using the same code for physically identical parameters). 
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DETAILED DESCRIPTION OF INPUT 
FILES FOR FullProf 



Introduction 
In this appendix we describe the following input files: 
 

• Input control file: CODFIL.pcr 
• Input data files: FILE.dat 
• Background file: CODFIL.bac or FILE.bac 
• Reflection files: CODFILn.hkl, hkln.hkl, CODFIL.int 
• Instrument Resolution File: MYRESOL.irf 
• Numerical profile file: CODFIL.shp or global.shp 
• Intensity correction file: CODFIL.cor 

 

CODFIL.PCR 
 

This file is free format. This does not mean free format in Fortran (*)-sense: a procedure interprets the 
items given by the user that must obey the order given below. A space is needed between each item 
(except when the second is a negative number). When the program is run, messages of error reading a line 
of this file are normally due to a previous error. For example, the number of atoms you really wrote does 
not correspond to the number you put in the line following the name of the phase. Empty lines as well as 
lines starting with the symbol “!” in the first column are considered as comments and are ignored by the 
program. This file is re-written by FullProf at the end of a job. The original file may be suppressed or 
conserved depending on the value of a flag. The program generated PCR-file contains comments 
(mnemonics for each variable) to facilitate the recognition of the different variables. 

If the user starts his (her) CODFIL.PCR file with the left-adjusted capital “COMM”, the new 
CODFIL.PCR file conserves the initial format; that is the usual single pattern format, otherwise the 
program generates a PCR-file with a format adapted to the multiple pattern refinement. If the user 
introduce his(her) own comments, they are not saved in the new version of the file. The best to start 
working with FullProf is to edit a previously existent PCR-file and modify it as wished. The 
inexperienced user can use some of the programs that are specially developed to edit a PCR-file (see for 
instance the program AXES by Hugo Mandar [Hugo Ma'ndar <hugo@physic.ut.ee>]. A dedicated tool 
will be soon available for the operating systems Windows and Linux. 

In the following we use the term LINE as a label for reference purposes in the document. The line 
number does not correspond to the effective ordinal number of the line appearing in an actual PCR-file. 
When a block of similar lines have to be repeated for each pattern (it is supposed that we are dealing with 
NPATT patterns simultaneously) the keyword NPATT_Lines starts the block and the block is finished by 
the keyword End_NPATT_Lines, this corresponds to a loop on the index of the pattern. Sometimes the 
number of lines is less than NPATT. This occurs when the line is optional and depends on the value of a 
pattern-dependent variable. 

In this document we shall describe the format of the PCR-file adapted to multipattern refinements. 
This format derives from the single pattern one by just splitting some lines where flags depending on the 
pattern number were written in a single line. The program is, and will continue to be, totally compatible 
with the old single pattern format even if new items corresponding to new options are concerned. When 
there are differences between the two formats we will give the lines of the single pattern format in black 
font preceded with the word LINE n together with the new ones in blue font starting with LINE n. In 
fact the places where differences, apart from the fact that the loops on the number of patterns reduce to 1, 
are the LINES 2, 3, 4, 5, 7, 9, 19, 19-1, 19-3, and 19-4. 

Sometimes we shall use mathematical formulas to clarify the meaning of a variable, the complete 
explanation is given in the Mathematical section of the FullProf manual. The scattering variable is 
represented, in general, by the symbol T. When the context requires an explicit reference we use 2θ, TOF 
or E. For multiple patterns refinement we shall use the variable n_pat to index a diffraction pattern. We 
will write XXX(n_pat) for the name of a variable XXX that depends of the diffraction pattern n_pat. 
When the context is clear the variable will be referenced simply as XXX. 
 
The content of the file CODFIL.pcr is described in the following. 



Title+Choice of the format: multipattern/single-pattern  

(LINE1-3: Line 1 is compulsory, Lines 2-3 are optional) 
 
LINE1: Title line, made of any 80 characters, and used to label the printout. TITL and/or COMM (for 
single pattern format) at the beginning of the title line, are reserved keywords.  
 
Examples: 
COMM  My sample, at this temperature  :(old) Single pattern format) 
My sample, at this temperature :Mutipattern format 
 

 
If the first four character of TITLE correspond to the word TITL the file is given in "command 
mode" (not available yet). If the first four characters of TITLE correspond to COMM, the new 
CODFIL.PCR file conserves the initial format; that is the usual single pattern format, otherwise 
the program generates a PCR-file with a format adapted to the multiple pattern refinement. 
The generated PCR-file include comment lines give a keyword for each variable in order to be 
easily recognised by the user. This comment line has been included below to facilitate the 
recognition of the different lines. 

 
The next two lines should not be given if one wishes to use the conventional single pattern format of the 
PCR-file. However, the new multi-pattern format works properly also for a single pattern. 
 
LINE2: Keyword NPATT (OPTIONAL, if COMM is NOT given).  
 
Example:  
NPATT  3  
 

(5 characters +1 integer) 
Keyword NPATT followed by an integer, NPATT, corresponding to the number of patterns to 
be treated simultaneously.  
This line may be suppressed for a single pattern (NPATT=1) and the rest of the file follows the 
same format as that of previous versions of FullProf for single pattern refinement. 
Example: 
 

 
LINE3: Keyword W_PAT (OPTIONAL), only if NPATT is provided)  
 
Example: 
W_PAT  0.5 0.25  0.25  

 
(5 characters + NPATT reals) 
Keyword W_PAT followed by NPATT reals corresponding to the weight of each pattern in the 
refinement. The program normalises the given values in order to get 1 for the sum of all weights. 
 



 

Control flags defining the type of the job  

(LINE4 is compulsory) 
 
This line contains the codes used to select the type of the job: combinations of the given codes allow a 
number of different possibilities for the user. Important codes to handle the job are the following.  
 
For multipattern powder work, and for each pattern (patterns are, for the moment describing powder data 
only!): 
The calculated or the experimental data to be refined can be done for X-ray or Neutron radiation (selected 
trough Job). These patterns can have possibly different scattering variables (selected via Uni),. The 
number of magnetic or structural phases needed to model the diffraction patterns is given in Nph. Also 
important, if the “pattern matching” mode will have to be used for one of the phases (see Jbt in the line 
19), Dum have to be set to 1.  
 
To perform single crystal work: 
Cry is used to select if the main job will handle a list of integrated intensities (typically for single crystal 
work) or only powder data. If it is the case, the Irf code in the line 19 of the specific phase(s) needed to 
describe the single crystal data will have to be set to 4. If a single crystal work is to be done, the different 
values of Cry allows selecting among different methods of refinement. 
 

For mixed single crystal /powders refinement, see the section mixed refinements in “SINGLE 
CRYSTAL AND INTEGRATED INTENSITY REFINEMENTS”. 

 
The other codes are used, depending on the setting of the important codes listed above. Their meaning is 
detailed below. 
 

Input format 
 

Multi-Pattern:  
A specific line (4n) should be given for each pattern 

 
Comment line:  ! Nph  Dum Ias Nre Cry Opt Aut 
LINE 4 [Common line]: Nph, Dum, Ias, Nre, Cry, Opt, Aut (6 integers) 
 
Comment line:  ! Job Npr Nba Nex Nsc Nor Iwg Ilo Res Ste Uni Cor 
LINE 4n [NPATT_Lines]: Job, Npr, Nba, Nex, Nsc, Nor, Iwg, Ilo,  
 Res, Ste, Uni, Cor, (12 integers) 
 

 [(Old) Single pattern format]  
The items of the different multi-pattern lines 4 and 4n are merged in a single 

 line for the single patter format as: 
 
Comment line:!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 
LINE 4: Job, Npr, Nph, Nba, Nex, Nsc, Nor, Dum, Iwg, Ilo,  
 Ias, Res, Ste, Nre, Cry, Uni, Cor, Opt, Aut (19 integers) 



 

Common flags for Single/Multi-Pattern 
 

Nph - Number of phases 
Number of phases  

 
Dum – Control of the divergence for specific jobs, ex: profile matching 
=1 If equal to 1 and some of the phases are treated with Profile Matching modes, the 

criterion of convergence when shifts are lower than a fraction of standard deviations is 
not applied. 

=2 If equal to 2, the program is stopped in case of local divergence: chi2(icycle+1)> 
chi2(icycle) 

=3 If equal to 3 the reflections near excluded regions (Tlim±Wdt*FWHM) are not taken 
into account to calculate the Bragg R-factor. These reflections are omitted in the output 
files with hkl's. 

 
If ABS(Job(n_pat))>1 (pattern calculation mode, see below) and Dum is different of 
zero a file CODFIL.sim is generated 

 
Ias – Reordering of reflections 
=0 The reordering of all reflections is performed only at the first cycle 
=1 All reflections are ordered at each cycle. 

(If Jbt=2 for one phase, Ias is changed to 1 by the program) 
 

Nre – Number of constrained parameters 
Number of parameters to be constrained within given limits. At the end of the file you must give 
a list of Nre lines specifying the number and the limit of each parameter. This variable must be 
given in the case of using Montecarlo or Simulated Annealing techniques. 

 
Cry – Single crystal job and refinement algorythm type  
≠0 Only integrated intensity data will be given. No profile parameters are needed.  

The format of the file changes slightly in the following. 
=1 Refinement of single crystal data or integrated intensity powder data. 
=2 No least-squares algorithm is applied. Instead a Montecarlo search of the starting 

configuration is performed. A selected number of parameters Nre are moved within a 
box defined by the Nre relations fixing the allowed values of the parameters. The best 
(lowest R-factor) NSOLU solutions are printed and the CODFIL.pcr file is updated with 
the best solution. This option is only efficient for a small number of parameters (3-4). 
The use of the next option is recommended for large number of parameters. 

=3 The Simulated Annealing optimisation method is chosen. A selected number of 
parameters Nre are moved within a box defined by the Nre relations fixing the allowed 
values of the parameters. Different boundary conditions may be used. See below. 

 
Opt – Calculation optimisations 

=0 The general procedures are used.  
=1 The program tries to optimise the calculations looking for the particular options used in 

the job. In some cases the calculation proceeds up to a 30% faster. 
 

Aut – Automatic mode for the refinement codes numbering 
=0 The program treats the codewords as usual. The user has the total control of the 

numbering of parameters. The maximum number of parameters to be refined is fixed 
manually. 

=1 The program treats the codewords of the refined parameters automatically. In this case 
the user may put, by hand, the codes for making constraints as usual, and just put “1.00” 
to inform the program that the corresponding parameter will be refined. The program 



will attribute automatically the codeword. In the automatic mode there is no “holes in 
the matrix” and the number of refined parameters may be different from the specified 
by the user in the corresponding line. The automatic mode is useful when one has to fix 
a parameter in the middle of many others: just put the codeword (including the 
multiplier) to zero. Sometimes the message “hole in the matrix” still appears. In such 
cases you have just to increase artificially the number of parameters to be refined or just 
put it equal to zero, or, in the worst case, suppress a large number of codewords (just 
leaving the multiplier 1.0). Be careful in using this option together with the automatic 
re-writing of the PCR-file. 

 

Flags dependent on the pattern number  
 

Job –Select the simulation or refinement mode and the type of the radiation 
X-ray, CW or T.O.F neutrons 
= 0 X-ray case 
= 1 Neutron case (constant wavelength, nuclear and magnetic) 
= 2 Pattern calculation (X-ray) 
= 3 Pattern calculation (Neutron, constant wavelength) 
=-1 Neutron case (T.O.F., nuclear and magnetic) 
=-3 Pattern calculation (Neutron, T.O.F.) 
 
The value of Job(n_pat) may be different for each pattern when one wants to perform combined 
refinements: X-ray + neutron diffraction patterns treated simultaneously. 
If ABS(Job)>1 and Dum=1 (see below) a calculated pattern is created with the name 
CODFIL.SIM in format corresponding to Ins(n_pat)=0. A Poisonian noise is added to the 
deterministic calculated pattern. The statistics is controlled by the value of the scale factor. This 
pattern corresponds to an “ideal observed” pattern and can be use for simulation purposes in 
order to investigate the effect of systematic errors on the structural parameters and on the 
reliability factors.  

 
Npr  – Defaut profile to be used 
Default value for selection of a normalised peak shape function. Particular values can be given 
for each phase, in that case the local value is used.  
=0 Gaussian. 
=1 Cauchy (Lorentzian). 
=2 Modified 1 Lorentzian. 
=3 Modified 2 Lorentzian. 
=4 Tripled pseudo-Voigt. 
=5 pseudo-Voigt. 
=6 Pearson VII. 
=7 Thompson-Cox-Hastings pseudo-Voigt convoluted with axial divergence asymmetry 

function (Finger, Cox & Jephcoat, J. Appl. Cryst. 27, 892, 1994). 
=8 Numerical profile given in CODFIL.shp or in GLOBAL.shp. 
=9 T.O.F. Convolution pseudo-Voigt with back-to-back exponential functions. 
=10 T.O.F. Same as 9 but a different dependence of TOF versus d-spacing. 
=11 Split pseudo-Voigt function. 
=12 Pseudo-Voigt function convoluted with axial divergence asymmetry function. 
=13 T.O.F. Pseudo-Voigt function convoluted with Ikeda-Carpenter function. 

 
Nba – Background type 
=0  Refine background with a polynomial function. 
=1 Read background from file CODFIL.bac. The format of this file is explained in 

this appendix. 
=2,3,...,N Linear interpolation between the N given points. If Nba<0 but  ABS(Nba)>4 

the interpolation is performed using cubic splines 
=-1  Refine background with Debye-like + polynomial function. 



=-2 Background treated iteratively by using a Fourier filtering technique. An extra 
parameter is read below. The starting background is read from file FILE.bac as 
for Nba=1. 

=-3  Read 6 additional polynomial background coefficients 
 

Nex – Number of regions to exclude in powder data 
Number of excluded regions. 

 
Nsc – Number of user defined scattering factors 
Number of scattering sets (zero in most cases). In the case of giving a table of values for the 
scattering factor and Nsc>0, the program performs an internal fit in order to get the appropriate 
coefficients of the exponential expansion (see below) approximating the scattering factor. If Nsc 
is negative, a linear interpolation between the values of the table is performed. 

 
Nor –Preferred orientation function type 
=0 Preferred orientation function No 1 
=1 Preferred orientation function No 2 (March) 

 
Iwg- Refinement weighting scheme 
=0 Standard least squares refinement 
=1 Maximum likelihood refinement 
=2 Unit weights 

 
Ilo – Lorentz and polarization corrections 
= 0 Standard Debye-Scherrer geometry, or Bragg-Brentano if the illuminated area does not 

exceed the sample surface. If Bragg-Brentano geometry is used but the above condition 
is not fulfilled, the intensity data must be corrected for the geometric effect before 
attempting any refinement. A partial correction can be performed by using the 
parameter Sent0. 

= 1 Flat plate PSD geometry 
=-1 The Lorentz-Polarisation correction is not performed. It is supposed that the profile has 

been previously corrected for Lorentz-Polarisation. 
=2 Transmission geometry. Flat plate with the scattering vector within the plate (Stoe 

geometry for X-rays) 
=3 Special polarisation correction is applied even if the format of the DAT-file does not 

correspond to one of the synchrotron explicitly given formats (see below). This must be 
used for synchrotron data given in a (X, Y, Sigma) format (Ins=10). 

 
Res – Resolution function type 
=0 Resolution function of the instrument is not given 
≠0 The next line contains the name of the file where the instrumental resolution function is 

given for an instrument using as scattering variable 2θ. 
This options works, at present, only for constant wavelength type of data. The profile is 
assumed to be a Voigt function (Npr=7). 12 parameters or a table determine the 
resolution function. U V  (i=1,2 for λ1 and λ2) , , , , ,i i i i i iW X Y Z
The different types of functions are: 
Res =1 2 ( tan ) tanG i iH U Vθ θ= + Wi+  

tan
cos

i
L i

Y
iH X Zθ

θ
= + +  

Res =2 2 ( tan ) tanG i iH U Vθ θ= + Wi+

i

 

( 2 )2L i iH X Yθ θ= + + Z  

Res =3 2 ( 2 )2G i i iH U Vθ θ= + +W  



( 2 )2L i i iH X Yθ θ= + + Z  

Res =4 List of values 2 , ,  θ (2 )GH θ (2 )LH θ
(a linear interpolation is applied for intermediate 2θ) 

 
The format of this file is described below in this appendix. 

 
Ste – Number of data points reduction factor in powder data 
=1,2,3,...,N 

If Ste>1 the number of data points is reduced by a factor of Ste. Only those points 
corresponding to the new Step size Ste×Step (see LINE 9 below) are taken into account 
in the refinement. Useful for speed-up preliminary refinements. 

 
Uni - Scattering variable unit 
=0  in degrees 2θ
=1 T.O.F. in micro-seconds 
=2 Energy in keV. 

 
Cor – Intensity correction 
=0 No correction is applied 
=1 A file with intensity corrections is read.  
=2 A similar file is read but the coefficients of an empirical function and their standard 

deviations are read instead of directly the corrections. 
The format of this file is described in this appendix. 

 

Name of the data files 

(LINE5 is compulsory) 
 
Comment line:  ! File names of data (patterns) files 
Line 5: [NPATT_Lines] FILEDAT(n_pat) (Character) 
Example: 
Mydatafile_patt1.dat 
Mydatafile_patt2.dat… 
 

Name of the pattern files including the extension in case that is different from “.dat” 
 

Name of the instrumental resolution files  

(LINE6 is optional, read only if Res ≠0 on LINE 4) 
 
Comment line:  ! Resolution File names for Pattern #N 
Line 6: [NPATT_Lines] FILERES(n_pat) (Character)  
Example: 
Myresolutionfile_patt1.irf 
Myresolutionfile_patt2.irf… 
 

Name of the file with the instrumental resolution function. To be given only in the case of Res 
≠0. The items in FILERES are read in free format. The format of this file is described below in 
this appendix. 
The effective number of lines may be less than NPATT. Only the names of the files for which 
Res(n_pat)≠0 should be given. 

 



 

Control flags handling the input CODEFIL.pcr, *.dat and output files 

(LINE7 is compulsory) 
 

Input format 
 

Multi-Pattern:  
A specific line (7n) should be given for each pattern 

 
Comment line:  ! Mat Pcr Syo Rpa Sym Sho 
LINE 7[Common line]: Mat, Pcr, Syo, Rpa, Sym, Sho (6 integers) 
Comment line:  ! Ipr Ppl Ioc Ls1 Ls2 Ls3 Prf Ins Hkl Fou Ana 
LINE 7n [NPATT_Lines]: Ipr, Ppl, Ioc, Ls1, Ls2, Ls3, Prf, Ins, Hkl, Fou, Ana  
 (11 integers) 
 

[(Old) Single pattern format]  
The items of the different multi-pattern lines7 and 7n  are merged in a single 

 line for the single patter format as: 
 
Comment line: !Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 Syo Prf Ins Rpa Sym Hkl Fou Sho Ana 
LINE 7: Ipr, Ppl, Ioc, Mat, Pcr, Ls1, Ls2, Ls3, Syo, Prf, Ins, Rpa, Sym, Hkl, Fou, 
 Sho, Ana (17  integers) 
 

Common flags for Single/Multi-Pattern 
 
Mat – Correlation matrix output 
=0 No action 
=1 The correlation matrix is written in the file CODFIL.out 
=2 The diagonal of Least Squares matrix is printed before inversion at every cycle. 
 
Pcr – Update of the .pcr after refinement 
=0 
=1 CODFIL.pcr is re-written with updated parameters 
=2 A new input file is generated conserving the old one. The new file is called 

CODFIL.new 
 
Syo – Output of the symmetry operators 
=0 
=1 Symmetry operators are written in CODFIL.out. The file CODFIL.sym is also 

generated if Sym=1. 
 
Rpa – Output .rpa/.sav file 
=0 
=1 Prepares the output file CODFIL.rpa. If the file exists before running the program the 

new data are APPENDED. 
=2 Prepares file CODFIL.sav (sequential refinements)   " 
 
Sym – Output .sym file 
=0 
=1 Prepares CODFIL.sym (if 1, Syo must be set to 1) 
 



Sho – Reduced output during the refinement 
=0 
=1 Suppress the output from each cycle. Only the information from the last cycle is printed. 

 

Pattern number dependent flags 
 

Ipr – Profile integrated intensities output or generation of .sub files 
=0  No action 
=1 Observed and calculated profile intensities written in CODFIL.out  
=2 The files CODFILn.sub with the calculated profile of each phase are generated. 
=3 As 2 but the background is added to each profile. 
 
Ppl – Various types of calculated output -I 
=0  No action 
=1 Line printer plot in CODFIL.out 
=2 Generates the background-file FILE.bac 
=3 Puts difference pattern in file FILE.bac 
 
Ioc – Various types of calculated output -II 
=0  No action 
=1 List of observed and calculated integrated intensities in CODFIL.out 
=2 The reflections corresponding to the second wavelength are also written if different 
from the first one. 
 
Ls1 - Various types of calculated output -III 
=0  No action 
=1 Reflection list before starting cycles is written in CODFIL.out  
 
Ls2 - Various types of calculated output –IV  
=0  No action 
=1 Corrected data list (profile intensities before refinement) written in CODFIL.out. 
=4 In some versions of FullProf a plot of the diffraction pattern is displayed on the screen 
at each cycle of refinement. 
 
Ls3 - Various types of calculated output –V  
=0  No action 
=1 Merged reflection list written in CODFIL.out 
 
Prf - Output format of the rietveld plot file CODFIL.prf 
Generates the file CODFIL.prf containing the information to plot the observed versus calculated 
diffraction pattern as well as the reflection positions, etc. The output forma 
=0 
=1 Format suitable for WinPLOTR, and other plotting programs. 
=2 Format suitable for IGOR (MacOS, Windows software) 
=3 Format suitable for KaleidaGraph (MacOS, Windows software) and WinPLOTR. 
=4 Format suitable for Picsure, Xvgr (Sun-Unix Software) 
 
Ins – Data file format  
(The detailed explanation of the formats is given in the FILE.dat section) 
=0 Data supplied in free format. Up to seven comment lines are accepted. The first three 
real numbers found at the beginning of a line are interpreted as Ti, step and Tf and. The following 
lines after Ti, step and Tf must contain NPTS=(Tf–Ti)/step+1 values of the intensity profile. Data 
format of TOF raw data from Argonne are also interpreted by this value of Ins. 
=1 D1A/D2B format (original Rietveld-Hewat format: the first line must be Ti, step and Tf 
=2 D1B old format (DEC-10) 



=3 Format corresponding to the ILL instruments D1B and D20. 
=±4 Brookhaven synchrotron data. 

4: First line: 2θi, step, 2θf (free format). Rest of file: pairs of lines with 10 items like 
Y1  Y2  ......... Y10  -- (10F8) intensities 
S1  S2  ......... S10  --    "     standard deviations 

-4: Format given by DBWS program for synchrotron data. (Version DBW3.2S-8711) 
=5 Data from GENERAL FORMAT for TWO AXIS instrument. Three lines of text 

followed by two lines with the items: 
NPTS, TSample, Tregul, Ivari, Rmon1, Rmon2 
Ti, step, Tf 

Set of lines containing 10 items corresponding to the Intensities in format 10F8.1, up to 
NPTS points (NPTS=(Tf–Ti)/step+1), followed by the corresponding standard deviations 
in format (10f8.2) if Ivari=1. If Ivari=0 the standard deviations are calculated as 

( ) 1
2

Rmony y
Rmon

σ = × . 

=6 D1A/D2B standard format prepared by D1A(D2B)SUM (ILL), ADDET(LLB), 
MPDSUM (LLB) or equivalent programs. 

=7 Files from D4 or D20L 
=8 Data from DMC at Paul Scherrer Institute. 
=10 X, Y, Sigma format with header lines. In all cases the first six lines are considered as 

comments. If in the first line (left adjusted) appears the keyword XYDATA, then the 
following five lines are considered as the heading of the file. Among these five lines the 
following keywords and values have a meaning to the program: 

INTER  fac_x  fac_y  Interpol  Stepin 
TEMP  tsamp 
fac_x  internal multiplier of X-values 
fac_y  internal multiplier of Y and Sigma-values 
Interpol 
=0 Variable step is used in the program 
=1 The variable step data are interpolated internally to the constant step Stepin. 
=2 Data are supplied directly at constant step 

If no sigma values are provided the program assumes that ( )yσ = y . You can add 
comments to the data file if they start with the character “!” in the first position of the 
line. These lines are ignored by the program. 

=11 Data from variable time X-ray data collection. The first four lines are considered as 
comments. The following lines are: 

2Thetai, step, 2Thetaf   Comment 
(Time, Intensity)   in format 5(F6, I10). The program uses the information contained in 
Time to normalise the observed intensities to the average time <Time> and to calculate 
the variance of the normalised values. 

=12 The input data file conforms to GSAS standard data file.  
BINTYP = LOG6, TIME_MAP and LPSD are not yet available. 

 
Hkl – Output of reflection list in CODEFIL.hkl 
Prepares CODFIL.hkl. See the section Output files for details. 
=0  No action 
=1 Outputs: Code, h k , mult , FWHM, , , l , , 2hkld θ obsI , calcI , obs calcI I−  
 or if ABS(Job)>1 : ,  , ,h k l , , 2 ,calc hklmult I dθ
=2 Output for SIRPOW.92: ,  , ,h k l 2 2,sin / , 2 , , , ( )mult FWHM F Fθ λ θ σ
=±3 Output of Real and Imaginary parts of Structure Factors: , 

 

, ,h k l
, , , 2 ,real imagmult F F Intensityθ

=4 Output of: h k . 2 2, , , , ( )l F Fσ



=5 Output of: h k  , , , , , , ,calc hkl hkl hkll mult F T d Q
 
Fou- Output of CODEFIL.fou files 
Prepares CODFIL.fou. See the section Output files for details. 
=0  No action 
=1 Cambridge format 
=2 SHELXS format are also in (Prepares also the file CODFILn.ins) 
=3 FOURIER format  (Prepares also the file CODFILn.inp) 
=4 GFOURIER format  (Prepares also the file CODFILn.inp) 
 
Ana –Reliability of the refinement analysis 
=0  No action 
=1 Provides an analysis of the refinement at the end of the summary file CODFIL.sum. 

 

Powder data experimental set-up I-fixed parameters 

(LINE8 is optional, Read only if powder patterns are used, hence, if Cry=0-LINE 4) 
 

The input format depend on Uni 
Multi-Pattern:  

A specific line (8n) should be given for each pattern 
 
[For 2θ] 
Comment line:!lambda1 lambda2  Ratio  Bkpos  Wdt  Cthm  muR  AsyLim Rpolarz -> Patt #N 
LINE 8n: Lambda1, Lambda2, Ratio, Bkpos, Wdt, Cthm, muR, AsymLim, Rpolarz  
 (9 reals) 
 
[For T.O.F or Energy dispersive data] 
Comment line:!Bkpos  Wdt  Iabscor for Pattern# N 
LINE 8n: Bkpos, Wdt, Iabscor (2 reals, 1 integer) 
LINE 8n: Bkpos, Wdt, Iabscor (2 reals, 1 integer) 
 

[(Old) Single pattern format]  
This time, the single pattern format has the same format as the multi pattern 

Only one line of the above format has to be given 
 

Common variables for each 2theta, TOF and energy dispersive pattern 
 

Bkpos – Origin of the polynomial-bckg  
Origin of polynomial for background (in 2θ degrees or µseconds for TOF) 
 
Wdt – Cut-off of the peak profile tails  
Width (range) of calculated profile of a single Bragg reflection in units of FWHM (typically 4 
for Gaussian and 20-30 for Lorentzian, 4-5 for TOF). The value of the peak shape function is set 
to zero for ABS(x) > Wdt × FWHM, with x=Ti-Th. 

 

Variables specific to 2theta  pattern 
 

Lambda1 
Wavelength λ1 

 
Lambda2 



Wavelength λ2 (=λ1 for monochromatic beam) 
 

Ratio – of the two wavelength weight 
Intensity Ratio 2 1/I I  
If Ratio < 0 the parameters U,V,W (see below) for the second wavelength are read separately. 

 
Cthm – Monochromator polarization correction 
Coefficient for monochromator polarisation correction. See Mathematical section. 

 
muR – Absorption correction 
Absorption correction coefficient Rµ , used only for refinement on cylindrical samples and flat 
samples with symmetrical θ-2θ scanning (the scattering vector lying within the sample plane). 

 
µ = effective absorption coefficient 
R = radius or thickness of the sample 

 
AsymLim – Limit angle for asymmetry correction 
Peaks below this 2θ limit are corrected for asymmetry. 

 
Rpolarz – Polarization factor 

Polarisation factor (synchrotron, Ilo=3) 
Fraction of mosaic-crystal (transmission geometry, Ilo=2) 

 

Variables specific to TOF or energy dispersive pattern 
 

Iabscor - absorption correction for T.O.F 
 
Type of absorption correction for T.O.F. data 
 
=1 Flat plate perpendicular to the incident beam 
=2 Cylindrical sample 
=3 Exponential correction Ab = −  2exp[ ]s cλ

 

Refinement parameters and powder data range 

(LINE 9 is compulsory)  
 

Input format depend on Uni 
 

Single and Multi-Pattern:  
A specific line (9n) should be given for each pattern 

 
Comment line:  !NCY  Eps  R_at   R_an  R_pr  R_gl 
LINE 9: NCY, Eps, R_at, R_an, R_pr, R_gl  (1 integer - 5 reals) 
Comment line:!  Thmin    Step    Thmax  PSD   Sent0  -> Patt #N 
LINE 9n: [2θ]: Thmin, Step, Thmax, PSD, Sent0 (5 reals) 
Comment line:!   TOF-min    <Step>    TOF-max    PSD    Sent0  -> Patt# N 
LINE 9n: [T.O.F]: Thmin, Step, Thmax (3 reals) 
Comment line:!   Emin    <Step>    Emax   -> Patt# N 
LINE 9n: [Energy dispersive]: Thmin, Step, Thmax (3 reals) 



 
[(Old) Single pattern format]  

The items of the different multi-pattern lines 9 and 9n are merged in a single 
 line for the single patter format as: 

 
Comment line: ! NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0 
Comment line: ! NCY  Eps  R_at  R_an  R_pr  R_gl     TOF-min      <Step>       TOF-max 
Comment line: ! NCY  Eps  R_at  R_an  R_pr  R_gl           Emin       <Step>       Emax 
LINE 9: NCY, Eps, R_at, R_an, R_pr, R_gl , Thmin, Step, Thmax, PSD, Sent0  (1 integer, 10 reals) 
 

Common variables for all patterns 
 

NCY – Number of refinement cycles 
Number of cycles of refinement 

 
Eps – Control of the convergence precision 
Forced termination when shifts < Eps × e.s.d. A reasonable value is Eps=0.2 or lower. 

 
R_at, R_an, R_pr, R_gl- 4 relaxation factors of the shifts of the refined 
parameters 
The four relaxation factors for shifts: 
1. Atomic parameters: co-ordinates, magnetic moments, site occupancies and isotropic 

displacement (temperature) factors 
2. Anisotropic displacement (temperature) factors 
3. Profile parameters, asymmetry, overall displacement (temperature), cell constants, preferred 

orientation parameters, strains, size, propagation vectors & user-supplied parameters. 
4. Global parameters, zero-shift, background, displacement and transparency. 

 

Variables dependent on the pattern number 
 

Thmin – Starting scattering variable value of a pattern 
Starting angle 2θ /TOF/Energy for calculated pattern in degrees/micro-seconds/keV. For normal 
refinement the triplet Thmin, Step, Thmax is superseded by reading the provided file with 
profile intensities. 

 
Step - Step of the scattering variable in a pattern 
Step size in degrees 2θ /micro-seconds/keV 

 
Thmax - scattering variable 
Ending angle 2θ /TOF/Energy for calculated pattern in degrees/micro-seconds/keV 

 
PSD - Incident beam angle 
Incident beam angle at sample surface in degrees 

 
Sent0 – Max angle to where the primary beam contribute 
Theta angle at which the sample intercepts completely the x-ray beam. Below Sent0 part of the 
beam doesn't touch the sample and the intensity of reflections below Sent0 have to be multiplied 
by  the factor: 

 sin sin( )sclow SENT0θ=  



 

Interpolated background - Pattern’s regions to exclude 

(LINE 10 is optional, read only if Cry=0-Line 4, and if at least one of  
  Nba(n_pat) ≥ 2 –linear interpolation 
  or Nba(n_pat) ≤ - 4 – cubic splines interpolation)  
(LINE 11 is optional, read only if Cry=0-Line 4, and if at least one of Nex(n_pat) > 0)  
 

Input format  
 

For each pattern, in the order they are given in LINE 5, two set of lines should be given sequentially, 
depending on Nba(n_pat) and  Nex(n_pat).: 

The first one is a list of Nba(n_pat) bckdg points if Nba(n_pat) ≥ 2 or Nba(n_pat) ≤ - 4. 
The second one is a list ofNex(n_pat) lines of  excluded regions  

This makes a maximum total of
NPATT

n_pat=1

NBCKGD(n_pat) NEXCRG(n_pat)+�  lines  

Note: Special values of Nba(n_pat)(=-3,-2,-1,1) are reserved. In this case, some background coefficients 
are read elsewhere, in the line 17 

 
Comment line:!2Theta/TOF/E(Kev)    Background for Pattern #N 
LINE 10n:   POS, BCK   (Nba(n_pat) lines table of 2 reals) 
Comment line:!Excluded regions (LowT  HighT)  for Pattern #N 
LINE 11n: ALOW, AHIGH  (Nex(n_pat) lines table of 2 reals) 
 
 

Variables  
 
Units of POS, ALOW, AHIGH depend on the scattering variable unit, defined as Uni(n_pat): 
 

POS 
Position in degrees/micro-seconds/keV 

 
BCK 
Background counts at this position 
 
If Nba(n_pat) > 0  linear interpolation 
If Nba(n_pat) < 0  cubic splines interpolation 

 
ALOW 
Low scattering variable bound in degrees/micro-seconds/keV 

 
AHIGH 
High scattering variable bound in degrees/micro-seconds/keV 



 

User defined scattering lengths and form factors 

(LINE 12 is optional, it is to be given only if at least one of Nsc(n_pat)≠0-Line 4) 
 

Input format  
 

For each pattern, in the order they are given in LINE 5, a list of Nsc(n_pat) (if ≠0) user provided 
scattering factors or form factors can be given. 

 
Comment line:  ! Additional scattering factor for Pattern #N 
Line12: NAM, DFP, DFPP, ITY (Character A4 - 2 reals - 1 integer) (Nsc(n_pat) Lines) 
(Optional LINE 12b read for user-defined form factors) 
LINE 12b: A1, B1, A2, B2, A3, B3, A4, B4,C  
 (9 reals, for X-Rays form factors, Job=0 or 2, ITY=0 and Nsc(n_pat) > 0) 
LINE 12b: A, a, B, b, C, c, D (7 reals)  
 (7 reals, for Neutrons magnetic form factors, if Job=1 or 3, ITY=1 and Nsc(n_pat) > 0) 
LINE 12b: A, a (2 reals)  

(2 reals form factors table, given for X-Rays if ITY=0, or for Neutron if ITY=1, if 
Nsc(n_pat) < 0)  

 

Variables  
 
NAM – Name of the chemical element 
Symbol identifying this set (left justified). This symbol is converted to lower case for X-ray 
diffraction global data. 

 
DFP – Df’ (X-rays) or b (neutron) 
Df ′  or Neutron Scattering length b 

 
DFPP – Imaginary part Df” (X-rays) 
Df ′′  (ignored in the neutron case) 

 
ITY – Options for form factor definition 
There are many options, depending on the radiation, the value of ITY, and the sign of 
Nsc(n_pat): 

 
• For Xrays, ( Job=0 or 2):  
 

The scattering lengths for X-rays are user defined, and Df ′  and Df ′′  are read in DFP and 
DFPP. The form factor will depend on the following options: 
ITY =0  

• If Nsc(n_pat)> 0: 
The option allows the user to provide the sinθ/λ dependent part of the X-rays 
form factor f: in this case, a new line is read with the format:  
LINE 12b: A1, B1, A2, B2, A3, B3, A4, B4,C (9 reals) 
A1,B1,A2,B2,A3,B3,A4,B4,C give the coefficients for the analytic 
approximation to the X-ray form factor f. The expression is the following: 

4
2

1

sin sin( ) exp{ ( ) }i i
i

f a bθ θ
λ λ=

= −� c+  

If A2 is set to zero, only A1 are B1 used  
 



• If Nsc(n_pat)< 0: 
Allows the user to define his own form factors as a table of sinθ/λ - f values 
For each scatterer, the user has to provide a table made of a set of lines in the 
form: sinθ/λ - f: 
LINE 12b: A, a (2 reals) 
to define the form factors. The set have to be terminated by a line with the 
number “-100” in first position. 

ITY =2 
Indicates that you are giving just Df ′  and Df ′′  and the program will use tabulated 
coefficients for the sinθ/λ dependent part of f (X-rays). The name NAM must 
correspond in this case to a valid tabulated name (See Notes(1, 2) below). At 
variance with the name used for determining the scattering factor in the description 
of atoms, the chemical symbol used in NAM must be LOWER CASE. This is the 
most simple way of giving anomalous dispersion parameters for synchrotron data. 

 
• For neutrons, (Job=1 or 3): 

 
ITY =0 Only reads a user defined atomic Fermi length b for the species NAM in DFP.  

 
ITY =1 Allows the user-definition of the magnetic form factors: 

 
• If Nsc(n_pat)> 0: 

The option allows you to give a magnetic form factor. In this case, a new line is 
read with the format: 
LINE 12b: A, a, B, b, C, c, D (7 reals) 
Where A,a,B,b,C,c,D give the coefficients for the analytic approximation to the 
magnetic form factor f (P.J. Brown, Vol C new ed. ITC) similar to the X-ray 

form factor 
sin(f θ

λ
)  given above for Xrays, but with the sum extended to 3 

terms only. 
If B is set to zero, only the parameters A and a are used. 

 
 

• If Nsc(n_pat)< 0: 
Allows the user to define his own form factors as a table of sinθ/λ - f values 
For each scatterer, the user has to provide a table made of a set of lines in the 
form: sinθ/λ - f: 
LINE 12b: A, a (2 reals) 
to define the form factors. The set have to be terminated by a line with the 
number “-100” in first position. 

 
Note: Scattering length, X-rays and magnetic form factors are stored in internal tables. To use 
them you must give the “name” of the scatterer using UPPER CASE chemical symbols (for 
neutron scattering length b), chemical species (e.g. CU+2, for the X-rays form factor of Cu2+) or 
M followed by the chemical symbol and formal charge state (for magnetic form factor, e.g. MNI2 
for the magnetic Ni2+). These names will have to be given in Typ, in the lines 25a-1or 25b-1 
behind the atom name (see below).  
 
For X-ray diffraction, in the case of giving user supplied Df ′  and Df ′′ , the chemical symbol 
is converted to LOWER CASE: the form factors symbols Typ behind the atom name can then be 
given either in LOWER or in UPPER case. This will force the program to use the user-defined 
values. 
 
If tabulated values of the magnetic form factors of the rare earths are to be used, two options 
exist: 
 



Example: 
MHO3: magnetic form factor of Ho3+ as <j0> 
JHO3:  magnetic form factor of Ho3+ as <j0>+c2<j2> 
where c2 has been calculated using the dipolar approximation. Seven coefficients A,a,B,b,C,c,D 
are used for approximating <j0>+c2<j2>. 

 
 

Number of refined parameters 

(LINE 13 is compulsory) 
 

Input format  
 
LINE 13:Maxs (one integer)      !Number of refined parameters (Comment on the same line) 
 

Variable 
 

Maxs - Number of refined parameters 
Number of parameters varied. In case of using Aut =1 the program determines automatically the 
number of parameters to be refined. In this case,Maxs is updated to the total number of 
parameters that are automatically varied. 

 

Powder data experimental set-up II (refinable parameters) 

(LINE 14-17, are optional lines, looped over the patterns; they are read only if powder patterns are used, 
hence, if Cry=0-Line 4). They include: 
 
Some general parameters: 
(LINE 14 is compulsory, its format depend on Uni-Line 4) 
 
Micro absorption: 
(LINE 15, is an optional line, read only if Ilo(n_pat)=0 and Job(n_pat)=0 or 2, and Uni=0 on LINE 4) 
The meaning of the parameters of this line is detailed separately in the LINE 15 
 
Jason Hodges formulation of T.O.F vs. D spacing 
(LINE 14-17, are optional and read only if powder patterns are used, hence, if Cry=0-Line 4) 
The meaning of the parameters of this line is detailed separately in the LINE 16 
 
Analytic background models: 
(LINE 17, is optional and read only for special values of Nba(n_pat) in LINE 4) 
The meaning of the parameters of this line is detailed separately in the LINE 17 



 

Input format depend on Uni 
 

Single and Multi-Pattern:  
A specific set of lines (14-17) should be given for each pattern. For each value of Uni(n_patt), there is a 

compulsory Line 14 to give, and optional lines 15-17 
 

For 2θ patterns: 
 
Comment line:!  Zero  Code    Sycos  Code    Sysin  Code    Lambda  Code    More   -> Patt #N 
LINE 14: [2θ] Zero, Code, Sycos, Code, Sysin, Code, Lambda, Code, More (8 reals - 1 integer) 
 
(Optional LINE 15 read if More≠0) 
Comment line:!  P0  Cod_P0    Cp  Cod_Cp    Tau  Cod_Tau 
LINE 15 : Micro-absorption parameters format: see below 
 
(Optional LINE 17 read if –2 ≤Nba(n_pat)≤ 1) 
Comment line:!  Background coefficients/Codes for Pattern #N or, 
Comment line:!  Window for Fourier Filter for Pattern #N, or 
Comment line:!  Additional Background coefficients/Codes for Pattern #N 
LINE 17 : Background parameters format: see below 
 
For T.O.F patterns : 
 
Comment line:!  Zero  Code    Dtt1  Code    Dtt2  Code    2SinTh   -> Patt #N 
LINE 14: [T.O.F] Zero, Code, Dtt1, Code, Dtt2, Code, 2SinTh (7 reals) 
 
(Optional LINE 16 read if Npr(n_pat) =10) 
Comment line: !   Zerot/Code    Dtt1t/Code    Dtt2t/Code    x-cross/Code   Width/Code 
LINE 16 : Jason Hodges formulation: see below 
 
(Optional LINE 17 read if –2 ≤Nba(n_pat)≤ 1) 
Comment line:!  Background coefficients/Codes for Pattern #N or, 
Comment line:!  Window for Fourier Filter for Pattern #N, or 
Comment line:!  Additional Background coefficients/Codes for Pattern #N 
LINE 17 : Background parameters format: see below 
 
For Energy dispersive patterns: 
 
Comment line:!  Zero  Code    StE1  Code    StE2  Code    2SinTh   -> Patt #N 
LINE 14: [Energy dispersive] Zero, Code, STE1, FSTE1, STE2, FSTE2, 2SinTh (7 reals) 
 
(Optional LINE 17 read if –2 ≤Nba(n_pat)≤ 1) 
Comment line:!  Background coefficients/Codes for Pattern #N or, 
Comment line:!  Window for Fourier Filter for Pattern #N, or 
Comment line:!  Additional Background coefficients/Codes for Pattern #N 
LINE 17 : Background parameters format: see below 



 

Variables  
 

Zero – Zero point 
Zero point for T (in degrees/microseconds/keV): T T  True Exp ZE= − R

 
Code - Codeword 
Codeword for zero-shift 

 
Sycos – Systematic shift (cos dependance) 
Systematic 2θ shift with cosθ  dependence. Sample displacement in θ - 2θ diffractometers 

 
Code - Codeword 
Codeword for Sycos 

 
Sysin - Systematic shift (sin dependance) 
Systematic 2θ shift with sin2θ  dependence. Sample transparency coefficient in θ-2θ 
diffractometers 

 
Code- Codeword 
Codeword for Sysin 

 
Lambda – Wavelength (refinable) 
Wavelength to be refined (only a single wavelength can be refined) 

 
Code- Codeword 
Codeword for Lambda. 
Cell parameters should be fixed if wavelength is to be refined. 

 
Dtt1, Dtt2 – Reflexion positions parameters in T.O.F patterns 
The TOF position of a reflection, for Npr(n_pat)= 9, with d-spacing d is calculated using the 
formula: 

TOF = Zero + Dtt1 d + Dtt2 d2  
 
The component of thee TOF position of a reflection, for Npr(n_pat)= 10, with d-spacing d for 
the region of epithermal neutrons (Dtt2 is not used) is calculated using the formula: 

TOFe = Zero + Dtt1 d  
 See next line to see the calculation of the TOF position when Npr(n_pat)= 10. 
 

Code, Code – Refinement codewords 
Codewords for Dtt1, Dtt2 

 
2SinTh – Angle of the detector bank in T.O.F patterns 
Value of  for the detector bank. Used for obtaining the wavelengths and for Lorentz 
factor correction. 

2sinθ

 
More – Flag to read micro-absorption coefficients 
If different from zero, and the scattering variable is 2j (see Uni), the following line LINE 15 
(OPTIONAL) is read to define the microabsorption coeeficient 
 



Micro-absorption coefficients  

(LINE 15 is OPTIONAL, and read for those 2θ patterns (Uni(n_pat)=0) for which Ilo(n_pat)=0 and 
Job(n_pat)=0 or 2 on LINE 4, and More≠0 on LINE 14) 
 

Input format  
 

Single and Multi-Pattern:  
The right place to input this line is detailed in the LINE 14 

 
Line 15: P0, CP0, CP, CCP, TAU, CTAU (5 reals, to be given) 
Comment line:!  P0  Cod_P0    Cp  Cod_Cp    Tau  Cod_Tau 
 

Variables  
 
Micro-absorption coefficients and codes. Only valid for Bragg-Brentano geometry. 
The value of the parameters correspond to the variables in the following formula: 

0( ) 1
sin sinh h

h pP P C τ τ
θ θ

� �
= + −� �

� �
 

See Mathematical section for details. 
 

P0, value of P0 ; CP0, codeword of P0 
CP, value of Cp; CCP, codeword of Cp 
TAU, value of τ; CTAU, codeword of τ. 

 

Jason Hodges formulation of the TOF versus d-spacing  

(LINE 16 is OPTIONAL, and read for those T.O.F patterns (Uni(n_pat)=1) for which Npr(n_pat) =10) 
 

Input format  
 

Single and Multi-Pattern:  
The right place to input this line is detailed in the LINE 14 

 
Comment line: !   Zerot/Code    Dtt1t/Code    Dtt2t/Code    x-cross/Code   Width/Code 
Line 16 [Num_TOF_Patt_Lines]: Zerot, Dtt1t, Dtt2t, x-cross, Width  (5 reals)  
LINE 16-1: [Num_TOF_Patt_Lines] CZERt, CDTT1t, CDTT2t, Cx-cross, CWIDTH (Codewords 5 reals)  
 

Variables  
 
This line corresponds to the formulation, by Jason Hodges, of the TOF versus d-spacing that divides the 
spectrum in three parts depending on the neutron energy. The epithermal (fastest neutrons), crossover 
(intermediate) and thermal regions. It is supposed that in the previous line the parameters allowing the 
calculation of TOF as a function of d-spacing correspond to epithermal neutrons. In this line the 
parameters controlling the thermal and crossover regions. See Mathematical section for details. 
 

Zerot 
Zero shift for thermal neutrons 
 
Dtt1t 



Coefficient 1 for d-spacing calculation 
 
Dtt2t 
Coefficient 2 for d-spacing calculation 
 
x-cross 
Position of the centre of the crossover region 
 
Width 
Width of the crossover region 

 
The component of the TOF position of a reflection, for Npr(n_pat)= 10, with d-spacing d for the 
region of thermal neutrons is calculated using the formula: 

TOFt = Zerot + Dtt1t d – Dtt2t d-1 
 
The position of a Bragg reflection (in microseconds TOF) is finally calculated using the 
expressions: 

ncross = 0.5 erfc(Width (x-cross-d-1)) 
 

TOF = ncross TOFe + (1-ncross) TOFt  
 

Where erfc is the complementary error function. 
 

CZERt, CDTT1t, CDTT2t, Cx-cross, CWIDTH   
are the codewords of the previous parameters. 

 

Annalytic background model 

(LINE 17, is read if for some patterns, Nba(n_pat) takes some special values) 
 

Input format will depend on Nba(n_pat) 
 
For each pattern for which –2 ≤Nba(n_pat)≤ 1, a list of lines defining the backcground coefficients has to 

be given at . The number of lines depends Nba(n_pat).  
The right place to input this line is detailed in the LINE 14 

 
The coefficients correspond to the following models: 

 
12 coefficients-2θ Polynome function for Nba (n_pat)=-3 

 
Line 17 [4 lines for each corresponding pattern]:  
 
BACK1,  BACK2,  BACK3,  BACK4,   BACK5,  BACK6   (6 reals) 
FBACK1,FBACK2,FBACK3,FBACK4,FBACK5,FBACK6   (Codewords 6 reals) 
BACK7,  BACK8,  BACK9,  BACK10,   BACK11,  BACK12  (6 reals) 
FBACK7,FBACK8,FBACK9,FBACK10,FBACK11,FBACK12  (Codewords 6 reals) 
Comment line:!  Background coefficients/Codes for Pattern #N 
 

Fourrier filtering wondow, for Nba (n_pat)=-2 
 
Line 17 [1 line for each corresponding pattern]:  
 
FWINDOW (1 integer) 
Comment line:!  Window for Fourier Filter for Pattern #N 
 



2θ -6 coefficients polynome function + Debye-like function for Nba (n_pat)=-1  
 
Line 17: [6 lines for each corresponding pattern]  
 
BACK1,  BACK2,  BACK3,  BACK4,   BACK5,  BACK6   (6 reals) 
FBACK1,FBACK2,FBACK3,FBACK4,FBACK5,FBACK6   (Codewords 6 reals) 
Bc1,    Bc2,   Bc3,    Bc4,    Bc5,   Bc6     (6 reals) 
CBc1, CBc2, CBc3, CBc4, CBc5, CBc6     (Codewords 6 reals) 
D1,     D2,     D3,      D4,     D5,     D6     (6 reals) 
CD1,  CD2,  CD3,   CD4,   CD5,   CD6     (Codewords 6 reals) 
Comment line:!  Additional Background coefficients/Codes for Pattern #N 
 

6 coefficients 2θ Polynome for Nba (n_pat)=0  
 

Line 17: [2 lines for each corresponding pattern] 
 
BACK1,  BACK2,  BACK3,  BACK4,   BACK5,  BACK6  (6 reals) 
FBACK1,FBACK2,FBACK3,FBACK4,FBACK5,FBACK6  (Codewords 6 reals) 
Comment line:!  Background coefficients/Codes for Pattern #N 

 
4 additional coefficient-2θ  polynome forNba (n_pat)=1 

 
Line 17: [2 lines for each corresponding pattern] 
 
BACK1,  BACK2,  BACK3,  BACK4  (6 reals) 
FBACK1,FBACK2,FBACK3,FBACK4  (Codewords 6 reals) 
Comment line:!  Background Trans_coefficients/Codes for Pattern #N 
 

Variables  
 

BACK(i, n_pat) – Background polynomial coefficients 
Background coefficients (see Mathematical section) 
 
Bc(i, n_pat), D(I, n_pat) – Background Debye-like function coefficients 
Background coefficients (see Mathematical section) 

 
FBACK(i, n_pat) – Codewords 
Codewords for background coefficients 
 
CBc(i, n_pat), CD(i, n_pat) – Codewords 
Codewords for background coefficients 

 
FWINDOW- Number of points of the window of fourier filtering 
Window for Fourier filtering. The value of FWINDOW must be much greater than the number 
of points subtended by the base of a single Bragg reflections in the widest region (a factor greater 
than five, at least!). 
The starting background is read from file FILE.bac as in the case Nba=1. But, at variance with 
the case Nba =1, the file FILE.bac is re-written at the end of the session. 

 
Note: If Nba=1 (background read from file), BACK1 cannot be zero. Only four coefficients are 
needed if such a case. 

 



 

LOOP OVER PHASES 

 
At this point of the CODEFIL.pcr file, Nph (defined on line 4) blocks of lines (Line 18 to 46) should be 
given in order to describe the different phases to be included. These phases are used model the 
single/multi-pattern/integrated intensities if the users give input data (for Job=0,1,-1 on line 4), or to 
calculate simulated powder patterns (for Job=2,3,-3 on line 4). Each block defines several control codes, 
parameters and variables that are associated to the phase. The beginning of each block is identified with a 
heading made of several comment lines (optional on the reading, but re-written automatically after the 
first refinement). These comments have the form: 
Comment line: 
------------------------------------------------------------------------------------------------------- 
!  Data for PHASE number:n_phas ==> Current R_Bragg for Pattern# n_pat1:   6.79   
!  Data for PHASE number:n_phas ==> Current R_Bragg for Pattern# n_pat2:   5.46   
… 
!------------------------------------------------------------------------------------------------------ 
indicating the R_Bragg of thedifferent patterns to which the phase contributes. The selection of such 
patterns is made trough JCONTR(n_pat(i))- Line 19 
 
The specific job and parameters to be applied to each phase and the specific outputs are selected in the 
line 19. The other parameters and variables for this phase are given in the following lines, and their 
format will depend on the control codes given in Line 19. These parameters include:  

• The phase name -Line 18,  
• The phase crystallographic/magnetic/mechanic symmetry properties, Line 22 and Line 23a or 

Line 23b. 
• The atomic and/or magnetic parameters in several available formats on in the Line 25a or the 

Line 25b 
 
The input format then differs slightly, whether the phase is intended to contribute to patterns (controlled 
through Cry in Line 4 and JCONTR in Line 19) or if it contributes to a set of integrated intensities as 
observations (in this case, Cry≠0, Irf on Line 19 should be set to 4, and all JCONTR set to 0 on the Line 
19): 

• For those phases participating to a (some) patterns(s), (then JCONTR(n_pat) should be ≠0 to 
indicate the phase contribute to the pattern n_pat), the user have to give, for each pattern, a 
set of lines in the following order:  

Profile I parameters (including some general parameters and strain parameters in 
the Line 26-27) / Cell parameters (Line 29) / profile II (preferred orientation and 
asymmetry parameters- Line 30) /hkl shifts (Line 34-35)/ size parameters (Line 36)/ 
additional size-strain parameters (Line 37-38) 

Lines 34 to 38 are optional and their reading is controlled by the codes Sol in the line 19 for 
hkl-shifts, Str on line 19 for strain together with Strain-Model on Line 26, and Size-Model in 
the Line 27 for size. 

• In a case of a phase contributing to a single crystal integrated intensity reflection list, these 
lines have a different format and correspond to  

Scale parameters (Line 26)/Extinction parameters (Line 29)/λ/2 contamination 
(Line 30) 

• After, the reading of the CODEFIL.pcr file is common for both modes, and continue at the 
line Line 43 up to the end. 



 

Phase name 

(LINE 18 is a compulsory line, for information purpose only)  
 

Input format  
 
Line 18: PHSNM  (Character) 
 

Variable  
 

PHSNM 
Name of phase 

 

Main control codes line for the phase 

(LINE 19 is a compulsory line)  
 

Input format 
 

Multi-Pattern:  
The selection of the patterns to which the phase contributes is made in line 19-2 and 19-3. More≠0 in the 
line 19-1is used to read optional codes and variables to define specific outputs and/or jobs related to the 

phase  
 
Comment line: ! Nat Dis {Mom or Ang} Pr1 Pr2 Pr3 Jbt   Irf Isy Str Furth     ATZ   Nvk Npr More 
LINE 19: Nat, Dis, {Mom(Moment) or Mom(Angles)}, Jbt, Isy, Str, Furth, ATZ, Nvk, More  
(7 integers - 1 real - 2 integers) 
 
(Optional line to be given if More≠0) 
Comment line:  !Jvi   Jdi   Hel   Sol   Mom   Ter 
LINE 19-1: Jvi, Jdi, Hel, Sol, Mom, Ter  
  (6 integers)   
 
(Read one compulsory line) 
Comment line:  !  Contributions (0/1) of this phase to the #N Pattern 
LINE 19-2: JCONTR(1:NPATT) (NPATT integers) 
 
(For each pattern, two optional lines 19-3n and 19-4n are read if JCONTR(n_pat)≠0) 
Comment line:! Irf   Npr   Jtyp   for Pattern #N 
LINE 19-3: Irf, Npr, Jtyp   (3 reals)  
Comment line:! Pr1   Pr2   Pr3   Brind   Rmua   Rmub   Rmuc   for Pattern #N 
LINE 19-4: Pr1 Pr2 Pr3, Brind, Rmua, Rmub, Rmuc (7 reals)  



 
[(Old) Single pattern format]  

The items of the different multi-pattern lines are merged in two lines with a slightly different formatting in 
case of the use of the single pattern format (The multi-pattern Lines 19, 19-3n excepted Jtyp and Pr1 Pr2 
Pr3 in 19-4n are merged into Line 19; for More≠0, theLine 19-1, Jtyp in the line 19-3n and items of the 
Line 19-4n-excepted Pr1 Pr2 Pr3 are merged into line 19-1). As in the multi pattern format More≠0 is 

used to read optional outputs and/or jobs defined in the line 19-1: 
 
Comment line: ! Nat Dis {Mom or Ang} Pr1 Pr2 Pr3 Jbt   Irf Isy Str Furth     ATZ   Nvk Npr More 
LINE 19:  Nat, Dis, {Mom(Moment) or Mom(Angles)}, Pr1 Pr2 Pr3, Jbt, Irf, Isy, Str, Furth, ATZ, Nvk, 
Npr, More 
 (3 integer, 3 reals, 5 integers, 1 real, 3 integers)  
 
(Optional line to be given if More≠0) 
Comment line: ! Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp 
LINE 19-1:  Jvi, Jdi, Hel, Sol, Mom, Ter, Brind, Rmua, Rmub, Rmuc, Jtyp  
 (6 integers, 4 reals, 1 integer)  
 

Common flags for Single/Multi-Pattern 
 

Nat- Number of atoms 
Number of atoms in asymmetric unit. The total number of atoms for all phases cannot be greater 
than NATS 

 
Dis- Number of distance constraints 
Number of distance constraints 

 
Mom(Angles)- Number of angle constraints 
Number of angle constraints 

 
Mom(Moment) - Number of magnetic moment constraints 
Number of magnetic moment constraints 

 
Jbt –Structure factor model and refinement method for the phase 
= 0 The phase is treated with the Rietveld Method, then refining a given structural model. 
= 1 The phase is treated with the Rietveld Method and it is considered as pure magnetic. 

Only magnetic atoms are required. In order to obtain the correct values of the magnetic 
moments the scale factor and structural parameters must be constrained to have the 
same values (except a multiplying factor defined by the user) that their crystallographic 
counterpart. See note on magnetic refinements. The three extra parameters 
characterising the atomic magnetic moments corresponds to components (in Bohr 
magnetons) along the crystallographic axes. 

=-1 As 1 but the three extra parameters characterising the atomic magnetic moments 
corresponds to the value of M (in Bohr magnetons) the spherical Φ angle with X axis 
and the spherical Θ angle with Z axis. This mode works only if the Z axis is 
perpendicular to the XY plane. (for monoclinic space groups the Laue Class 1 1 2/m is 
required). 

= 2 Profile Matching mode with constant scale factor. 
=-2 As 2 but instead of intensity the modulus of the structure factor is given in the 

CODFILn.hkl file 
= 3 Profile Matching mode with constant relative intensities for the current phase. The scale 

factor can be refined. In this case Irf(n_pat) must be equal to 2, see below. 
=-3 As 3 but instead of intensity the modulus of the structure factor in absolute units 

(effective number of electrons for X-rays/ units of 10-12 cm for neutrons) is given in the 
CODFILn.hkl file. This structure factor is given for the non-centrosymmetric part of the 



primitive cell, so for a centrosymmetric space group with a centred lattice the structure 
factor to be read is: 

 
 /( )reduced conventionalF F Nlat I= ⋅ cen  

 
where Nlat is the multiplicity of the conventional cell and Icen=1 for non-
centrosymmetric space groups and Icen=2 for centrosymmetric space groups. 

= 4 The intensities of nuclear reflections are calculated from a routine handling Rigid body 
groups. 

= 5 The intensities of magnetic reflections are calculated from a routine handling conical 
magnetic structures in real space. 

=+10/-10 The phase can contain nuclear and magnetic contributions STFAC is called for 
reflections with no propagation vector associated and CALMAG is called for satellite 
reflections. CALMAG is also called for fundamental reflections if there is no 
propagation vector given but the number of magnetic symmetry matrices (MagMat, see 
below) is greater than 0. The negative value indicates spherical components for 
magnetic parameters. For this case the atom parameters are input in a slightly different 
format. 

=+15/-15 The phase is treated as a commensurate modulated crystal structure. All the input 
propagation vectors and also k=(0,0,0) are identified to be magnetic and/or structural by 
the reading subroutine. All nuclear contributions at reflections without propagation 
vectors (fundamental reflections of the basic structure) and all the reflections associated 
to a modulation propagation vector (superstructure reflections), are calculated by 
MOD_STFAC. Magnetic contributions are added, if necessary, calling the subroutine 
CALMAG as in the case of Jbt=+10/-10. The negative value indicates spherical 
components for magnetic parameters. This value of Jbt implies the use of a specific 
format for atom parameters. 

 
Isy –Symmetry operators reading control code 
=0 The symmetry operators are generated automatically from the space group symbol. 
=+/-1 The symmetry operators are read below. In the case of a pure magnetic phase Isy must 

be always equal to 1 or 2. 
=2 The basis functions of the irreducible representations of the propagation vector group 

are read instead of symmetry operators. At present this works only for a pure magnetic 
phase. 

 
For Jbt=10 with magnetic contribution Isy could be 0 but a comment starting with 
“Mag” should be given after the space group symbol. 
 
Note: For Profile Matching mode 2, Irf can be 0 in the first run. In that case, a 
CODFILn.hkl file is generated and Irf is set to 2 in the new CODFIL.pcr file. The file is 
updated at each run in the case of Jbt =2. Of course Isy must be 0. 
If for a phase Irf≤0 and Isy=1, the reflections are generated from the symbol given in 
the place reserved for the space group. In that case, a file CODFILn.hkl is generated 
with the relevant (non-zero) reflections and proper multiplicities for the particular 
model described by user-given symmetry operators. In addition the calculated 
intensities are F2 (corrected for multiplicity, scale and LP-factor) in absolute units. This 
file can be used as an input file to accelerate the calculations. The program does not use 
the intensities in new runs reading this generated file.  
 
The contain of this generated file, apart from the features described above, is: 
No k-vectors �  h   k   l          m  F2(calc)  F2(obs) 
      k-vectors �  h   k   l   nv   m  F2(calc)  F2(obs)   hr   kr   lr 
with obvious meaning. 

 
Str – Size-strain reading control code 



=0 If strain or/and size parameters are used, they are those corresponding to selected 
models 

=1 The generalised formulation of strains parameters will be used for this phase. 
If Strain-Model≠0 a quartic form in reciprocal space is used (see below) 

=-1 Options 1 and 2 simultaneously. The size parameters of the quadratic form are read 
before the strain parameters. 

=2 The generalised formulation of size parameters will be used for this phase. 
Quadratic form in reciprocal space. Only special options of strains with Strain-
Model≠0 can be used together with this size option. 

=3 The generalised formulation of strain and size parameters will be used for this phase. 
 

Furth- Number of user defined paramters 
Number of further parameters defined by user, to be used with user supplied subroutines. The 
default is the number of parameters defining the TLS for rigid body groups. It should be used 
only when Jbt=4. 

 
ATZ – Quantitative phase analysis 
Coefficient  to calculate the weight percentage of the phase. 
 

  2 /WATZ Z M f t=
 

Z: Number of formula units per cell, Mw= molecular weight 
f: Used to transform the site multiplicities used on line 11-41 to their true values. For a 

stoichiometric phase f=1 if these multiplicities are calculated by dividing the Wyckoff 
multiplicity m of the site by the general multiplicity M. Otherwise f=Occ.M/m, where 
Occ. is the occupation number given in LINE 25. 

t: Is the Brindley coefficient that accounts for microabsorption effects. It is required for 
quantitative phase analysis only. When different phases have similar absorption (in 
most neutron uses), this factor is nearly 1 (in such case ATZ=Z.Mw.f2). The Brindley 
coefficient is directly read in one of the following lines. 

 
Nvk - Number of propagation vectors 
Number of propagation vectors. If Nvk < 0 the vector -k is added to the list. 
 
More - Options 
If different from 0 the LINE 19-1 is read 

 

Optionnal parameters common for Single/Multi-Pattern (More≠0) 
 
Jvi – Optional outputs 
=1 A file suitable for SCHAKAL is generated 
=2 A file suitable for STRUPLO is generated  (The extension of the file is in both cases 

“.sch”) 
=11 If Jbt=2 a file CODFILn.int with a list of overlapped peak clusters is output. Useful as 

input file for working with integrated intensities in further processing using Irf=4 
and/or Cry=1, 2, 3 (Least Squares, Montecarlo or Simulated Annealing optimisation). 

 
Jdi – Optional crystallographic output 
=1 Creates a file called CODFILn.atm with all atoms within a primitive unit cell for a 

magnetic phase. The number n corresponds to the number of the current phase. If 
Jbt=10 only the list of magnetic atoms is generated. 

=-1 For a magnetic phase creates a file called CODFILn.atm with a format suitable for 
further processing with the program MOMENT. 

=2 As 1 but, for a crystal structure, all atoms inside the conventional cell are generated. 



If Jbt=15 then the output is slightly different. It gives the co-ordinates of all the atoms 
calculated from the average structure, displacement parameters, and symmetry relations 
in a multiple cell defined by the user, after all the atom parameters and before scale 
factors. The user has to provide the rotational part transforming the average structure 
basis vectors into the multiple cell basis and a translation part giving the shift of the 
origin of the multiple cell in the conventional cell setting (see below, LINE 25b). 

=3 Distance and angle calculations will be performed for the current phase. Bond Valence 
calculations may also be performed. The output is in the file CODFILn.dis. An 
additional file helping to create strings for soft constraints is output. This file has a fixed 
name: “dconstrn.hlp”. 

=4 Only Bond Valence calculations are output to the file CODFILn.dis for the current 
phase. 

 
Hel – Control code to constrain a magnetic structure to be helicoïdal 
=0 No action 
=1 The real and imaginary components of the Fourier coefficient of a magnetic atom are 

constrained to be orthogonal. The factor 1/2 is also included. This constraint may be 
unstable because is applied a posteriori. (see Mathematical section). 

 
Sol - Additional hkl-dependent shifts reading code control 
=0  No action 
=1 Additional hkl-dependent shifts parameters are read. 

 
Mom - Unused 
Unused at present 

 
Ter - Unused 
Unused at present 

 

Specific multi-pattern or pattern dependant parameters  
 

JCONTR – Phase contribution to patterns flags 
=0 The current phase does not contributes to the pattern 
=1  The current phase contributes to the pattern 

 
 Example (it is supposed that we are dealing with 5 diffraction patterns simultaneously): 
 0  1  1  0  1 
 
 The meaning of the list is that the current phase only contributes to patterns number 2, 3 and 5. 
 

Irf –Control the reflexion generation or the use of a reflexion file 
= 0 The list of reflections for this phase is automatically generated from the space group 

symbol 
= 1 The list h, k , l, Mult is read from file CODFILn.hkl (where n is the ordinal number of 

the current phase) 
=-1 The satellite reflections are generated automatically from the given space group symbol 
= 2 The list h, k, l, Mult, Intensity (or Structure Factor if Jbt=-3) is read from file 

CODFILn.hkl. 
= 3 The list h, k, l, Mult, Freal, Fimag is read from file CODFILn.hkl. In this case, the 

structure factor read is added to that calculated from the supplied atoms. This is useful 
for simplifying the calculation of structure factors for intercalated compounds (rigid 
host). 

=4,-4 A list of integrated intensities is given as observations for the current phase (In the case 
of Cry≠0 this is mandatory) 

 
The file CODFILn.hkl can also be named as HKLn.hkl, or CODFIL.int in the case Cry≠0.  



 
The format of CODFILn.hkl files is described in this appendix in the paragraph  
 
Npr – Specific profile function for the phase 
Integer indicating the peak shape function for the present phase (see LINE 4n). If Npr=0, the 
default value of Npr is taken. 
 
Jtyp – Job type for the current phase 
Job type for the current phase. Allows the refinement of heterogeneous data (Same values as the 
global variable Job in LINE 4n). For the moment is only useful for Irf=4. 

 
Pr1 Pr2 Pr3 - Preferred orientation direction 
Preferred orientation direction in reciprocal space. Three components. 
 
Brind - Brindley coefficient 
Brindley coefficient 
 
Rmua – Weight of integrated intensity data sets 
Used when Irf=4. If Rmua=0.0 the program puts Rmua=1.0 internally. The value of this 
variable corresponds to the global weight of the integrated intensity observations with respect to 
the global profile. The contribution to the normal equations of the integrated intensity part is 
multiplied by Rmua. 
 
Rmub – Exclusion of low statistic reflexions in integrated intensity data sets 
If Irf=4, Rmub is a factor for excluding reflections: only the reflections verifying the constraint: 
Gobs≥ Rmub ×σ(Gobs), are considered in the refinement. Gobs is the integrated intensity, structure 
factor or structure factor squared of the current reflection.   
If Jvi=11 and Jbt=2 and Irf≠4 see note below. 
 
Rmuc – Chi2 dependent weighting of integrated intensity data sets 
If Irf=4 and Rmuc>0.9 the weights are divided by the reduced χ2 of the precedent cycle (not 
tested!) for integrated intensity refinements (Irf=4). 
 
If Jvi=11 and Jbt=2 and Irf≠4 see note below. 
Note: If Jvi=11 and Jbt=2 the parameters Rmub and Rmuc are used to control whether two 
consecutive reflections belongs to a same cluster. This is only for Irf different from 4/-4. The 
rule is the following: 

The reflections i and i+1 belong to the same cluster if 
T(i+1)-T(i) < 0.5×(H(i)+H(i+1)) ×Rmub 
or 
T(i+1)-T(i) < 0.5×(H(i)+H(i+1)) and G(i+1) < Gsum×Rmuc 

 
G(i) is the integrated intensity, T(i) is the Bragg position, H(i) is the FWHM of reflection i,  Gsum 
is the cumulated integrated intensity of the current cluster. 
If Rmub and Rmuc are given as zeroes, the program uses the values Rmub=1.0 and Rmuc=0.2. 

 
From here up to the end of the PCR-file the old single pattern format coincides with the format for 
multiple patterns. The only prescription to take into account is that NPATT=1 in the loops depending on 
the number of patterns. 
 



Optional Bond-Valence or distance and angles calculations 

(LINE 20 and 21 are Optional lines, read if Jdi=3 or 4) 
 

Input format 
 

Single/multi Pattern common format:  
Only the line 20 is needed for distance and angles calculation. Optional line 21, 21-1 and 21-2 are read 

in case the user wants to perform BVS calculations (the character variable BVS have in this case to be set 
to “BVS”). Outputs of the results is made in a file named CODFILn.dis 

 (where n is the ordinal number of the phase) 
 

LINE 20: DIS_MAX, ANG_MAX, BVS 
 (2 reals - Character)  
Comment line:  ! Max_dst(dist)   (angles)   Bond-Valence Calc 
 
(Optional lines, read in case of BVS calculations) 
LINE 21: N_CATIONS, N_ANIONS, TOLERANCE 
 (2 integers - 1 real)  
Comment line:  ! N_cations   N_anions   Tolerance(%) / Name cations/ and Anions 
LINE 21-1: CATIONS (Character) (N_CATIONS) 
LINE 21-2: ANIONS (Character) (N_ANIONS) 
 

Variables 
 
DIS_MAX – Control of the number of distances outputed 
Maximum distance between atoms to output in file CODFILn.dis. 
ANG_MAX - Control of the number of angles outputed 
Maximum distance between atoms to output angles in file CODFILn.dis. If ANG_MAX=0 no 
angle calculations are performed. 
BVS – Flag for BVS calculations 
If this character variable is equal to BVS then Bond Valence calculations are performed and the 
results output to file CODFILn.dis. The LINE 21 is then read. 

 
N_CATIONS - Number of cations 
Number of cations 
 
N_ANIONS- Number of anions 
Number of anions 
 
TOLERANCE - Tolerance for the ionic radius in percentage 
Tolerance for the ionic radius in percentage. Two atoms are considered as bonded if their 
distance is less than the sum of their respective ionic radius augmented by the value of 
TOLERANCE. The explicit expression for considering two atoms as bonded is: 
 
Distance(Atom1, Atom2) ≤ (R(Atom1)+R(Atom2))×(1+0.01× TOLERANCE) 
 
If TOLERANCE=0 the program takes TOLERANCE=20. 

 
CATIONS- Symbols of the cations 
Symbols of the cations in uppercase and putting the sign of the charge before the valence. 
Example for three cations: 
CU+2   Y+3   BA+2 
 



The chemical species are numbered sequentially, so: Cu2+ is the species number 1, Y3+ is the 
species number 2 and Ba2+ is the species number 3. This numbering is important to identify the 
chemical nature of the atoms in the asymmetric unit. 

 
ANIONS - Symbols of the anions 
Symbols of the anions in uppercase and putting the sign of the charge before the valence. 
Example for two anions: 
O-2   CL-1 
 
O2- is the species number 4 and Cl- is the species number 5. 

 

Space group symbol 

(LINE 22, compulsory line) 
 

Input format  
 
LINE 22: SYMB, Comment (Character A20, A60) 
 

Variables  
 

SYMB - Space group symbol 
Space group symbol must be given in the first 20 positions of the line. 
Examples: 
P 63/m              <- Space Group Symbol 
P 21 21 21           Magnetic symmetry follows 
 
If SYMB starts with the keyword HALL, the program expects to read the Hall symbol of the 
space group instead of the conventional Hermann-Mauguin symbol. 
Example: 
HALL   -P 4 2a 
 
Comment – Allowed options 
Only needed for Jbt=+10/-10. The Comment must start after the 20th column in the line. 
 
Note: At present rhombohedral space groups must be given in the hexagonal description. Do not 
forget blanks between symmetry operators corresponding to different directions. It is advisable 
to check the Laue symmetry and symmetry operators in the output file especially for those space 
groups for which alternative origins are shown in the International Tables. By default the 
program uses the setting with the inversion centre at the origin. Upper and/or lower case 
characters can be used. If you find that for a non standard space group symbol the operators of 
the space group do not correspond to what you expect (the program has selected another origin!), 
you have to change the setting (another symbol) or give your own symmetry operators (see 
above Isy). For cubic space groups you may use either the old notation, e.g. F d 3 m or the 
new notation of the International Tables: F d -3 m. The space group symbol must be given 
even in the case that you are giving your own symmetry operators. The reflections (if they are 
not read from file) will be generated according to the space group symbol. 
A Comment can be put after column 20. If this Comment starts with the keyword “Mag” 
(without quotes) then the following line is read if Jbt=10 or Jbt=15. 



 

Specific user defined mag symmetry with time reversal operations  

(LINE 23a is optional, only read if Jbt=±10 AND Comment = Mag) 
 

Input format 
 
(Specific input if Jbt=±10 and Comment = Mag on LINE 22) 
LINE 23: TIME_REV (NS+1 integers) 
Comment line: ! Time Reversal Operations on Crystal Space Group 
 

Example (NS=12 for the P 6/m m m space group): 
P 6/m m m           Magnetic symmetry below 
! Time Reversal Operations on Crystal Space Group 
1  1  1  1  1  1 -1 -1 -1 -1 -1 -1  1 

 

Meaning 
 

NS is the number of independent symmetry operators given in file CODFIL.out for the 
crystallographic space group. TIME_REV(i)=-1 if time reversal is associated to operator “i” for 
magnetic symmetry, otherwise is equal to 1. The order of operators is the same as in 
CODFIL.out, so a first run is needed for knowing the list of crystallographic symmetry 
operators. For centrosymmetric groups TIME_REV(NS+1) tells the program if time reversal is 
associated (-1) or not (1) to the inversion operator. This last item should be given only for 
centrosymmetric space groups. 
This approach assumes that the magnetic symmetry belongs to the family of the crystallographic 
space group. However the user can treat the problem using subgroups of the space group 
(making the appropriate constraints in the atomic positions) when needed. 

 

Controls codes for symmetry operators AND/OR irreducible representations and basis 
functions 

(LINE 23b, optional, read if Isy≠0) 
 

Input format 
 
[If Isy≠0, Jbt≠15] 
Comment line: ! Nsym  Cen  Laue  MagMat 
LINE 23:  Nsym, Cen, Laue, MagMat (4 integers)  
 
[If Isy≠0, Jbt=15] 
Comment line: ! Nsym  Cen  Laue  DepMat  MagMat 
LINE 23:  Nsym, Cen, Laue, DepMat, MagMat (5 integers) 
 
[If Isy=-2, Jbt=±1] 
Comment line: ! Nsym   Cen  Laue Ireps N_Bas 
LINE 23:  Nsym, Cen, Laue, Ireps, N_Bas (5 integers) 
 (An OPTIONAL line is read if Isy=-2] 
Comment line: ! Real(0)-Imaginary(1) indicator for Ci 
LINE 23-1:  ICOMPL (up to 9 integers)  
 



Variables 
 

Nsym - Number of crystallographic symmetry operators 
Number of symmetry operators given below. 

 
Cen – Centrosymmetry flag  
= 1 Non centrosymmetric structure 
= 2 Centrosymmetric structure 

 
Laue – Laue class 
Integer corresponding to the following Laue classes: 

1: -1 
2: 2/m 
3: mmm 
4: 4/m 
5: 4/mmm 
6: -3  R 
7: -3m  R  
8: -3 
9: -3m1 
10: -31m 
11: 6/m 
12: 6/mmm 
13: m3 
14: m3m 

 
This number is only used for checking the symmetry operators given by users. For a phase 
described in a hexagonal basis one should put Laue=6,7...12, even if the space group symbol 
used for generating the reflections is of different symmetry. 

 
MagMat - Number of magnetic rotation matrices 
Number of magnetic rotation matrices for each symmetry operator. 
 
DepMat - Number of atomic displacement rotation matrices 
Number of atomic displacement rotation matrices for each symmetry operator. This item is given 
only if Jbt=15. 
 
Ireps - Number of irreducible representations 
Number of irreducible representations. The representations themselves must not be given. The 
user must provide the components of atomic basis functions (constant vectors) corresponding to 
the irreducible representations of the propagation vector group. Given only if Isy=-2. 
If Ireps is given a negative value, complex basis functions will be provided, that is the real an 
imaginary components of the atomic basis functions. 
 
N_Bas - Number of atomic basis functions- BSF 
Number of atomic basis functions: constant vectors of three components referred to the 
conventional unit cell. This number corresponds to the maximum number of free coefficients 
that can be refined. At present N_Bas ≤ 9 
(ICOMPL(i), i=1, N_Bas) – Real or pure imaginary BSF coefficients flags  
Flags indicating if the coefficient of the linear combination of atomic basis functions is real or 
pure imaginary. See Mathematical section for details. 



 

Input format for symmetry operators or basis functions 

(LINE 24, optional, read if Isy≠0) 
 

Input format will depend on Isy 
 

User defined symmetry operators [Isy≠-2] 
 
Isy≠-2 
LINE 24: Nsym × (1+MagMat+DepMat) Lines  
 

User defined basis functions [Isy=-2] 
 
or  
Isy=-2  
LINE 24:  Nsym × (1+ABS(Ireps)) or Nsym × (1+2 × ABS(Ireps)) Lines 
 
The different lines have different formats: 
 

User defined symmetry operators (Isy other than -2) 
 
If Isy=1 the symmetry operators are given as 3x3 matrix in numeric form:  
Sij for symmetries relating atomic position, Mij for matrix relating Fouriercomponents of the magnetic 
moments, and Dij for the matrix relatinfg the Fouriercomponents of the displacement parameters (Jbt=15). 
The numerical Ph value following the Mij and Dij symmetry operators are the magnetic/displacement 
phase in units of . 2π

Remark: DepMat is always 0 if Jbt ≠ 15 (see line 23b) 
Comment line : 
!S11 S12 S13  T1    S21 S22 S23  T2    S31 S32 S33  T3 
!M11 M12 M13  M21 M22 M23  M31 M32 M33     Ph  (If MagMat≠0) 
!D11 D12 D13  D21 D22 D23  D31 D32 D33     Ph  (If Jbt=±15 and DepMat≠0) 
 
Followed by Nsym blocks of the form: 
 
S11 S12 S13  T1  S21 S22 S23  T2  S31 S32 S33  T3    (3(3Int,1real)) 
D11 D12 D13   D21 D22 D23   D31 D32 D33 .Phase       (9Int,1real) 
                                                   DepMat lines 
R11 R12 R13   R21 R22 R23   R31 R32 R33 .Phase       (9Int,1real) 
                                                   

 
• If Isy=-1 the symmetry operators are given in alpha-numeric form: 

 
Example (the displacement operator is given only if 

! 
Jbt=±15): 

MagMat lines 

SYMM   X,Y,Z 
DSYM   U,V,W, 0.0 
MSYM   U,V,W, 0.0 
! 
SYMM   X+1/2,-y, Z 
DSYM   u,-v, w, 0.5 
MSYM  -U,  V,-W, 0.0 
! 
SYMM   -x,-y,-Z 



DSYM   U,-V,W, 0.0 
MSYM    U, V, W, 0.0 
. . . . . . . . . . 
 

 
The symbols U,V,W (lower or capital case) are used for the Fourier components of the magnetic 
moments/displacement vectors along X,Y,Z. The numerical value following the MSYM/DSYM 
operator is the magnetic/displacement phase in units of . 2π
 

User defined basis functions (Isy=-2) 
 

• If Isy=-2 the basis functions of the irreducible representations of the propagation vector group 
are read in the following form: 

 
The keyword BASR precedes the list of 3-components vectors corresponding to the real part of 
the atomic basis functions. A list of 3×N_Bas real numbers should be given in the same line. 
In the case of negative Ireps, the keyword BASI precedes the list of 3×N_Bas real numbers 
corresponding to the imaginary components of the atomic basis functions. 
 
Example for Nsym=4,  Ireps=-1 and N_Bas=3: 

! 
SYMM   x, y, z 
BASR   1 0 0   0 1 0   0 0 1 
BASI   0 0 0   0 0 0   0 0 0 
! 
SYMM   x+1/2,-y, z 
BASR   0 0 0   0 0 0   0 0  0 
BASI  -1 0 0   0 1 0   0 0 -1 
! 
SYMM   -x,-y,-z 
BASR   1 0 0   0 1 0   0 0 1 
BASI   0 0 0   0 0 0   0 0 0 
! 
SYMM   -x+1/2,y,-z 
BASR   0 0 0   0 0 0   0 0  0 
BASI  -1 0 0   0 1 0   0 0 -1 



 

INPUT FORMAT OF ATOM PARAMETERS FOR CONVETIONAL JOBS  

(LINE 25a Jbt≠±10, ±15) 
 

The input format will depend mostly on Jbt  
 

Single/multi Pattern have a common format:  
Several lines are read for each of the Nat atoms, depending on the value of the 

variables Jbt in one hand, N_t and/or Isy on the aother hand. 
In the following the refinement codewords for a variable adopts the same name as the variable 

preceded by the character C. 
 

For X-ray or nuclear Neutron scattering [Jbt=0] 
 
Comment line : !Atom Typ       X        Y        Z     Biso      Occ     In Fin N_t  Spc /  Codes 
LINE 25-1:  Atom, Typ, X, Y, Z, Biso, Occ, In, Fin, N_t, Spc  
  (2A4, 5 reals, 4 integers) 
LINE 25-2:   CX, CY, CZ, CB, CN (Codewords 5 reals) 
 
(Optional anisotropic temperature factors are read if N_t=2) 
Comment line : !    beta11   beta22   beta33   beta12   beta13   beta23  /Codes 
LINE 25-3:  B11, B22, B33, B12, B13, B23   (7 reals)  
LINE 25-3:  CB11, CB22, CB33, CB12, CB13, CB23  (Codewords 8reals)  
 
(Optional Form factors coefficients are read if N_t=4- 4 lines) 
Comment line : ! Form-factor refinable parameters 
LINE 25-3 f1 f2 f3 f4 f5 f6 f7 (7 reals)   
LINE 25-4 Cf1 Cf2 Cf3 Cf4 Cf5 Cf6 Cf7 (Codewords 7 reals) 
LINE 25-5 f8 f9 f10 f11 f12 f13 f14 (7 reals) 
LINE 25-6 Cf8 Cf9 Cf10 Cf11 Cf12 Cf13 Cf14 (Codewords 7 reals) 
 
(Optional special form factors are read if Typ =SASH - 2 lines) 
LINE 25-7: SASH-type, Ncoeff, Matrix    (1 character, 1 integer, 9 reals) 
LINE 25-8: lmp(3, 12)      (3× Ncoeff, or 2× Ncoeff, integers) 
 

For X-ray or nuclear Neutron scattering:  
Structural model supplied by user (Rigid body refinement) [Jbt=4,-4] 

Parameters defined by user in STRMOD. At present for Rigid Body Groups. 
 
Comment line :   !Atom Typ      p1       p2       p3      p4     p5      p6     p7     p8 
LINE 25-1:  Atom, Typ, P1, P2, P3, P4, P5, P6, P7, P8  (2A4, 8 reals) 
LINE 25-2:  CP1, CP2, CP3, CP4, CP5, CP6, CP7, CP8    (Codewords 8 reals) 
Comment line : !     p9        p1     p11      p12       p13      p14      p15     p16 
LINE 25-3:   P9, P10, P11, P12, P13, P14, P15    (7 reals)   
LINE 25-4:  CP9, CP10, CP11, CP12, CP13, CP14, CP15  (Codewords 7 reals) 



 
For magnetic Neutron scattering [Jbt=1] 

Parameters and codewords for fractional atomic co-ordinates, isotropic displacement (temperature) 
parameter, occupation number and magnetic moment components (LINE 25-1), imaginary components of 

the magnetic moments, and diagonal terms βii of the ATF tensor. 
 
Comment line :   !Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      Rx    Ry    Rz 
LINE 25-1:   Atom, Typ, Mag, Vek, X, , ZY , Biso, Occ, RX, RY, RZ (2A4, 2 integers, 8 reals) 
LINE 25-2:   CX, CY, CZ, CB, CN, CRX , CRY , CRZ    (Codewords 8 reals) 
Comment line : !     Ix     Iy     Iz    beta11  beta22  beta33   MagPh 
LINE 25-3:  IX, IY, IZ, B11, B22, B33, MagPh    (7 reals) 
LINE 25-4:  CIX, CIY, CIZ, CB11, CB22, CB23, CMagPh  (Codewords 7 reals) 

 
For magnetic Neutron scattering [Jbt=-1] 

Same as previous (Jbt=1) but the moment components are given in spherical coordinates  
 
Comment line :   ! Atom Typ  Mag Vek    X      Y      Z    Biso   Occ      Rm      Rphi  Rtheta' 
LINE 25-1:   Atom, Typ, Mag, Vek, X, Y, Z, Biso, Occ, RM, Rphi, Rthet  
  (2A4, 2 integers, 8 reals) 
LINE 25-2:   CX, CY, CZ, CB, CN, CRM , CRPHI , CRTHET  (Codewords 8reals) 
Comment line : !     Im   Iphi   Itheta  beta11  beta22  beta33   MagPh 
LINE 25-3:  Im, Iphi, Ithet, B11, B22, B33, MagPh  (7 reals) 
LINE 25-4:  CIX, CIY, CIZ, CB11, CB22, CB23, CMphas (Codewords 7 reals) 

 
For magnetic Neutron scattering [Jbt=-1 and Isy=-2] 

Same as previous (Jbt=1) but the moment components are given by a linear combination of the basis 
functions defined in the Line 24 affected to the coefficients Ci  

 
(Coefficients for basis functions, Ci) 
Comment line :   ! Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      C1      C2      C3 
LINE 25-1:   Atom, Typ, Mag, Vek, X, Y, Z, Biso, Occ, C1, C2, C3   (2A4, 2 integers, 8 reals) 
LINE 25-2:   CX, CY, CZ, CB, CN, CC1, CC2, CC3    (Codewords 8 reals),  
Comment line : !     C4     C5     C6      C7      C8      C9     MagPh 
LINE 25-3:  C4, C5, C6, C7, C8, C9, MagPh    (7 reals) 
LINE 25-4:   CC4, CC5, CC6, CC7, CC8, CC9, CMPhas    (Codewords 7 reals) 
 

Magnetic model supplied by user. At present conical structures in real space 
[Jbt=5,-5] 

 
LINE 25-1:   Atom, Typ, Mag, Vek, P1, P2, P3, P4, P5, P6, P7, P8  (2A4,2 integers, 8 reals) 
Comment line : !Atom Typ  Mag Vek    X      Y      Z       Biso   Occ    Mom   beta  Phase 
Line 25-2:  CP1, CP2, CP3, CP4, CP5, CP6, CP7, CP8   (Codewords 8reals) 
Line 25-3:  P9, P10, P11, P13, P14, P15, P12    ( 
Comment line : !   Phi & Theta  of Cone-axis + unused params 
Line 25-4:  CP9, CP10, CP11, CP13, CP14, CP15, CP12  (Codewords 8reals) 
 

Common variables to all models 
 

Atom – Identification name 
Identification characters for atom or object. 
 
Typ - Link to scattering data 
Link to scattering data of the atom: either NAM  from LINE 12 or chemical symbol and valence 
to access internal table (use only upper case letters). See notes given in LINE 12. Also a series of 
special form factors are available with refinable parameters. For using this option Typ should be 



equal to one of the following words: SPHS, SPHE, SASH, ELLI, DISK, TORE (not available 
yet), FUD1, FUD2, FUD3, FUD4 are Dum my symbols that may be introduced for special form-
factor refinements, the code calculating the form-factor must be included in the subroutine 
Form_Factor. In case of special form-factor the content of the variable Atom must start with the 
chemical symbol to normalise the scattering density. See Mathematical section for details. 
 

Variables describing the nuclear structure  
 
X, Y, Z - Fractional atomic coordinates 
Fractional atomic coordinates 
 
Biso- Isotropic displacement (temperature) parameter 
Isotropic displacement (temperature) parameter in Å2 
 
Occ - Occupation number 
Occupation number i.e. chemical occupancy × site multiplicity (can be normalised to the 
multiplicity of the general position of the group). 
 
In, Fin – Subset of symmetry operator 
Ordinal number of first and last symmetry operator applied to the atom, apart from the identity 
which must always be the first one. 
Useful to describe pseudo-symmetries. This option is normally used when the user supply their 
own list of symmetry operators (Isy=1).Be careful with multiplicity of reflections!. It is 
suggested that the users supply also their list of reflections. If In=Fin=0 all the symmetry 
operators are applied. Only used for crystallographic structures. 
 
N_t – Atom type 
=0 Isotropic atom. No anisotropic temperature factors are given. 
=2 Anisotropic atom. The anisotropic temperature factors should be given below. 
=4 The form-factor of this atom is calculated using a special subroutine and refinable 
parameters should be given below (under test!) 
 
Spc - Number of the chemical specie 
Number of the chemical specie. Used for Bond Valence calculations, see LINE 21 for details. 
 

Variables specific to magnetic structures 
 
Mag - Magnetic rotation matrix identificator 
Ordinal number of the magnetic rotation matrices applied to the magnetic moment of the atom. 
To be given only in the case of a magnetic phase 
 
Vek - Propagation vector identificator 
Number of the propagation vector to which the atom contributes. If Vek=0 the atom is used for 
all the propagation vectors in the calculation of structure factor. If Vek<0 the atom contributes to 
VK(abs(Vek)) and to the vector VK(abs(Vek)+Nvk/2) 
 
RX, RY, RZ – Cartesian magnetic moments components 
Components along the crystallographic axis of the magnetic moments, in units of Bohr 
magnetons. 
 
RM, Rphi, Rthet– Spherical magnetic moments components 
In the case Jbt=-1 these three parameters correspond to the spherical components of the 
magnetic moment M, in the following order: (µ, φ, θ). µ: magnitude of the Fourier component of 
magnetic moment, φ and θ are spherical angles of vector M (see note on magnetic refinements). 



 
If the magnetic phase is incommensurate or described in the crystallographic cell with the help of 
a propagation vector, these components (RX, RY, RZ or RM, Rphi, Rthet) are actually the real 
part of the Fourier component of the magnetic moment of the atom (Sk). 
 
IX, IY, IZ – Imaginary Cartesian magnetic moment components 
Imaginary components of the Fourier coefficient of magnetic moment: 
 
Im, Iphi, Ithet - Imaginary spherical magnetic moment components 
Spherical components as for real components. 
 
C1, C2, C3, C4, C5, C6, C7, C8, C9 – Coefficients of the basis functions 
Coefficients of the linear combinations of basis functions. 
 
MagPh - Magnetic phase 
Magnetic phase of the atom in units of 2π (see Mathematical section) 
 
The units of IX, IY, IZ and Im are in Bohr magnetons. The angles Iphi, Ithet are in degrees, the 
vector corresponding to the Fourier component of the magnetic moments is defined as (see 
Mathematical section): 

Sk=1/2 (Rk+i Ik) exp(-2π i ) MagPh
The components of the real, Rk, and imaginary, Ik, parts are given with respect to a basis of unit 
vectors along the crystallographic unit cell. 

 
If Hel=1 (see LINE 19) the third component IZ is calculated by the program in order to have an 
imaginary vector orthogonal to the real vector (Rk⋅Ik =0). If Jbt<0, then the φ-angle of the 
imaginary part is calculated by the program for keeping the orthogonal constraint. 
 

Options-I: anisotropic temperature factors and form factors 
 

B11, B22, B33, B12, B13, B23 –Anisotropic temperatutre factors 
Anisotropic displacement (temperature) parameters ( ijβ ) are all refinable for X-ray or nuclear 
Neutron scattering , if Jbt=0. For Jbt=1,-1, only the diagonal elements B11, B22, B33 of the 
anisotropic temperature factors tensor are refinable. 
 
f1 to f14 – Refinable form-factor coefficients 
The parameters f1 to f14 are used for X-ray or nuclear Neutron scattering (Jbt=0) if N_t is set to 
4: they allow describing the form-factor of the current object and the corresponding codewords 
are given by Cf1-Cf14 (Line 25-4/6). The meaning of the coefficients is explained in 
Mathematical section. 
 

Options-II:Special form factors 
SASH-type – Special form factor 
Label indicating if real spherical harmonics (SASH-type =ylmp) or cubic harmonics (SASH-
type =klj) are used to describe the scattering density. 
 
Ncoeff – Order of the SH developement  
Number of coefficients used in the description of the scattering density. 



 
Matrix – Rotation matrix from crystallographic to local axes 
Matrix transforming the crystallographic Cartesian axes to the local Cartesian axes for the 
representative position of the molecular centre. If not given, the program uses the identity matrix. 
 
lmp(3, 12) – Spherical harmonics-SH indices 
List of real spherical harmonics indices:  Ncoeff triplets (l, m, p) for SASH-type =ylmp, or 
List of cubic harmonics indices:  Ncoeff pairs (l, j) for SASH-type = klj. 
 
The form-factor corresponding to Typ =SASH  is well adapted to nearly free molecular 
rotations. For a molecule with N atoms rotating around its centre of mass (supposed to be in a 
particular crystallographic site) the molecular form factor is given by: 
 

( ) ( )4 (s l
lmp l s s lmp

slmp

f c i j Qr b yπ θ, )ϕ= �Q  

or 
( ) ( )4 (s l

lj l s s lj
slj

f c i j Qr b Kπ θ, )ϕ= �Q  

Where the index s runs from 1 to N and corresponds to N spherical shells. jl(x) is the spherical 
Bessel function of order l. Klj(θ,ϕ) and ylmp(θ,ϕ) and are the cubic harmonics and the real 
spherical harmonics, respectively, as defined in M. Kara and K. Kurki-Suonio, Acta Cryst 37, 
201 (1981). bs is the scattering length (or X-ray scattering factor). The coefficients s

ljc   and s
lmpc   

are free parameters.  
In FullProf  the form-factor Typ =SASH corresponds to just one shell (a particular value of s). 
For a complete molecule the user must provide a number of SASH objects equal to the number 
of spherical shells characterising the molecule. The first parameter in the list (f1, f2, f3, …) 
corresponds to the value of the spherical shell radius: f1=r, the second parameter is the number 
of atoms of the chemical species given by Atom, within the spherical shell. The coefficients (f3, 
f4, f5, …f14) correspond to the free parameters s

ljc   or s
lmpc  of the current shell in the order 

specified by the list lmp(3, 12). The first coefficient f3 corresponds to the free rotator term 
l=m=0 (or l=j=0) and should, normally, be fixed to 1. The user must provide the list (l, m, p)/(l, j) 
in ascending order on l according to the local site symmetry. See Table 2 in the above reference. 
 
Example:  

 

User defined structural or magnetic models 
 

P1 to P15 
For Jbt=4,-4, the parameters are defined by user in the subroutine STRMOD. At present the 
parameters correspond to the Rigid Body constraints. The meaning of the parameters is 
explained in the Rigid Body Refinements section. 
 
For Jbt=5,-5 the parameters are defined by user in the subroutine MAGMOD. At present the 
parameters correspond to the treatment of conical structures in real space. 



 

INPUT FORMAT OF ATOM PARAMETERS FOR COMBINED JOBS  

(LINE 25b, FOR Jbt=±10, ±15) 
 

(For X-rays or nuclear + magnetic Neutron scattering Jbt=±10) 
 
Comment lines : !Atom Typ    Mag Vek      X         Y         Z       Biso      Occ    N_type   Spc 

!Line below:Codes 
or 
!     Rx       Ry        Rz        Ix        Iy        Iz      MagPh 
!Line below:Codes  
or 
!     Rm      Rphi   Rtheta        Im       Rphi     Rtheta      MagPh 
!Line below:Codes 
or 
!     C1       C2        C3        C4        C5        C6      MagPh 
!Line below:Codes 
or 
!    beta11   beta22   beta33   beta12   beta13   beta23  /Line below:Codes 
or 
! Form-factor refinable parameters  

LINE 25-1:  Atom, Typ, Mag, Vek,  X,   Y,   Z,    Biso,   Occ  N_t Spc (a) 
  (2a4,2 integers,5 reals,2 integers) 
LINE 25-2:     CX, CY, CZ, CB, COC  (b)  (5 reals) 
(Optional magnetic moment components in cartesian coordinates, read if N_t=1,3) 
LINE 25-3: RX, RY, RZ     IX, IY, IZ   MagPh   (c)  (7 reals) 
LINE 25-4:  CRX  CRY  CRZ   CIX  CIY  CIZ   CMPhas   (d)  (7 reals) 
(Optional magnetic moment components in spherical coordinates, read if N_t=-1,-3) 
LINE 25-3: RM   Rphi   Rthet    Im   Iphi   Ithet MagPh  (c)  (7 reals) 
LINE 25-4: CRM  CRPHI  CRTHET  CIM  CIPHI  CITHET CMPhas  (d)  (7 reals) 
(Optional coefficient for the linear combination of basis functions, read if N_t=1,3 and Isy=-2) 
LINE 25-3: C1     C2     C3     C4     C5     C6       MagPh   (c)  (7 reals) 
LINE 25-4: CC1   CC2   CC3   CC4   CC5   CC6   CMPhas   (d)  (7 reals) 
(Optional Anisotropic temperature factor parameters, read if N_t=2,3,-3, and Isy=-2) 
LINE 25-5: B11    B22     B33     B12    B13     B23    (e)  (6 reals) 
LINE 25-6: CB11  CB22  CB33  CB12  CB13  CB23   (f)  (6 reals) 
(Optional Form factors coefficients ansd codes (4 lines) are read if N_t=4) 
LINE 25-7: f1     f2     f3     f4     f5     f6     f7    (g)  (7 reals) 
LINE 25-8: Cf1   Cf2  Cf3   Cf4  Cf5  Cf6  Cf7    (h)  (7 reals) 
LINE 25-9: f8     f9    f10     f11    f12     f13    f14    (i)  (7 reals) 
LINE 25-10: Cf8   Cf9 Cf10  Cf11  Cf12  Cf13 Cf14   (j)  (7 reals) 

 
Note that: 
If N_t = 0 Only lines (a) and (b) need to be given 
If N_t = 1 give the lines (a), (b), (c) and (d) 
If N_t = 2 give the lines (a), (b), (e) and (f) 
If N_t = 3 give the lines from (a) to (f) 
if N_t = 4 give the lines (a), (b), (g),(h),(i) and (j)  (special form-factor) 
 
This input could be also used for X-rays, in such case Mag and Vek should be zero for all the atoms and 
Job or Jtyp(n)=0. In such case the space group symbol can be used for generation of reflections and 
symmetry operators (with Irf set to 0). 
For a phase with magnetic contributions Typ should be equal to the magnetic form factor symbol. The 
program extracts internally the Fermi length symbol from Typ. If there are magnetic contributions the 
symmetry should be controlled by the user (Isy=±1,-2) and the magnetic part should be described with the 



formalism of propagation vectors, the magnetic contribution is calculated only for the satellite reflections. 
If fundamental reflections have magnetic contribution the propagation vector k=(0,0,0) must be included 
explicitly if there are other propagation vectors. If the magnetic cell is the same as the chemical cell 
propagation vectors are not needed. 
The symmetry operators must belong to the group of the propagation vector Gk, so some atoms need, in 
general, to be repeated for the rest of positions not generated by Gk. 
 

For X-rays or nuclear + magnetic Neutron scattering (Modulated structures) 
Jbt=±15: 

At present only rational components of the propagation vectors are allowed (Commensurate modulated 
structures). The calculation of the structure factor is made exactely 

. 
Comment lines : !Atom Typ    Mag Vek     X      Y     Z    Biso      Occ    N_type   Nki 

!Line below:Codes 
or 
!     Rx       Ry        Rz        Ix        Iy        Iz      MagPh    Dep  Dvek 
!Line below:Codes  
or 
!     Rm      Rphi   Rtheta        Im       Rphi     Rtheta      MagPh    Dep  Dvek 
!Line below:Codes 
or 
!    beta11   beta22   beta33   beta12   beta13   beta23  /Line below:Codes 
or 
! Form-factor refinable parameters  

LINE 25-1: Atom, Typ, Mag, Vek, X,   Y,   Z,    Biso,   Occ  N_t   Ndvk (a) 
       (2a4,2 integers,5 reals,2 integers) 
LINE 25-2:                                             CX, CY, CZ, CB, COC  (b)  (5 reals) 
(Optional magnetic moment components in cartesian coordinates, read if N_t=1,3) 
LINE 25-3:                           RX, RY, RZ     IX, IY, IZ,      MagPh (c)  (7 reals) 
LINE 25-4:                        CRX  CRY  CRZ   CIX  CIY  CIZ   CMPhas (d)  (7 reals) 
(Optional magnetic moment components in spherical coordinates, read if N_t=-1,-3) 
LINE 25-3:                  RM   Rphi   Rthet    Im   Iphi   Ithet MagPh (c)  (7 reals) 
LINE 25-4:    CRM  CRPHI  CRTHET  CIM  CIPHI  CITHET CMPhas (d)  (7 reals) 
(Optional real and imaginary components of the modulated displacement parameters are read if Ndvk≠0, 
in Ndvk pairs of lines) 
LINE 25-3:                Dx    Dy     Dz     Dxi     Dyi     Dzi   DPhas  Dep   Dvek (c)  (7 reals) 
LINE 25-4:                CDx CDy  CDz   CDxi  CDyi  CDzi CDPhas  (d)  (7 reals) 
(Optional Anisotropic temperature factor parameters, read if N_t=2,3,-3, and Isy=-2) 
LINE 25-5:                              B11    B22     B33     B12    B13     B23  (e)  (6 reals) 
LINE 25-6:                           CB11  CB22  CB33  CB12  CB13  CB23  (f)  (6 reals) 
(Optional Form factors coefficients ansd codes (4 lines) are read if N_t=4) 
LINE 25-7:                              f1     f2     f3     f4     f5     f6     f7  (g)  (7 reals) 
LINE 25-8:                           Cf1   Cf2  Cf3   Cf4  Cf5  Cf6  Cf7  (h)  (7 reals) 
LINE 25-9:                              f8     f9    f10     f11    f12     f13    f14  (i)  (7 reals) 
LINE 25-10:                         Cf8   Cf9 Cf10  Cf11  Cf12  Cf13 Cf14  (j)  (7 reals) 
[If Jdi = 2] The user inputs after all the atoms, a cell transformation matrix Tij, and an origin shift vector 
Or_shi as explain above (see LINE 19-1) 
Comment line : ! Multiple Cell Transformation 
Line 25-11-1   T11  T12  T13    Or_Sh1     (4 reals) 
Line 25-11-2   T21  T22  T23    Or_Sh2 
Line 25-11-3   T31  T32  T33    Or_Sh3 
 
Note that 
If N_t = 0 Only lines (a) and (b) need to be given 
If N_t = 1 give the lines (a), (b), (c) and (d) 
If N_t = 2 give the lines (a), (b), (e) and (f) 
If N_t = 3 give the lines from (a) to (f) 



if N_t = 4 give the lines (a), (b), (g),(h),(i) and (j)  (special form-factor) 
 
The symmetry operators must belong to the group of the propagation vector Gk, so some atoms need, in 
general, to be repeated for the rest of positions not generated by Gk. 
 

Dx, Dy, Dz,Dxi, Dyi, Dzi,Phas, Dep, Dvek – Displacements parameters 
 

The displacement of an atom i in the nth cell is calculated as: niu
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Where the components of the vectors RD  and (nk=1…Ndvk) are defined in each 
line where Dx, Dy, Dz, Dxi, Dyi, Dzi are inputed. The propagation vector 

nk nkID
PVK is one of 

the propagation vectors of the phase. It is identified by the code (Dvek(nk)) that gives the 
ordinal number of PVK in the list of propagation vectors. This list is either read in the 
(k1,k2,…,kNvk) list inputed in the LINE 44 (if Nvk>0) or found in the list of (k1,k2,…,kNvk, -
k1,-k2,…,-kNvk) of propagation vectors, generated from the given list of LINE 44 in case 
Nvk<0. 

 

SINGLE CRYSTAL DATA 

(LINE 26-30 have the following format, which is read if Irf=4 on LINE 19, the next line to be read after 
begins at least at Line 43) 
 

Input format 
 

Common Single/Multi-Pattern format:  
This specific block lines (see, loop over phases) should be given for a phase contributing to a set of 

integrated intensities if Irf=4 on LINE 19:  
 
Comment line:! Scale Factors 
Comment line:! Sc1   Sc2   Sc3   Sc4   Sc5   Sc6 
LINE 26: SC1, SC2, SC3, SC4, SC5, SC6    (6 reals) 
LINE 26-1: CSC1, CSC2, CSC3, CSC4, CSC5, CSC6   (Codewords 6 reals) 
Comment line:! Extintion Parameters 
Comment line:! Ext1   Ext2   Ext3   Ext4   Ext5   Ext6   Ext7 
LINE 27: EXT1, EXT2, EXT3, EXT4, EXT5, EXT6, EXT7  (7 reals) 
LINE 27-1: CEXT1, CEXT2, CEXT3, CEXT4, CEXT5, CEXT6, CEXT7 (Codewords 7 reals) 
Comment line:! a         b           c           alpha            beta          gamma 
LINE 29: a, b, c, alpha, beta, gamma  (6 reals) 
LINE 29-1: ca, cb, cc, cd, ce, cf  (6 reals) 
Comment line:! Not yet used parameters 
LINE 30: Par1...Par5  (5 reals) 
LINE 30-1: cpar1,...,cpar5  (5 reals) 
REMARK: the next line to be read after in this mode begins at least at Line 43 
 

Variables 
 

SC1, SC2, SC3, SC4, SC5, SC6 – Scale factors, 6 domains allowed 
Scale factor for different domains or for heterogeneous integrated intensity data. For powder data 
only the first scale factor is used 

 



EXT1, EXT2, EXT3, EXT4, EXT5, EXT6, EXT7 – Extinction parameters 
Extinction parameters 

 
At present only the first extinction parameter is used for single crystal work. 

 
 

a, b, c, alpha, beta, gamma – Cell parameters 
Cell parameters in Å an angles in degrees 
The codewords for cell constants must be equal to zero if there is no powder profile to be refined 
simultaneously with the integrated intensity data (Cry≠0).  

 
Par1 – Second order reflexion contamination 
The structure factor can be corrected for λ/2 contamination :  

( ) 1. (2 )calc calc calcF F Par F= +H H  
 

POWDER DATA-I: PROFILE PARAMETERS FOR EACH PATTERN 

(LINE 26-33 have the following format if Cry=0 and Irf≠4) 
 

Input format depend on Uni and Npr 
 

Common Single/Multi-Pattern format:  
This specific sub-block of the block of lines 26 to 38 (see, loop over phases) should be given for each 
pattern to which the phase contributes (controlled by JCONTR(n_pat) in line 19. These lines may be 

grouped as:  
 

Sample parameters (excepted the Shape1 profile parameter) 
The format of this line will depend on Uni 

 
(If Uni=0: [2θ] case: ) 
Comment line:! Scale        Shape1      Bov     Str1     Str2     Str3    Strain-Model 
LINE 26 [2θ]: Scale, Shape1, Bov, Str1, Str2, Str3, Strain-Model  (6 reals – 1 integer) 
LINE 26-1 [2θ]: CSCALE, CSHAPE1, CBOV, CSTR1, CSTR2, CSTR3 (Codewords 6 reals) 
 
(If Uni=1: [T.O.F] case: ) 
Comment line:! Scale        Extinc      Bov     Str1     Str2     Str3    Strain-Model 
LINE 26 [T.O.F]: Scale, Extinc, Bov, Str1, Str2, Str3, Strain-Model(6 reals) 
LINE 26-1 [T.O.F]: CSCALE, CEXTI, CBOV, CSTR1, CSTR2, CSTR3 (Codewords 6 reals) 
 

Profile parameters I:  
A specific line 27 should be given for each pattern to which the phase contributes (controlled by 

JCONTR(n_pat) in line 19). The format will depend on Uni and Npr 
 
(If Uni=0: [2θ] case: ) 
 
(For Npr≠11, Line 27 have the format): 
Comment line:!      U      V       W        X       Y     GauSiz   LorSiz Size-Model 
LINE 27 [2θ]: U, V, W, X, Y, GausSiz, LorSiz, Size-Model (7 reals – 1 integer)  
LINE 27-1 [2θ]: CU, CV, CW, CX, CY, CIG, CSZ  (Codewords 7 reals) 
 
[For Npr=11, Line 27 have a different format] 
Comment line:!      U1     V1      W1       X1      Y     GauSiz   LorSiz Size-Model 
LINE 27 [2θ]:  UL, VL, WL, XL, Y, GausSiz, LorSiz, Size-Model  (7 reals – 1 integer) 
LINE 27-1 [2θ]:  CUL, CVL, CWL, CY, CIG, CSZ  (Codewords 7 reals) 



Comment line:!      Ur      Vr       Wr      Eta0r      Xr 
LINE 27-2 [2θ]: Ur, Vr, Wr, Eta0r, Xr   (5 reals) 
LINE 27-3 [2θ]: CUr, CVr, CWr, CEta0r, CXr  (Codewords 5 reals) 
 
(If Uni=1: [T.O.F] case:) 
Comment line:! Sig-2       Sig-1      Sig-0     Xt    Yt    Z1    Zo     Size-Model 
LINE 27: [T.O.F]: Sig-2, Sig-1, Sig-0, Xt, Yt, Z1, Z0, Size-Model  (7 reals) 
LINE 27-1 [T.O.F]:  CSIG2, CSIG1, CSIG0, CXt, CYt, CZ1, CZ0 (Codewords 7 reals) 
Comment line:!    Gam-2     Gam-1     Gam-0     LStr       Lsiz 
LINE 27-2 [T.O.F]: Gam-2, Gam-1, Gam-0, LStr, LSiz  (5 reals) 
LINE 27-3 [T.O.F]:CGAM2, CGAM1, CGAM0, CLStr, CLSiz (Codewords 5 reals) 
 

Sample cell parameters:  
 
Comment line:! a         b           c           alpha            beta          gamma 
LINE 29 [2θ]:  a, b, c, alpha, beta, gamma  (6 reals) 
LINE 29-1 [2θ]:  ca, cb, cc, cd, ce, cf   (Codewords 6 reals) 
 
Comment line:! a         b           c           alpha            beta          gamma 
LINE 29 [T.O.F]: a, b, c, alpha, beta, gamma  (6 reals) 
LINE 29-1 [T.O.F]: ca, cb, cc, cd, ce, cf   (Codewords 6 reals) 
 

Preferred orientation, asymmetry, profile-II:  
A specific lines 30-33 should be given for each pattern to which the phase contributes (controlled by 

JCONTR(n_pat) in line 19). The format will depend on Uni and Npr 
 
(If Uni=0: [2θ] case: ) 
 
(If Npr≠7 LINE 30 has the format) 
Comment line:! Pref1     Pref2    Asy1    Asy2    Asy3    Asy4 
LINE 30: Pref1, Pref2, PA1, PA2, PA3, PA4  (6 reals) 
LINE 30-1: CG1, CG2, CPA1, CPA2, CPA3, CPA4   (6 reals) 
(If Npr=7, two extra parameters are read in LINE 30) 
Comment line:!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 
LINE 30: Pref1, Pref2, PA1, PA2, PA3, PA4, S_L, D_L (8 reals)   
LINE 30-1: CG1, CG2, CPA1, CPA2, CPA3, CPA4, CS_L, CD_L (8 reals)  [For Npr=7] 
 
(Optional line 32, read if If Ratio < 0) 
Comment line:! Additional U,V,W parameters for Lambda2 
LINE 32: U2, V2, W2, V2, W2     (3 reals)   
LINE 32-1: CU2, CV2, CW2    (Codewords 3 reals)   
 
(Optional line 33, read if Npr=4, or Npr>7) 
Comment line:! Additional Shape Parameters 
LINE 33:  SHP1, CSHP1, SHP2, CSHP2  (4 reals, 2 params, two codes) 
 
(If Uni=1: [T.O.F] case:) 
 
Comment line:! Pref1     Pref2    alph0   beta0    alpha1    beta1 
LINE 30 [T.O.F]: Pref1, Pref2, ALPH0, BETA0, ALPHA1, BETA1  (6 reals) 
LINE 30-1 [T.O.F]: CG1, CG2, CALPH0, CBETA0, CALPHA1, CBETA1 (Codewords 6 reals) 
 
(Optional line, read if Npr=10) 
Comment line:!     alph0t      beta0t      alph1t      beta1t 
LINE 31 [T.O.F]:  ALPH0T, BETA0T, ALPH1T, BETA1T  (4 reals)  
LINE 31-1 [T.O.F]:  CALPH0T, CBETA0T, CALPH1T, CBETA1T (Codewords 4 reals) 
 



Comment line:! Absorption Correction Parameters 
LINE 33 [TOF]: ABS1, CABS1, ABS2, CABS2  (4 reals 2 params, two codes) 
 

Sample parameters  
 

Scale – Scale factor 
Scale factor 
 
 
Extinc - Extinction parameter for powders 
Extinction parameter for powders 
 
Bov - Overall isotropic displacement 
Overall isotropic displacement (temperature) factor in in Å2 
 
Str1, Str2, Str3 - Strain parameters 
Strain parameters, defined through the subroutine STRAIN (see Microstructure in FullProf 
section). If Str=1 set these values to 0.0 
Anisotropic Gaussian contribution of micro-strain. It is calculated in subroutine STRAIN as a 
function of Strain-Model and/or Str. If Str=1 and Strain-Model ≠ 0 then the notation of P. 
Stephens is used. DST depends on STR1, STR2,...parameters and hkl. See Mathematical section 
for details. 
 
Strain-Model - Strain model selector 
Integer to select a particular model for strains in subroutine STRAIN. This variable depends on 
the pattern, but, to be consistent it should normally be the same for all patterns to which the 
current phase is contributing. 
 
CSCALE, CSHAPE1, CBOV, CEXTI 
Codewords for scale factor, shape parameter, extinction, and overall temperature factor. 
 
CSTR1, CSTR2, CSTR3 
Remark on codewords for  strain parameters, if Str=1 set these values to 0.0 
 
Size-Model - Size model selector 
Integer to select a particular model for LorSiz in subroutine SIZEF. 

 

Profile parameters-I, 2theta  
 
Shape1 - Profile shape parameter 
Profile shape parameter 

0ηE.g.:  for Npr=4,5 but not for Npr=7, in which case it is not used. 

0m
 
U, V, W - Half-width parameters 
Half-width parameters (normally characterising the instrumental resolution function). 
 
UL, VL, WL, XL - Left Half-width parameters 
Left Half-width parameters for split pseudo-Voigt profile Npr=11. 
 
Ur, Vr, Wr, Eta0r, Xr - Right Half-width and shape parameters  

 for Npr=6 



FWHM and shape parameters for the right part of the split pseudo-Voigt function. This function 
is similar to Npr=5 but the left (x<0) and right (x>0) parts of the profile have different 
U,V,W,eta0 and X parameters. Additional shape parameters are also read. 
 
X - Lorentzian isotropic strain 
Lorentzian isotropic strain parameter for Npr=7.  
 
Y - Lorentzian isotropic size 
Lorentzian isotropic size parameter for Npr=7.  
 
GausSiz - Isotropic size parameter of Gaussian character 
Isotropic size parameter of Gaussian character. 
 
LorSiz - Anisotropic Lorentzian contribution of particle size 
Anisotropic Lorentzian contribution of particle size. The function F is calculated in subroutine 
SIZEF and depend on parameter LorSiz and hkl. Different F-functions are selected by Size-
Model. 
 
LStr - Lorentzian isotropic strain 
Lorentzian isotropic strain 
DSIZ=F(Lsiz), F depends on Lsiz (and eventually on more size parameters) through the selected 
size model 

 

Profile parameters-I, T.O.F  
 
Sig-2, Sig-1, Sig-0 – Variance of the gaussian component of the TOF peak 
profile 
 
The variance of the Gaussian component of the peak shape in TOF neutrons is given by: 
  2 4( 2 ) ( 1 )Sig GSIZ d Sig DST d Sigσ = + + + +2 0
where d is the d-spacing in angstroms 
Units: Sig-2 (microsecs/Å2)2; Sig-1 (microsecs/Å2); Sig-0 (microsecs2) 
Xt, Yt - Unused 
Not used at present 
 
Z1 - Gaussian isotropic size 
GSIZ : Gaussian isotropic size component (microsecs/Å2)2, this parameter cannot be refined 
simultaneously with Sig-2. 
 
Z0 - Unused 
Not used at present 
 

 
Gam-2, Gam-1, Gam-0 - FWHM parameters of the Lorentzian component 
of the TOF peak profile 
The FWHM of the Lorentzian component of the peak shape in TOF neutrons is given by: 
 

2( 2 ) ( 1 ) 0gam DSIZ d gam LStr d gamγ = + + + +   
 
where d is the d-spacing in angstroms 

Gam-2 (microsecs/Å2) 
Gam-1 (microsecs/Å) 
Gam-0 (microsecs) 

Units: 
 



Sample cell parameters:  
 
a, b, c, alpha, beta, gamma – Cell parameters 
Cell parameters in Å an angles in degrees. If all diffraction patterns are well calibrated the cell 
constants should be the same for all patterns, and therefore the cell parameters should be 
constrained to be the same for all patterns. 

 
Codewords for cell constants A, B, C, D, E and F defined by : 

 2 2 2
2

1 Ah Bk Cl Dkl Ehl Fhk
d

= + + + + +  

 
Note that these codewords do not refer directly to the cell parameters; for instance, in the 
hexagonal system, the last codeword CF must be the same as CA and CB. 

 

Preferred orientation, asymmetry, profile II:  
 
Pref1, Pref2 - Preferred orientation parameters 
Preferred orientation parameters (see Mathematical section) 
• when Nor = 0, G1 = 0 means no  preferred orientation 
• when Nor = 1, G1 = 1 means no  preferred orientation 
 
PA1, PA2, PA3, PA4 - Asymmetry parameters 
Asymmetry parameters applied to angles below AsymLim (given on LINE 8)  
 
S_L, D_L 
Asymmetry parameters corresponding to the L. Finger formulation of the axial divergence. 

 
ALPH0, BETA0, ALPH1, BETA1 - Exponential decay parameters for TOF 
patterns 
Parameters defining the variation of the exponential decay function with d-spacing. 

For Npr=9 
• Fast decay:  α = α0 + α1/d 
• Slow decay:  β =  β0 +  β1/d4 

 
For Npr=10, the parameters ALPH0, BETA0, ALPHA1, BETA1 correspond to the 
epithermal component of the neutron spectrum. In this case the TOF peak positions and 
decay parameters versus d-pacing are calculated using the following expressions: 

 
TOFe = Zero + Dtt1 d  
TOFt = Zerot + Dtt1t d – Dtt2t d-1 
ncross = 0.5 erfc(Width (x-cross-d-1)) 
TOF = ncross TOFe + (1-ncross) TOFt  
 

Where erfc is the complementary error function. 
• Fast and slow decay for epithermal component: αe = αe0 + αe1 d , βe = βe0 

+ βe1 d 
• Fast and slow decay for thermal component:      αt = αt0 − αt1 d-1 , βt = βt0 

− βt1 d-1 
 

The final fast and slow decay parameters are calculated like the case of TOF peak 
positions: 
α = ncross αe + (1-ncross) αt 
β = ncross βe + (1-ncross) βt 
 



The parameters for calculating the thermal fast and slow decay functions are read in 
LINE 31. 

 
ALPH0T, BETA0T, ALPH1T, BETA1T 
Parameters defining the variation of the exponential decay functions with d-spacing for the 
thermal component of the neutron spectrum. Only given for Npr=10. See LINE 30 for the 
expressions used to calculate the final α and β decay parameters. 

 
U2, V2, W2 – 2nd wavelenght FWHM parameters 
Parameters for the second wavelength present in the diffraction pattern. 

 
 

SHP1, SHP2 – Additional profile parameters 
• For Npr=11 (split pseudo-Voigt) the additional shape parameters correspond to the 

additional contribution to the FWHM for the Left (L) and Right (R) part of the 
profile for 2θ<90° and 2θ>90° respectively. 

  2 2( ) 1/ tan 2addFWHM L Shp θ=
  2 2( ) 2 / tan 2addFWHM R Shp θ=
 

• For Npr=12 (Convoluted pseudo-Voigt with L. Finger axial divergence 
asymmetry) 

o SHP1= S_L is source width/detector distance 
o SHP2= D_L is detector width/detector distance 

The parameters S_L and D_L play the role of asymmetry parameters, they are 
used only for reflections below 2θ = AsymLim. 

 
ABS1, ABS2 - Absorption correction for TOF 
Absorption correction parameters 
The physical meaning of these parameters depend on the function selected by Iabscor in LINE 
8. 



 

POWDER DATA-II: hkl-DEPENDENT SHIFT PARAMETERS 

(Optional LINE 34-35 are read if Sol≠0 in LINE 19) 
 

Input format  
 

Common Single/Multi-Pattern format:  
This specific optional sub-block of the block of lines 26 to 38 (see, loop over phases) should be given for 

each pattern to which the phase contributes (controlled by JCONTR(n_pat) in line 19. These lines may be 
grouped as:  

 
Shift parameters:  

At the present, none of the user supplied subroutines for shifts use the SHFi parameters, excepted Shf1 
when ModS=±1. Other built-in available models can be selected by ModS and are detailed afterwards. 

 
Comment line:!   Shift1    Shift2    Shift3    ModS 
LINE 34: SHF1, SHF2, SHF3, ModS  (3 reals- 1 integer) 
LINE 34-1: CSHF1, CSHF2, CSHF3  (Codewords 3 reals) 
 

Shift models:  
 

(1) Shift due to the deviation of the (hkl) direction with respect to a specific reciprocal direction  
by an angle ϕ: ModS=1, cosϕ  dependance, ModS=-1, sinϕ  dependance of the shift 

(If ModS =±1, an optional line is read) 
 
Comment line:! Shift-cos(1) or Shift-sin(-1) axis 
LINE 35:  Sh1, Sh2, Sh3  (3 reals)  
 

(2) User defined selective shifts for specific (hkl) reflexions 
(IF ModS<-1, and ABS(ModS)≤10, ABS(ModS) optional lines are read) 

 
Comment line: ! Shift integers (n1.h + n2.k + n3.l = n4.n + n5)   Shift-par    Code 
LINE 35: n1, n2, n3, n4, n5, Shift, CShift (5 integers, 2 reals)  
 

(3) Generalized shift formulation up to quartic form in (hkl) 
 (IF ModS>100, several optional lines are read) 

 
([ModS=101]: Laue class: -1) 

Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200, D2_020, D2_002, D2_011, D2_101, D2_110  (6 reals)  
LINE 35-1: CD2_200, CD2_020, CD2_002, CD2_011, CD2_101, CD2_110  (Codewords 6 reals) 
LINE 35-2:  D4_400,    D4_040,    D4_004,   D4_220,    D4_202  (5 reals) 
LINE 35-3:  CD4_400, CD4_040, CD4_004, CD4_220, CD4_202  (Codewords 5 reals) 
LINE 35-4:  D4_022,    D4_211,    D4_121,   D4_112,    D4_301  (5 reals) 
LINE 35-5:  CD4_022, CD4_211, CD4_121, CD4_112, CD4_301  (Codewords 5 reals) 
LINE 35-6:  D4_301,    D4_130,    D4_103,   D4_013,    D4_031  (5 reals) 
LINE 35-7:  CD4_301, CD4_130, CD4_103, CD4_013, CD4_031  (Codewords 5 reals) 



 
([ModS=102] Laue class:  1 2/m 1) 

Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200,    D2_020,    D2_002,     D2_101   (4 reals) 
LINE 35-1:  CD2_200, CD2_020, CD2_002,   CD2_101   (Codewords 4 reals) 
LINE 35-2:  D4_400,    D4_040,    D4_004,    D4_220,   D4_202   (5 reals) 
LINE 35-3:  CD4_400, CD4_040, CD4_004, CD4_220, CD4_202  (Codewords 5 reals) 
LINE 35-4:  D4_022,    D4_121,    D4_301,    D4_103   (5 reals) 
LINE 35-5:  CD4_022, CD4_121, CD4_301, CD4_103   (Codewords 5 reals) 
 

([ModS=-102] Laue class:  1 1 2/m) 
Comment lines are directly the names of the variables as given below. 
LINE 35: D2_200,    D2_020,    D2_002,     D2_110   (4 reals) 
LINE 35-1:  CD2_200, CD2_020, CD2_002,   CD2_110   (Codewords 4 reals) 
LINE 35-2:  D4_400,    D4_040,    D4_004,    D4_220,   D4_202  (5 reals) 
LINE 35-3:  CD4_400, CD4_040, CD4_004, CD4_220, CD4_202  (Codewords 5 reals) 
LINE 35-4:  D4_022,    D4_112,    D4_310,    D4_130   (5 reals) 
LINE 35-5:  CD4_022, CD4_112, CD4_310, CD4_130   (Codewords 5 reals) 
 

([ModS=103] Laue class:  mmm) 
Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200,    D2_020,    D2_002     (4 reals) 
LINE 35-1:  CD2_200, CD2_020, CD2_002     (Codewords 4 reals) 
LINE 35-2:  D4_400,    D4_040,    D4_004,    D4_220,   D4_202,    D4_022 (6 reals) 
LINE 35-3:  CD4_400, CD4_040, CD4_004, CD4_220, CD4_202, CD4_022 (Codewords 6 reals) 
 

[ModS=104, 105] Laue classes: 4/m, 4/mmm 
Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200, D2_002     (2 reals) 
LINE 35-1:  CD2_200, CD2_002     (Codewords 2 reals) 
LINE 35-2:  D4_400,    D4_004,    D4_220,   D4_202  (4 reals) 
LINE 35-3:  CD4_400, CD4_004, CD4_220, CD4_202  (Codewords 4 reals) 
 

[ModS=106, 107] Laue classes: -3 R,  -3m R 
Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200, D2_002     (2 reals) 
LINE 35-1:  CD2_200, CD2_002     (Codewords 2 reals) 
LINE 35-2:  D4_400,    D4_004,    D4_112,   D4_211  (4 reals) 
LINE 35-3:  CD4_400, CD4_004, CD4_112, CD4_211  (Codewords 4 reals) 
 

[ModS=108, 109, 110, 111, 112] Laue classes: -3 H, -3m1, -31m, 6/m, 6/mmm 
Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200, D2_002     (2 reals) 
LINE 35-1:  CD2_200, CD2_002     (Codewords 2 reals) 
LINE 35-2:  D4_400,    D4_004,    D4_112    (3 reals) 
LINE 35-3:  CD4_400, CD4_004, CD4_112    (Codewords 3 reals) 
 

[ModS=113, 114] Laue classes: m3, m3m 
Comment lines are directly the names of the variables as given below. 
LINE 35:  D2_200      (1 real) 
LINE 35-1:  CD2_200      (Codewords 1 real) 
LINE 35-2:  D4_400,    D4_220     (2 reals) 
LINE 35-3:  CD4_400, CD4_220     (Codewords 2 reals) 



 

Shift parameters variables  
 
Shf1, Shf2, Shf3 – Shift parameters 
hkl-dependent shift parameters. 
 
These parameters are defined by the user through the subroutines SHIFHKL, where a particular 
model for displacement of Bragg reflections is built for each value of ModS. 

 
ModS – Select a model for shifts 
Model for shifts. 

 
[Sh1, Sh2, Sh3] - Vector defining the “shift axis” 
Is the vector defining the “shift axis”. Should be the same for all patterns. 
The position of the reflection is displaced according to the expressions: 

TS  =TB +  Shf1 × cosφ (ModS=1) 
TS  =TB +  Shf1 × sinφ (ModS=-1) 

Where φ is the angle between the reciprocal vector [hkl]* and the direct vector [Sh1, Sh2, Sh3] 
 

n1, n2, n3, n4, n5, SHIFT – User defined (hkl) shift rules 
Set of ABS(ModS) (≤10) lines, defining rules to be satisfied by reflections undergoing shifts 
with respect to the theoretical Bragg position, due to some kind of defects: stacking and twin 
faults. 
Are set of integers that should be the same for all patterns. If the Miller indices of the reflection 
satisfy the relation: 
  n1 H + n2 K + n3 L = n4 n + n5  
The position of the reflection is displaced according to the expressions: 
 

2θS  =2θB + 2 SHIFT d2 tanθ × 10-2  (2θ space) 
TOFS=TOFB − SHIFT d3 Dtt1 × 10-2  (T.O.F. space) 

ES=EB − SHIFT /(2d) Dtt1 × 10-2  (Energy space) 
 

DN_HKL, (H+K+L=N; N=2,4) – Generalized shift 
The position of the reflection is displaced according to the expressions: 

2θS  =2θB + 2 Sh d2 tanθ × 10-2  (2θ space) 
TOFS=TOFB − Sh d3 Dtt1 × 10-2  (T.O.F. space) 

ES=EB − Sh /(2d) Dtt1 × 10-2  (Energy space) 
The expression used for calculating the scalar Sh for reflection h is given by: 

{ 2} { 4}

2 4h
H K L H K L

HKL HKL
H K L H K L

S D h k l D h k l
+ + = + + =

= +� �  

 



 

POWDER DATA III: ADDITIONAL ANISOTROPIC SIZE PARAMETERS 

(Optional LINE 36 is read if Size-Model ≠0 on LINE 27) 
 

Input format  
 

Common Single/Multi-Pattern format:  
This specific optional sub-block of the block of lines 26 to 38 (see, loop over phases) should be given for 

each pattern to which the phase contributes (controlled by JCONTR(n_pat) in line 19. These lines may be 
grouped as:  

 
Size models:  

 
(1) Cylindrical (platelet) shaped crystallites 

[If Size-Model =±1] 
 
Comment line:! Platelet-Needle vector (Size) 
LINE 36: Sz1, Sz2, Sz3  (3 reals)    

 
(2) User defined selective (hkl) size broadening due to defects 

[If Size-Model<-1] 
 

LINE 36:  n1, n2, n3, n4, n5, SZ, CSZ (5 integers, 2 reals)  
Comment line:! Size-Broadening (n1.h + n2.k + n3.l=n n4 +/- n5)   Size-par    Code 
 

(3) Spherical harmonics expansion of the cystallites shape 
 

[Size-Model=15] Laue class: 2/m 
LINE 36: Y00,   Y22+,    Y22-,    Y20,    Y44+,   Y44-  (6 reals) 
LINE 36-1: CY00, CY22+, CY22-, CY20, CY44+, CY44-  (Codewords 6 reals) 
LINE 36-2: Y42+,   Y42-,    Y40     (3 reals) 
LINE 36-3: CY42+, CY42-, CY40     (Codewords 3 reals) 
Comment lines are directly the names of the variables as given below. 
 

[Size-Model=16] Laue class: -3 m H 
LINE 36: Y00,   Y20,     Y40,    Y43-,   Y60,    Y63-  (6 reals) 
LINE 36-1: CY00, CY20, CY40, CY43-, CY60, CY63-  (Codewords 6 reals) 
LINE 36-2: Y66+      (1 real) 
LINE 36-3: CY66+      (Codewords 1 real) 
Comment lines are directly the names of the variables as given below. 
 

[Size-Model=17] Laue classes: m3, m3m. Cubic harmonics, for m3m K62=0. 
LINE 36: K00,    K41,    K61,   K62,    K81   (5 reals) 
LINE 36-1: CK00, CK41, CK61, CK62, CK81   (Codewords 5 reals) 
Comment lines are directly the names of the variables as given below. 
 

[Size-Model=18] Laue class: mmm 
LINE 36: Y00,    Y20,    Y22+,   Y40,    Y42+,    Y44+  (6 reals) 
LINE 36-1: CY00, CY20, CY22+, CY40, CY42+, CY44+  (Codewords 6 reals) 
Comment lines are directly the names of the variables as given below. 



 
[Size-Model=19] Laue classes: 6/m, 6/mmm. For 6/mmm Y66-=0. 

LINE 36: Y00,    Y20,    Y40,    Y60,   Y66+,    Y66-  (6 reals) 
LINE 36-1: CY00, CY20, CY40, CY60, CY66+, CY66-  (Codewords 6 reals) 
Comment lines are directly the names of the variables as given below. 
 

[Size-Model=20] Laue class: -3 H. 
LINE 36: Y00,    Y20,    Y40,   Y43-,    Y43+   (5 reals) 
LINE 36-1: CY00, CY20, CY40, CY43-, CY43+   (Codewords 5 reals) 
Comment lines are directly the names of the variables as given below. 
 

[Size-Model=21] Laue classes:  4/m, 4/mmm. For 4/mmm Y44-=0 and Y64=0. 
LINE 36: Y00,    Y20,    Y40,    Y44+,   Y44-,    Y60  (6 reals) 
LINE 36-1: CY00, CY20, CY40, CY44+, CY44-, CY60  (Codewords 6 reals) 
LINE 36-2: Y64+,    Y64-      (2 reals) 
LINE 36-3: CY64+, CY64-     (Codewords 2 reals) 
Comment lines are directly the names of the variables as given below. 
 

[Size-Model=22] Laue class: -1. 
LINE 36: Y00,    Y20,    Y21+,    Y21-,   Y22+,    Y22-  (6 reals) 
LINE 36-1: CY00, CY20, CY21+, CY21-, CY22+, CY22-  (Codewords 6 reals) 
Comment lines are directly the names of the variables as given below. 
 

Variables  
 
[Sz1, Sz2, Sz3] - Vector defining the platelets 
Is the vector defining the platelets. Must be the same for all patterns. 
 
n1, n2, n3, n4, n5, SZ – User-defined rules for selective hkl size-broadening 
Set of ABS(Size-Model) (≤9) lines, defining rules to be satisfied by reflections undergoing 
selective “size-like” broadening due to some kind of defects (anti-phase domains, … ). 
Are set of integers that should be the same for all patterns. If the Miller indices of the reflection 
satisfy the relation: 
  n1 H + n2 K + n3 L = n4 n + n5  
 
The Lorentzian broadening of the reflection is given by the expressions: 
 

HL = 0.360 SZ λ/cosθ /π2  (2θ space) 
HL =(2/π) SZ d5 Dtt1 × 10-3  (T.O.F. space) 
HL = SZ/(2d) Dtt1 × 10-3  (Energy space) 

 
Clm±, Klm - SH coefficients 
The Lorentzian broadening is calculated as previously, but for each refexion (hkl) with spherical 
coordinates (h, θ, ϕ) in the reciprocal space, SZ is calculatesd by the developement onto the 

Spherical Harmonics basis functions as: ( , ) ( , )lm lm
lm

SZ C Yθ ϕ θ ϕ±
±

±

=�  



POWDER DATA IV- ADDITIONAL ANISOTROPIC STRAIN AND SIZE 
PARAMETERS 

(Optional LINE 37-38 are read if Str≠0 on line 19, or if Strain-Model≥7 and Str=0) 
 

Input format  
 

Common Single/Multi-Pattern format:  
This specific optional sub-block of the block of lines 26 to 38 (see, loop over phases) should be given for 

some specific strain models (controlled trhough Str (LINE 19) and Strain-Model (LINE 26)), and for each 
pattern to which the phase contributes (controlled by JCONTR(n_pat) in line 19. These lines may be 

grouped as:  
 

Size/strain models:  
 

(1) Axial vector Microstrain  
[If Strain-Model=7] 

 
Comment line:! Axial vector Microstrain 
LINE 37:  St1, St2, St3     (3 reals)  
 

(2) Other microstrain models  
[If Strain-Model>8 and Str=0] 

 
Comment line:! 5 additional strain parameters (IstrainModel>8) 
LINE 37:STR4, STR5, STR6, STR7, STR8    (5 reals)  
LINE 37-1: CSTR4, CSTR5, CSTR6, CSTR7, CSTR8  (Codewords 5 reals) 

 
(3) Generalized size model  

[If Str=-1, 2, 3] 
 

 
Comment line! Generalised size parameters (quadratic form): 
LINE 37: SZ1, SZ2, SZ3, SZ4, SZ5, SZ6    (6 reals) 
LINE 37-1: CSZ1, CSZ2, CSZ3, CSZ4, CSZ5, CSZ6  (Codewords 6 reals)   
 

(4) Anisotropic strain broadening  
modelled using a quartic form in reciprocal space  

[If ABS(Str)=1 and Strain-Model≠ 0] 
 

Strain-Model =1 Laue class: -1 
Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,    S_040,   S_004,    S_220,    S_202   (5 reals) 
LINE 37-1: CS_400, CS_040, CS_004, CS_220, CS_202   (Codewords 5 reals) 
LINE 37-2:    S_022,    S_211,   S_121,    S_112,    S_301   (5 reals) 
LINE 37-3: CS_022, CS_211, CS_121, CS_112, CS_301   (Codewords 5 reals) 
LINE 37-4:    S_301,    S_130,   S_103,    S_013,    S_031   (5 reals) 
LINE 37-5: CS_301, CS_130, CS_103, CS_013, CS_031   (Codewords 5 reals) 
 

Strain-Model=2 Laue class: 1 2/m 1 
Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,    S_040,   S_004,    S_220,    S_202   (5 reals) 
LINE 37-1: CS_400, CS_040, CS_004, CS_220, CS_202   (Codewords 5 reals) 
LINE 37-2:    S_022,    S_121,   S_301,    S_103    (4 reals) 
LINE 37-3: CS_022, CS_121, CS_301, CS_103    (Codewords 4 reals) 



 
Strain-Model=-2 Laue class: 1 1 2/m 

Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,    S_040,   S_004,    S_220,    S_202   (5 reals) 
LINE 37-1: CS_400, CS_040, CS_004, CS_220, CS_202   (Codewords 5 reals) 
LINE 37-2:    S_022,    S_112,   S_310,    S_130    (4 reals) 
LINE 37-3: CS_022, CS_112, CS_310, CS_130    (Codewords 4 reals) 
 

Strain-Model = 3 Laue class: mmm 
Comment lines are directly the names of the variables as given below. 
LINE 37: S_400,    S_040,   S_004,    S_220,    S_202,    S_022  (6 reals) 
LINE 37-1: CS_400, CS_040, CS_004, CS_220, CS_202, CS_022  (Codewords 6 reals) 
 

Strain-Model= 4, 5 Laue classes: 4/m, 4/mmm 
Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,    S_004,    S_220,    S_202    (4 reals) 
LINE 37-1: CS_400, CS_004, CS_220, CS_202    (Codewords 4 reals) 
 

Strain-Model= 6, 7 Laue classes: -3 R, -3m R 
Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,   S_004,     S_112,    S_211    (4 reals) 
LINE 37-1: CS_400, CS_004, CS_112, CS_211    (Codewords 4 reals) 
 

Strain-Model= 8, 9, 10, 11, 12 Laue classes: -3, -3m1, -31m, 6/m, 6/mmm 
Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,   S_004,     S_112     (3 reals) 
LINE 37-1: CS_400, CS_004, CS_112     (Codewords 3 reals) 
 

Strain-Model= 13, 14 Laue classes: m3, m3m 
Comment lines are directly the names of the variables as given below. 
LINE 37:   S_400,   S_220      (2 reals) 
LINE 37-1: CS_400, CS_220      (Codewords 2 reals) 
 

(5) Generalized strain model  
[Str=1 and Strain-Model=0, or Str=3] 

 
Comment lines are directly the names of the variables as given below. 
LINE 37:   STR4,    STR5,    STR6,    STR7,    STR8,    STR9   (6 reals)  
LINE 37-1:CSTR4, CSTR5, CSTR6, CSTR7, CSTR8, CSTR9   (Codewords 6 reals)  
LINE 37-2:  STR10,    STR11,    STR12,    STR13,    STR14,    STR15 (6 reals)  
LINE 37-3:CSTR10, CSTR11, CSTR12, CSTR13, CSTR14, CSTR15   (Codewords 6 reals)  
 

Lorentzian strain broadening 
(if Npr ≥ 7 and Strain-Model≠0 or. Str=1 or Str=3.) 

 
Comment line: !  Lorentzian strain coeff.+ code 
LINE 38:  XI, CXI     (2 reals, one parameter and codeword)  



 

Variables  
 

[St1, St2, St3] - Axial microstrain vector 
Is the vector defining the axial microstrain. 

 
STR4, STR5, STR6, STR7, STR8 
STR9, STR10, STR11, STR12, STR13 – Additional strain parameters 
Additional strain parameters. If Str=0 Their meaning depend on the particular value of  and 
Strain-Model. If Str =1 and Strain-Model = 0, or Str = 3, the STR4 to STR15 parameters 
correspond to another (generalized) formulation of the strain parameters. See Mathematical 
section for explanation. 

 
SZ1, SZ2, SZ3, SZ4, SZ5, SZ6 – Generalized size parameters 
Coefficients of the quadratic form: 

DSIZ= ks × d2 ×( SZ1 h2 + SZ2 k2 + SZ3 l2 + SZ4 kl + SZ5 hl + SZ6 hk) 
 

 
Where ks is defined as: 
 

ks=360/π2 × λ 10-3 (2θ space) 
ks=2/π × Dtt1 10-3 (TOF and Energy space) 

 
The FWHM of the Lorentzian size broadening is given by the expression: 
 

HL =DSIZ/cosθ   (2θ space) 
HL =DSIZ d2   (TOF space) 

 
S_HKL

 
Codewords of the size parameters (quadratic form). 

 – Coefficient of the quartic form for strains 
The following items correspond to anisotropic strain broadening modelled using a quartic form 
in reciprocal space. This correspond to an interpretation of the strains as due to static fluctuations 
and correlations between metric parameters [see J. Rodríguez-Carvajal, M.T. Fernandez-Díaz 
and J.L. Martínez, J. Phys: Condensed Matter 3, 3215 (1991) ]. The notation used is that of P. 
Stephens [Peter W. Stephens, J. Appl. Cryst. 32, 281 (1999)]. 
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A maximum of 15 parameters can be given. The input format is different for the different Laue 
classes. 

 
XI – Lorentzian anisotropic strain parameter 
Lorentzian wheigh of the straind broadened profile, if modelized by a pseudo Voigt function 
(Npr>7) 



 

User defined parameters for the phase 

(LINE 43, read only if Furth ≠0) 
 

Input format  
 
LINE 43: NAMEPAR, VALUEPAR, CODEPAR (Furth Lines) 
Comment line:! Futher parameters 
 

Variables  
 

NAMEPAR – User-defined parameter name 
Character A4. Name of the parameter given by the user. 
 
VALUEPAR – User-defined parameter value 
Value of the parameter 
 
CODEPAR  – User-defined parameter codeword 
Codeword of the parameter 

 

 
 

Propagation vectors 

(LINE 44 is read if Nvk≠0) 
 

Input format  
(ABS(Nvk) pairs of Lines) 
Comment line:! Propagation vectors 
LINE 44:    PVK   (3 reals)  
LINE 44-1:  CPVK (3 reals, codewords) 
 

Variables  
 

PVKX, PVKY, PVKZ – Propagation vector components 
Components of the propagation vector k in reciprocal lattice units. 
 
CPVKX, CPVKY, CPVKZ 
Codewords of the component of k. 

 



 

Soft distance constraints 

(LINE 45, read if Dis≠0) 
 

Input format  
 
Comment line:! Soft distance constraints: 
LINE 45: CATOD1, CATOD2, ITnum, T1, T2, T3, Dist, Sigma (2A4, 1 integer, 5 reals)(NDIC Lines) 
 

Variables  
 

CATOD1, CATOD2 – Pairs of constrained atoms 
Names of the atoms to be constrained. They must coincide with labels (Atom in LINE 25) in the 
asymmetric unit (see Atom in LINE 25). 
 
Itnum – Number selecting a symmetry operator, hence a representative 
atom in the orbit of CATOD2 
Integer for selecting the rotation part of the symmetry operator to be applied to the coordinates of 
the atom CATOD2 given as representative in the asymmetric unit. 
 
(T1, T2, T3) - Translation part of the symmetry operator 
Translation part of the above symmetry operator 
 
Dist 
Value of the required distance in angstroms (Å). 
 
Sigma - Standard deviation of the distance 
Standard deviation of the distance. 
 
The numbering of symmetry operators to be given in distance constraints conditions correspond 
to the listed values of Itnum in the tables below. If combination with a centre of symmetry is 
needed the value must be entered as negative. 

 
Non-hexagonal frames 

 
      Itnum Symmetry symbol    Rotation matrix 

      ( 2)   2 ( 0, 0, z) -->     (-x,-y, z) 
      ( 1)   1            -->     ( x, y, z) 

      ( 3)   2 ( 0, y, 0) -->     (-x, y,-z) 
      ( 4)   2 ( x, 0, 0) -->     ( x,-y,-z) 
      ( 5)  3+ ( x, x, x) -->     ( z, x, y) 
      ( 6)  3+ (-x, x,-x) -->     ( z,-x,-y) 
      ( 7)  3+ ( x,-x,-x) -->     (-z,-x, y) 
      ( 8)  3+ (-x,-x, x) -->     (-z, x,-y) 
      ( 9)  3- ( x, x, x) -->     ( y, z, x) 
      (10)  3- ( x,-x,-x) -->     (-y, z,-x) 
      (11)  3- (-x,-x, x) -->     ( y,-z,-x) 
      (12)  3- (-x, x,-x) -->     (-y,-z, x) 
      (13)   2 ( x, x, 0) -->     ( y, x,-z) 
      (14)   2 ( x,-x, 0) -->     (-y,-x,-z) 
      (15)  4- ( 0, 0, z) -->     ( y,-x, z) 
      (16)  4+ ( 0, 0, z) -->     (-y, x, z) 
      (17)  4- ( x, 0, 0) -->     ( x, z,-y) 



      (18)   2 ( 0, y, y) -->     (-x, z, y) 
      (19)   2 ( 0, y,-y) -->     (-x,-z,-y) 
      (20)  4+ ( x, 0, 0) -->     ( x,-z, y) 
      (21)  4+ ( 0, y, 0) -->     ( z, y,-x) 
      (22)   2 ( x, 0, x) -->     ( z,-y, x) 
      (23)  4- ( 0, y, 0) -->     (-z, y, x) 
      (24)   2 (-x, 0, x) -->     (-z,-y,-x) 
 

Hexagonal frames 
 
      Itnum Symmetry symbol   Rotation matrix 
      (25)   1            --> ( x  ,   y, z) 
      (26)  3+ ( 0, 0, z) --> (  -y, x-y, z) 
      (27)  3- ( 0, 0, z) --> (-x+y,-x  , z) 
      (28)   2 ( 0, 0, z) --> (-x  ,  -y, z) 
      (29)  6- ( 0, 0, z) --> (   y,-x+y, z) 
      (30)  6+ ( 0, 0, z) --> ( x-y, x  , z) 
      (31)   2 ( x, x, 0) --> (   y, x  ,-z) 
      (32)   2 ( x, 0, 0) --> ( x-y,  -y,-z) 
      (33)   2 ( 0, y, 0) --> (-x  ,-x+y,-z) 
      (34)   2 ( x,-x, 0) --> (  -y,-x  ,-z) 
      (35)   2 ( x,2x, 0) --> (-x+y,   y,-z) 
      (36)   2 (2x, x, 0) --> ( x  , x-y,-z) 
 
The string representing a distance soft constraint may be obtained after a run with fixed parameters asking 
for output a distance file CODFILn.dis, another file called “dconstrn.hlp” is automatically generated. 
After editing this file, the user may paste into the file CODFIL.pcr the desired strings and modify them as 
wished. 
 

Soft angle constraints 

(LINE 45-1: read if (Angles)Mom ≠0) 
 

Input format  
 
Comment line:! Soft angle constraints: 
LINE 45-1: CATOD1, CATOD2, CATOD3, ITnum1, ITnum2, T1, T2, T3, t1, t2, t3, Angl,  
  Sigma 
  (3A4, 2 integer, 8 reals)   (Mom(Angles) Lines) [If] 
 

Variables  
 

CATOD1, CATOD2, CATOD3 – Name of the constrained atoms 
Names of the atoms to be constrained. They must coincide with labels (Atom in LINE 25) in the 
asymmetric unit (see Atom in LINE 25). 
The central atom for angle constraints is the atom CATOD2. 
 
ITnum1 - Number selecting a symmetry operator, hence a representative 
atom in the orbit of CATOD2 
Integer for selecting the rotation part of the symmetry operator to be applied to the coordinates of 
the atom CATOD2 given as representative in the asymmetric unit. 



 
ITnum2 - Number to select a symmetry operator, hence a representative 
atom in the orbit of CATOD3 
Integer for selecting the rotation part of the symmetry operator to be applied to the coordinates of 
the atom CATOD3 given as representative in the asymmetric unit. 
 
(T1, T2, T3) - Translation part of the symmetry operator ITnum1 
Translation part of the symmetry operator indexed by ITnum1. 
 
(t1, t2, t3) - Translation part of the symmetry operator ITnum2 
Translation part of the symmetry operator indexed by ITnum2. 
 
Angl – Angle constraint 
Value of the required angle in degrees. 
 
Sigma - Angle Sdev 
Standard deviation of the angle. 

 
As in the case of distance constraints, the string representing an angle soft constraint may be obtained  
from the file “dconstrn.hlp” (remember to put ANG_MAX≠0, see LINE 20). After editing this file, the 
user may paste into the file CODFIL.pcr the desired strings and modify them as wished. 
 

Soft moment constraints 

(LINE 46: read if Mom(Moment)≠0) 
 

Input format  
 
LINE 46: CATOM, Moment, Sigma   (A2, 2 reals) (Mom(Moment) Lines)  
Comment line:! Soft moments constrains 
 

Variables  
 

CATOM - Name of the constrained magnetic atom 
Two letters equal to the two first character of the Atom of atoms in asymmetric unit which are 
constrained. 
 
Moment – Moment value 
Value of the required magnetic moment. 
 
Sigma – Moment Sdev 
Standard deviation of Moment. It does not work with incommensurate magnetic structures. 

 

[END LOOP OVER PHASES] 

 
Goto start of the loop 



 

Hard limits for parameters 

(LINE 47: read if Nre≠0 on Line 4) 
 

Input format  
 
Comment line:! Limits for selected parameters  
or 
Comment line:! Limits for selected parameters (+ steps & BoundCond for SA) [If Cry=3] 
LINE 47: NUMPAR, LowLIMIT, HighLIMIT, Step, IBOUND, NAMPAR 
   (1 integer, 2 reals, 1 integer, character) 
  (Nre Lines) 
 

Variables  
 

NUMPAR - “number” of the parameter 
Is the “number” of the parameter to be constrained within the limits specified by the interval 
[LowLIMIT, HighLIMIT] (NUMPAR=INT(CODEWORD/10)). For a proper use of this 
option one has to put limits to the variable appearing for the first time (from top to bottom in the 
CODFIL.pcr file) with the wished parameter code, this must have a positive sign and a unit 
multiplier; only then the constraints established by using the same codeword will work. 
 
LowLIMIT - Smallest admissible value 
Smallest admissible value of the parameter number NUMPAR. 
 
HighLIMIT - Highest admissible value 
Highest admissible value of the parameter number NUMPAR. 
 
Step – If simulated Annealing job…  
Only used if Cry = 3 (Simulated Annealing job). Value of the maximum allowed variation of the 
parameter number NUMPAR in order to generate a new configuration. A configuration means a 
set of Nre values of the selected parameters within the box defined by the limits. The change in a 
single parameter generates a new configuration. If PARold is the current value of the parameter, 
the new configuration is generated by modifying the value of the parameter as PARnew = PARold 
+ Step (2 × RND−1.0), where RND is a random number between 0 and 1. 
 
IBOUND - Boundary conditions type 
Integer to select the type of boundary conditions for the parameter number NUMPAR. 
If IBOUND=0 the boundaries are treated as hard, e.g. if PARnew exceed the higher limit, then the 
value is set to the limit: PARnew = HighLIMIT. 
If IBOUND=1 the boundaries are treated as periodic, e.g. if PARnew exceed the higher limit, 
then the value is calculated as: PARnew (corrected) = PARnew −(HighLIMIT−LowLIMIT). 
 
NAMPAR – User given name for the selected parameter 
Name given by the user to the parameter number NUMPAR. 



 

Monte-Carlo search parameters 

(LINE 48, read if If =2) Cry
 

Input format  
 
LINE 48: NCONF, NSOLU, NREFLEX, NSCALEF (4 integers) 
Comment line:! Nconf   Nsolu   Num_Ref   Nscalef 
 

Variables  
 

NCONF, NSOLU, NREFLEX, NSCALE – Monte-carlo parameters 
This option is a crude Montecarlo way of searching a starting configuration suitable for further 
refinement using LSQ. A configuration means a set of Nre values of the selected parameters 
within the box defined by the limits in LINE 47, here the Step value is not used. The program 
tries at random NCONF configurations and select the best NSOLU solutions (lower R-factors) 
using the first NREFLEX reflections of the file CODFILn.hkl or CODFIL.int. If NSCALEF is 
different from zero, then the scale factor used in the program is obtained from the relation: 
 
  obs calcI Scale I=� �
 
Note: The constraints established with the coding of parameters have the same meaning as with 
least-squares(LS). In LSQ refinement, or in Montecarlo search, two variables having codes 
xx1.00 and xx0.5 means that the shift applied to the second variable is half the shift applied 
to the first one irrespective of their initial values. Remember the prescription given in LINE 47. 

 

Simulate anealing parameters 

(LINE 49, read if  =3) Cry
 

Input format  
 
Comment line:! T_ini   Anneal   Accept   NumTemps   NumThCyc   InitConf 

 

 

 

LINE 49: , , , , ,  
  (3 reals - 3 integers) 

ANNEAL ACCEPT NUMTEMPS NUMTHCYCT_INI INITCONF

Comment line:! NCyclm   Nsolu   Num_Ref   Nscalef   NAlgor
LINE 49-1: , NSOLU, , ,    (5 integers) NCYCLM NREFLEX NSCALEF NALGOR
Comment line: ! ISwap     Var-Real/Imag
LINE 49-2: ISWAP,        (2 integers)MCOMPL
 (Optional line, read if Is =-2) 

 
y

Comment line: ! Coefficients for Real/Imag switch
LINE 49-3:  ( (i), i=1, )     (  integers) CPL MCOMPL MCOMPL
 

Variables  
 

The parameters given in the line 49 and the next two lines 49-1 and 49-2 are specific to the 
Simulated Annealing algorithm for optimising a crystal and/or magnetic structure using integrated 
intensities. This method may be used for solving crystal structures when more efficient methods 
(like direct methods) fail. It may be used always for magnetic structure determination when simple 
trial an error (even using symmetry analysis) fail. 
 



T_INI
Starting temperature in the Simulated Annealing procedure. Arbitrary value, the user should 
experiment with different values for each problem. A good starting point is a temperature for 
which the percentage of accepted configurations in the first Montecarlo cycle is of the order of 
80-90%. 

 - Starting temperature 

 
ANNEAL – Reduction factor of the temperature between the MC cycles 
Value of the constant needed for reducing the temperature for the next Montecarlo cycle. 
Normally 0.9 is a good value. 
 
ACCEPT - Lowest percentage of accepted configurations 
Lowest percentage of accepted configurations to consider the algorithm has converged. In case 
of using =0,1 (see below) the meaning of  is the value of the lowest 
admissible average step, i.e. the program stops if  �Step� ≤ ACCEPT. 

NALGOR ACCEPT

 
NUMTEMPS - Maximum number of temperatures 
Maximum number of temperatures.  
The program stops after running the algorithm for  temperatures irrespective of the 
convergence criterion based on . 

NUMTEMPS
ACCEPT

 - Number of Montecarlo cycles 
 
NUMTHCYC
Number of Montecarlo cycles to be excluded from the calculation of averages. Normally 0. 
 
INITCONF – Switch to random or user defined initial configuration 
Flag for select the treatment of the initial configuration. If =0 the initial 
configuration is totally random. If =1, the initial configuration is the one given by 
the values of the parameters in the PCR-file. This last option is useful when one tries to optimise 
an already good starting configuration, by controlling the box limits and the steps. 

INITCONF
INITCONF

 
NCYCLM
Number of Montecarlo cycles per temperature. A Montecarlo cycle corresponds to the change of 
all the free parameters one by one. NCYCLM must be at least 10 to 20 (or more!) times the 
number of free parameters. This is crucial for the success of the algorithm, however the user 
should experiment with this number. Remember that run time increases proportional to the value 
of  ×  ×  × . 

 - Number of Montecarlo cycles per temperature 

NREFLEX NCYCLM NUMTEMPS Nre
 
NSOLU
Number of solutions to be stored. Due to the nature of the Simulated Annealing algorithm this 
number should be fixed to 1.  

 - Number of solutions to be stored 

 
NREFLEX
The program uses the first NREFLEX reflections of the file CODFILn.hkl or CODFIL.int 

 – Number of used reflexions 

 
NSCALEF -  
If different from zero the scale factor used in the program is obtained from the relation: 
  obs calcI Scale I=� �
 
NALGOR - Flag to select the type of algorithm 
Flag to select the type of algorithm to be applied. 
=0 The Corana algorithm is selected. This algorithm do not use fixed steps for moving the 

parameters defining the configuration, instead the program starts by using then whole 
interval as initial step for all parameters and then adapt progressively their values in 
order to maintain an approximate rate of accepted configurations between two pre-set 
values (40% and 60% in our case).  



=1 The Corana algorithm is selected using as initial steps, instead of the whole interval, the 
steps given in LINE 47. 

=2 The conventional algorithm is selected using the fixed steps as given in LINE 47. 
 
ISWAP - Flag to allow interchange of atoms 
Flag to allow interchange of atoms in the Simulated Annealing algorithm. If ISWAP≠0 the 
program enter into a procedure of interchanging pairs of atoms each ISWAP Montecarlo cycles. 
The new configurations are accepted only if the cost function is reduced. For magnetic structures 
this flag has to be fixed to zero. 
 
MCOMPL – Controls of the number of “switchable” coefficients of BSF 
Number of coefficients Ci to be switched between real or pure imaginary in magnetic structure 
determination when the irreducible representations of the propagation vector group are used. 
 
CPL(i) - Flags to indicate which BSF coefficients can be switched between 
real and pure imaginary value 
Flags to indicate if the coefficient Ci (see LINE ) will be switched, CPL(i)=1, or will remain 
fixed, CPL(i)=0, in the Simulated Annealing algorithm. 
 

 

Line printer plot 

(LINE 50, read if Ppl =1) 
 

Input format  
 
For each pattern, in the order they are given in LINE 5, a line should be given depending on Ppl(n_patt): 
 
Comment line:! Iscale    Idif   � Pattern #N 
LINE 50 : ISCALE, IDIF  (2 integers)  
 

Variables  
 

ISCALE 
Counts per character position for observed and calculated curves on line printer plot 
 
IDIF 

 

Counts per character for difference curve 
 
 

Ouput reflexion list

(LINE 51, read if Rpa =2) 
 

Input format  
 
Comment line:!   2Th1     2Th2 
LINE 51: THET1, THET2  (2 reals)   

 
The reflection list between these angles is saved in the file CODFIL.sav 

 
 



Other Input/Output files 
 
 

CODFIL.shp or global.shp 

 
File providing a numerical table for calculating the peak shape and its derivative. This 
option is useful only in very special cases where the peak shape characteristic of a 
given instrument is not possible to be fitted with one of the peak shape analytical 
functions provided by FullProf.  
 
The peak shape should be given in a normalised form  where the variable 

 is chosen to give a FWHM=1 and the area is 1, so . 

That allows the use of the conventional U,V,and W parameters for defining the 
FWHM as a function of angle. 

( )P x

[ 1 2, ]x x x∈ 2

1

( ) 1
x

x
P x dx =�

The format of this file is the following: 
 

�� Line1: Any comment 

 

�� Line2: Np8, nupr, 2 , , ...  1θ 22θ 2 nuprθ
�� Np8: Number of points 
�� nupr: Number of different profiles 
�� : Angle to which profile j is best adapted 2 jθ

The rest of the lines are columns with , , , , , … 

,  in free format.  is the derivative of  with respect to 

. The profile of a reflection situated between  and  is linearly interpolated 

between the profiles  and . 

CODFIL.cor / cor.cor 

The format of this file depends on the value of the input variable Cor. 
 

Cor=1  
The file CODFIL.cor (or cor.cor) starts with a comment and follows with a list of pairs: 
a simple list of scattering variable and correction values. 

TITLE ... 
Scattering variable (T)  Value of the correction 

"    " 

x 1( )P x 1( )P x′ 2 ( )P x 2 ( )P x′
( )nuprP x ( )nuprP x′ (j )P x′ ( )jP x

x 2 jθ 12 jθ +

( )jP x 1( )jP x+

 

......................   ........................... 
 

Data are read in free format. For peaks between points provided in the CODFIL.cor file, 
the correction is linearly interpolated. 
Example: 

This is my correction FILE for integrated intensities 
10.0  1.3 
20.0  1.1 
30.0  1.0 
40.0  0.9 
80.0  0.8 



120.0  0.7 

The intensity of a reflection at scattering variable T=40 is assumed to be *0.9. calcI
 

Cor=2  
 

 The file contains the coefficients of an empirical function and their standard deviations.  
The format is: 

 
 
TITLE ... 
ITYCORR, ITYFUNC, NPCORR 
Coefficient   Sigma(Coefficient) 
................ 
(NPCORR lines) 

 
ITYCORR 
=1 Corrections are applied to the integrated intensities. Standard 

deviations must not be given. 
=2 Corrections are applied to the observed profile. The corrected 

observed profile and their variance are obtained as: 
 

/corr obsy y c= or
2 )

 
2 2 2 2( / ) ( /

corr obsy y cor obscor yσ σ σ= +  
 

NPCORR 
Number of coefficients of the empirical function. 

 
ITYFUNC 
=1 Polynomial function: 

( 1)

1
( )

npcorr
i

i
cor coeff i T −

=

= �  

 
=2 Exponential + Maxwellian for TOF raw data 

 

MYRESOL.irf 

This file is read only when ≠0. The name of the file is stored in the character variable 
= MYRESOL.irf. All items are read in free format. 

2 5

,2
2

4

(1) (2) exp( (3) / ) /

( ) exp( ( 1) )
npcorr

i

cor coeff coeff coeff T T

coeff i coeff i T
=

= + −

+ − +�

+

 
Res

FILERES
 

This options works, at present, only for constant wavelength type of data. The profile is assumed 
to be a Voigt function (Npr=7). 12 parameters or a table determine the resolution function. The 
parameters are U V  (i=1,2 for λ1 and λ2) 
The different types of functions are: 
Res =1  

, , , , ,i i i i iW X Y Zi

2 ( tan ) tanG i iH U Vθ θ= + Wi+

tan
cos

i
L i

Y
iH X Zθ

θ
= +  +

2 ( tan ) tanG i iH U Vθ θ= + Wi+  Res =2 



H ( 2 )2L i i iX Yθ θ= + +  Z
Res =3  2 ( 2 )2G i i iH U Vθ θ= + +W

iH ( 2 )2L i iX Yθ θ= + +  Z
Res =4 List of values , ,  (2 )GH θ (2 )LH θ2θ

(a linear interpolation is applied for intermediate 2θ) 
 

The first line is considered as a title 
For =1,2,3 the 12 parameters U V  and  are read from lines 2 and 3 (see 
the above line for the available instrumental functions). 

, , , ,i i i i iW X Y ZRes i

Example: 

 

 
Resolution function of MyXrayDiffractometer 
0.00802 -0.00936  0.01024 0.0029   0.0  0.0 ! U1,V1... 
0.00774 -0.00552  0.00814 0.0000   0.0  0.0 ! U2,V2... 

For Res =4, the file FILERES starts with a line containing the title followed by a line with the 
number of points (NPOINS) where the instrumental Gaussian and Lorentzian FWHM are 
given. NPOINS lines follow containing the three items: 2 ,  and . The Bragg peaks 
of the diffraction pattern must be between 2θ(1) and 2θ(NPOINS) For this case the same 
resolution function is applied to both wavelengths. The maximum number of NPOINS is 60. 

H Hθ G L

 

FILE.dat 

 
 The format of this file, containing the input profile intensity data, depends on the value of the variable 
Ins. The different formats are described here in more detail than was described in the explanation of the 

 variable within the PCR-file.  Ins

When adequate a small piece of Fortran code, without specifying tests and writings, is provided in order 
to help users understand how the program reads the data. The module containing the procedures for 
reading profile intensity files in FullProf is available on request to the author. The important variables are 
the following: the variable n_pat indexes the pattern; Thmin, Step and   correspond to the 
initial value of the scattering variable (2θ, TOF, Energy); npts is the number of channels in the 
diffraction pattern; y is the profile intensity; var is the variance of the intensities; txv contains the 
values of the scattering variable for each channel.  

 

Thmax

 
Ins =0  

Data supplied in free format. Up to seven comment lines are accepted. The first three real numbers 
found at the beginning of a line are interpreted as Ti, step and Tf and. The following lines after Ti, 
step and Tf must contain NPTS=(Tf–Ti)/step+1 values of the intensity profile. Data format of TOF 
raw data from Argonne are also interpreted by this value of Ins. 
 
The following piece of Fortran is used for reading intensity data for Ins =0: 
 

                                                                     
 line_da=0                                                           
 DO                                                                  
    line_da=line_da+1                                                
    IF(line_da > 7) GO TO 99999                                      
    READ(i_dat,'(a)',END=99998) aline                                
    IF(aline(1:4) == 'BANK') THEN                                    
      READ(aline(5:41),*) inum,npts(n_pat)                           
      READ(aline(47:90),*) thmin(n_pat),step(n_pat)                  
      thmax(n_pat)=thmin(n_pat)+(npts(n_pat)-1)*step(n_pat)          



    ELSE                                                             
      READ(aline,*,iostat=ier)thmin(n_pat),step(n_pat),thmax(n_pat)  
      if(ier /= 0) cycle                                             
      npts(n_pat) = (thmax(n_pat)-thmin(n_pat))/step(n_pat)+1.5      
    END IF                                                           
    IF(npts(n_pat) < 4) THEN                                         
      IF(line_da < 7) CYCLE                                          
      GO TO 99999                                                    
    END IF                                                           
 END DO                                                              
 READ(i_dat,*,END=99998,ERR=99999)(y(i,n_pat),i=1,npts(n_pat)) 
 
 

Ins =1 
 D1A/D2B format (original Rietveld-Hewat format: the first line must be Ti, step and Tf 

The following piece of Fortran is used in FullProf for reading intensity data for Ins =1: 
 

  READ(i_dat,*,END=99998,ERR=99999)thmin(n_pat),step(n_pat),thmax(n_pat)      
  npts(n_pat) = (thmax(n_pat)-thmin(n_pat))/step(n_pat)+1.5                   
  READ(i_dat,3,END=99998,ERR=99999)(iww(i,n_pat),y(i,n_pat),i=1,npts(n_pat))  
  DO i=1,npts(n_pat)                                                          
    IF (y(i,n_pat) <= 0.00001) y(i,n_pat) = 1.0                               
    IF (iww(i,n_pat) == 0) iww(i,n_pat) = 1                                   
    var(i,n_pat) = y(i,n_pat)/REAL(iww(i,n_pat))                              
    txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                              
  END DO 
 
 
 
Ins =2 

 D1B old ILL format (DEC-10). The code for reading this format is: 

 DO i=2,40                                                                  

 

 
 READ(i_dat,5,END=99998,ERR=99999)date                                      
 READ(i_dat,5,END=99998,ERR=99999)txt1                                      
 READ(i_dat,*,END=99998,ERR=99999)io,numor(n_pat)                           
 tsamp(n_pat) = REAL(numor(n_pat))                                          
 inum = 1                                                                   
 READ(i_dat,5,END=99998,ERR=99999)txt2                                      
 READ(i_dat,5,END=99998,ERR=99999)txt3                                      
 j = 0                                                                      
 READ(i_dat,'(f7.3,10f6.0)',END=99998,ERR=99999) a1,(y(j+no,n_pat),no=1,10) 
 j = j+10                                                                   

   READ(i_dat,'(f7.3,10f6.0)',END=99998,ERR=99999)(y(j+no,n_pat),no=1,10)   
   j = j+10                                                                 
 END DO                                                                     
 y(1,n_pat)   = y(2,n_pat)                                                  
 y(400,n_pat) = y(399,n_pat)                                                
 thmin(n_pat) = 2.0*a1                                                      
 step(n_pat)  = 0.2                                                         
 npts(n_pat)  = 400                                                         
 thmax(n_pat) = thmin(n_pat)+399*step(n_pat)                                
 DO i=1,npts(n_pat)                                                         
   var(i,n_pat) = y(i,n_pat)                                                
   txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                             
 END DO 

 

Ins =3 
Format corresponding to the ILL instruments D1B and D20. 
The code for reading the files corresponding to these instruments is: 
 

 READ(i_dat,11,END=99998,ERR=99999)nset                                         



 READ(i_dat,'(1x,a,2X,a,2X,a)',END=99998,ERR=99999)jdate,noexp,txt1             
 READ(i_dat,'(i3,1X,i6,1X,i4)  ',END=99998,ERR=99999)nset1,numor(n_pat),nsumad  

 END DO                                                                         

 

 READ(i_dat,'(f13.0,f9.0,1X,10(f8.3,1X))  ',END=99998,ERR=99999)  &             
     xm,ti,x0,ome,chi,phi,tr1,tr2,step(n_pat),tset,tcons,tsamp(n_pat)           
 thmin(n_pat) = x0                                                              
 READ(i_dat,'(i4,a)',ERR=99999) npts(n_pat),txt1                                
 j = 0                                                                          
 npunt = nint(REAL(npts(n_pat))/10.)                                            
 thmax(n_pat) = thmin(n_pat)+(npts(n_pat)-1)*step(n_pat)                        
 DO i=1,npunt                                                                   
   READ(i_dat,19,END=99998,ERR=99999)(iww(j+no,n_pat),y(j+no,n_pat),no=1,10)    
   j = j+10                                                                     

 READ(i_dat,20,END=99998,ERR=99999)inum                                         
 DO i=1,npts(n_pat)                                                             
   IF (y(i,n_pat) <= 0.00001) y(i,n_pat) = 1.0                                  
   IF (iww(i,n_pat) <= 0) iww(i,n_pat) = 1                                      
   var(i,n_pat) = y(i,n_pat)/REAL(iww(i,n_pat))                                 
   txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                                 
 END DO    

Ins =±4 
 

 Brookhaven synchrotron. 
    4: First line: 2θi, step, 2θf (free format). Rest of file: pairs of lines with 10 items like 

Y1  Y2  ......... Y10  -- (10F8) intensities 
S1  S2  ......... S10  --    "     standard deviations 
-4: Format given by DBWS program for synchrotron data. (Version DBW3.2S-8711) 
The Fortran code for Ins = 4 is: 
 

 READ(i_dat,*,END=99998,ERR=99999)thmin(n_pat),step(n_pat),thmax(n_pat)  
 npts(n_pat) = (thmax(n_pat)-thmin(n_pat))/step(n_pat)+1.5               
 nlines = npts(n_pat)/10+1                                               
 j = 0                                                                   
 DO i=1,nlines                                                           
   READ(i_dat,23,END=99998,ERR=99999)(y(j+no,n_pat),no=1,10)             
   READ(i_dat,24,END=99998,ERR=99999)(var(j+no,n_pat),no=1,10)           
   j = j+10                                                              
 END DO                                                                  
 var(1,n_pat) = var(1,n_pat)**2                                          
 txv(1,n_pat)=thmin(n_pat)                                               
 DO i=2,npts(n_pat)                                                      

   var(i,n_pat) = var(i,n_pat)**2                                        

 
Ins =5 

Data from GENERAL FORMAT for TWO AXIS instrument. Three lines of text followed by two 
lines with the items: 
 
NPTS, TSample, Tregul, Ivari, Rmon1, Rmon2 
Ti, step, Tf 
 
Set of lines containing 10 items corresponding to the Intensities in format 10F8.1, up to NPTS 
points (NPTS=(Tf–Ti)/step+1), followed by the corresponding standard deviations in format 
(10f8.2) if Ivari=1. If Ivari=0 the standard deviations are calculated as 

 END DO                                                                  
   txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                          
   cnorm(n_pat)=cnorm(n_pat)+var(i,n_pat)/y(i,n_pat)                     

   IF (var(i,n_pat) < 0.00001) var(i,n_pat) = 1.0                        
   IF (  y(i,n_pat) < 0.00001) y(i,n_pat) = y(i-1,n_pat)                 

( ) 1
2

Rmony y
Rmon

σ = × . 



The following Fortran code read the data corresponding to this format: 
 
 READ(i_dat,'(A)',ERR=99999)txt1                                                
 READ(i_dat,'(A)',ERR=99999)txt2                                                
 READ(i_dat,'(A)',ERR=99999)txt3                                                
 READ(i_dat,'(I6,1X,2F10.3,i5,2f10.1)',ERR=99999)  &                            
     npts(n_pat),tsamp(n_pat),treg,ivari,rmon1,rmon2                            
 READ(i_dat,'(3F10.0)',ERR=99999)thmin(n_pat),step(n_pat),thmax(n_pat)          
 READ(i_dat,'(10F8.1)',ERR=99999)(y(i,n_pat),i=1,npts(n_pat))                   
 READ(i_dat,*,ERR=99999)(y(i,n_pat),i=1,npts(n_pat))                            
 IF(ivari /= 0) THEN          !IVARI                                            
   READ(i_dat,'(10F8.2)',ERR=99999)(var(i,n_pat),i=1,npts(n_pat))               
   READ(i_dat,*,ERR=99999)(var(i,n_pat),i=1,npts(n_pat))                        
   cnorm(n_pat)=0.0                                                             
   DO i=1,npts(n_pat)                                                           
     IF(y(i,n_pat) < 0.0001) y(i,n_pat)=0.0001                                  

     IF(var(i,n_pat) < 0.000001) var(i,n_pat)=1.0                               

   END DO                                                                       

     var(i,n_pat)=y(i,n_pat)*cnorm(n_pat)                                       

 

     var(i,n_pat)=var(i,n_pat)*var(i,n_pat)                                     

     txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                               
     cnorm(n_pat)=cnorm(n_pat)+var(i,n_pat)/y(i,n_pat)                          

   cnorm(n_pat)=cnorm(n_pat)/REAL(npts(n_pat))                                  
 ELSE                         !IVARI                                            
   IF(rmon1 > 1.0 .AND. rmon2 > 1.0) THEN                                       
     cnorm(n_pat)=rmon1/rmon2                                                   
   ELSE                                                                         
     cnorm(n_pat)=1.0                                                           
   END IF                                                                       
   DO i=1,npts(n_pat)                                                           

     txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                               
   END DO                                                                       
 END IF                        !IVARI                                           

Ins =6 
 D1A/D2B standard format prepared by D1A(D2B)SUM (ILL), ADDET(LLB), MPDSUM (LLB) 

or equivalent programs. The Fortran code reading this kind of file is: 
 
 READ(i_dat,'(A)',ERR=99999) txt1                                  
 READ(i_dat,'(16x,F8.3)',ERR=99999) step(n_pat)                    
 READ(i_dat,'(F8.3)',ERR=99999)thmin(n_pat)                        
 READ(i_dat,'(2F8.0)',ERR=99999) rmoni,rmoniold                    
 IF(rmoniold < 1.) THEN                                            
   cnorm(n_pat)=1.00                                               
   rmoniold=rmoni                                                  
 ELSE                                                              
   cnorm(n_pat)=rmoni/rmoniold                                     
 END IF                                                            
 npunt = nint(18./step(n_pat))                                     
 j=0                                                               
 DO i=1,npunt                                                      
   READ(i_dat,3,ERR=99999)(iww(j+no,n_pat),y(j+no,n_pat),no=1,10)  
   IF(ABS(y(j+1,n_pat)+1000.) < 1.e-03) EXIT                       
   j = j+10                                                        
 END DO                                                            
 j=j-10                                                            
 npts(n_pat)=j                                                     
 thmax(n_pat) = thmin(n_pat)+(npts(n_pat)-1)*step(n_pat)           
 DO   i=1,npts(n_pat)                                              
   IF (y(i,n_pat) <= 0.00001) y(i,n_pat) = 1.0                     
   IF (iww(i,n_pat) == 0) iww(i,n_pat) = 1                         
   var(i,n_pat) = cnorm(n_pat)*y(i,n_pat)/REAL(iww(i,n_pat))       
   txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                    
 END DO                                                            



 
Ins =7 
 Files from D4 or D20L. The Fortran code reading this kind of file is: 
 
 READ(i_dat,'(I5,1X,F5.0,1X,A72)',ERR=99999)npts(n_pat),tsamp(n_pat),txt1     
 READ(i_dat,'(5(F7.2,1X,F8.1,1X,F5.1))',ERR=99999)  &                         
     (txv(i,n_pat),y(i,n_pat),var(i,n_pat),i=1,npts(n_pat))                   
 iconstep(n_pat)=0                                                            
 cnorm(n_pat)=0.0                                                             
 step(n_pat)=txv(2,n_pat)-txv(1,n_pat)                                        

 

 thmin(n_pat)=txv(1,n_pat)                                                    
 thmax(n_pat)=txv(npts(n_pat),n_pat)                                          
 DO i=1,npts(n_pat)                                                           
   var(i,n_pat)=0.5*var(i,n_pat)*var(i,n_pat)                                 
 END DO                                                                       

Ins =8 
 

 npts(n_pat) = (thmax(n_pat) - thmin(n_pat))/step(n_pat) + 1.005             

 

Data from DMC at Paul Scherrer Institute. The Fortran code reading this kind of file is: 
 

 READ(i_dat,'(A)',ERR=99999)txt1                                             
 READ(i_dat,'(A)',ERR=99999)txt2                                             
 READ(i_dat,*,ERR=99999) thmin(n_pat),step(n_pat),thmax(n_pat)               

 READ(i_dat,'(10F8.0)', ERR=99999)  (y(i,n_pat),i=1,npts(n_pat))             
 READ(i_dat,'(10F8.0)', ERR=99999)  (var(i,n_pat),i=1,npts(n_pat))           
 DO i=1,npts(n_pat)                                                          
   var(i,n_pat) = var(i,n_pat)*var(i,n_pat)                                  
   txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                              
 END DO  

Ins =9 
 Data of file CODFIL.uxd generated by the Socabim software on x-rays diffractometer. 
Ins =10 
 X, Y, Sigma format with header lines. In all cases the first 6 lines are considered as comments. If 

in the first line (left adjusted) appears the keyword XYDATA, then the following 5 lines are 
considered as the heading of the file. Among these 5 lines the following keywords and values have 
a meaning to the program: 
INTER  fac_x  fac_y  Interpol  Stepin 
TEMP  tsamp 
fac_x  internal multiplier of X-values 
fac_y  internal multiplier of Y and Sigma-values 
Interpol 
=0 Variable step is used in the program 
=1 The variable step data are interpolated internally to the constant step Stepin. 
=2 Data are supplied directly at constant step 
If no sigma values are provided the program assumes that . You can add comments to 
the data file if they start with the character ! in the first position of the line. These lines are ignored 
by the program. 
 
The Fortran code reading this type of file is too long to be reproduced here.   

( )yσ = y

 
Ins =11 
 Data from variable time X-ray data collection. The first four lines are considered as comments The 

following lines are: 
 

2Thetai, step, 2Thetaf   Comment 
 
(Time, Intensity)   in format 5(F6, I10). The program uses the information contained in Time to 
normalise the observed intensities to the average time <Time> and to calculate the variance of the 
normalised values. The Fortran code reading this type of file is reproduced below: 



 
 READ(i_dat,'(A)',ERR=99999)txt1                  !1                                        
 READ(i_dat,'(A)',ERR=99999)txt2                  !2                                        
 READ(i_dat,'(A)',ERR=99999)txt3                  !3                                        
 READ(i_dat,'(A)',ERR=99999)txt4                  !4                                        
 READ(i_dat,*,ERR=99999)thmin(n_pat),step(n_pat),thmax(n_pat)                               
 npts(n_pat) = (thmax(n_pat)-thmin(n_pat))/step(n_pat)+1.5                                  
 READ(i_dat,'(5(F6.0,F10.0))',ERR=99999)(bk(i,n_pat),y(i,n_pat),i=1,npts(n_pat))            
!Normalize data to constant time                                                               
 cnorma=0.0                                                                                 
 DO i=1,npts(n_pat)                                                                         
   IF(bk(i,n_pat) < 1.0E-06)CALL stop_cond(' Zero time in *.DAT ',1)                        
   cnorma=cnorma+bk(i,n_pat)                                                                
   txv(i,n_pat)= thmin(n_pat)+(i-1)*step(n_pat)                                             
 END DO                                                                                     
 cnorma=cnorma/REAL(npts(n_pat))                                                            
 DO i=1,npts(n_pat)                                                                         
   y(i,n_pat)=y(i,n_pat)*cnorma/bk(i,n_pat)                                                 
   var(i,n_pat)=y(i,n_pat)                                                                  
   bk(i,n_pat)=0.0                                                                          
 END DO  
 
Ins =12 
 The input data file conforms to GSAS standard data file.  

BINTYP = LOG6, TIME_MAP and LPSD are not yet available. 
The subroutine reading GSAS formats is available on request. 

 

CODFILn.hkl, CODFIL.int or HKLn.hkl 

 
The format of CODFILn.hkl files is the following: 
 
For ABS(Irf(n_pat))<4: 
 

The first two lines are read as titles (characters) The rest of the lines consist of the 
following items: 
 
1) No propagation vectors 
 
h   k   l    m                    (Irf=1)         (free format) 
h   k   l    m  Coeff             (Irf=1 & Sol=1)(    "      ) 
h   k   l    m  Intensity (or F)  (Irf=2)         (    "      ) 
h   k   l    m  Freal Fimag       (Irf=3)         (    "      ) 

 
 

2) Nvk propagation vectors 
In the third line you have to give the number of propagation vectors in format (32x, i2), 
then you give Nvk lines with: nv K1 K2 K3 , where nv is the ordinal number of k and Ki 
are the components of k in free format.  
 
The rest of lines contain the following sets of items: 

 
h   k   l   nv   m                    (Irf=1)         (free format) 
h   k   l   nv   m  COEFF             (Irf=1 & Sol=1)(    "      ) 
h   k   l   nv   m  Intensity (or F)  (Irf=2)         (    "      ) 
h   k   l   nv   m  Freal Fimag       (Irf=3)         (    "      ) 

 
Note: The generated files when Jbt=2,3 may content additional items that are not used by 
FullProf. These items (sigma, angle, FWHM) can be used by other programs. The case  Irf=1 
and Sol=1 is to be used when shifts of Bragg reflections are observed and a model for it () is 
known. The user must provide the value of the coefficient COEFF for each reflection. 



 
For ABS(Irf(n_pat))=4: 

• The first line is considered as a TITLE 
• In the second line the format of the intensity data to be read below is given. 

Example: (3i4,2f10.2,i4,3f8.4)  
Do not forget parentheses. The program expect to read h, k, l, F2, σ(F2), code, and three 
angles (or coefficients for extinction calculations) in the case of no propagation vectors. 
The format must be provided for all items even if some of them (particularly the code 
and the three final items) are not provided. 

 
• 

• R_lambda(n), Itypdata, ipow(n)  
This third line is read in free format, the three items must be given. The meaning of the 
three items is: 

 
R_lambda(n) 
Wavelength for phase n 
 
Itypdata 
= 0 Square of structure factors (F2) and σ(F2) are input. 
= 1 Structure factors (F) and σ(F) are input. These quantities are transformed 

internally to case Itypdata=0 (F2 and σ(F2)). 
 
Ipow(n) 
= 0 Single crystal observations. 
= 1 Twinned single crystal observations. At present up to 6 hkl's can contribute to a 

single observation. 
= 2 Powder integrated intensities. In this case cluster of peaks can be given. For 

this case Itypdata is irrelevant. 

cmono, Rpolarz’s  
This fourth line is optional (to be given only for X-rays and Ipow=2). The items 
correspond to variables Cthm and Rpolarz for monochromator polarisation correction. 

 
 The rest of lines correspond to the list of integrated intensities or structure factors. The particular 
set of items to be read depends on whether there are propagation vectors given or not. 
 

1) No propagation vectors. The set of items read by the program is: 
h   k   l    Gobs, σ(Gobs)  code   c1   c2   c3 
 
2) Propagation vectors 
In the third/fourth line you have to give the number of propagation vectors Nok that must 
be equal to Nvk, then you give Nvk lines with: nv K1 K2 K3 , where nv is the ordinal 
number of k and Ki are the components of k in free format.  
 
The rest of lines contain the following sets of items: 
 
h   k   l  nv   Gobs, σ(Gobs)  code   c1   c2   c3 

 
The format of the data corresponds to that given explicitly in line 2 of the CODFILn.hkl 
file. No data reduction is performed. The program expects to be provided with an 
independent set of reflections. The integer nv is the ordinal number of the propagation 
vector corresponding to the current observation hkl. Gobs and σ(Gobs) have different 
meanings depending on the value of Itypdata and Ipow: 
 
Ipow 
=0 Itypdata= 0 � Gobs=F2 

= 1 � Gobs=F 



=1 As above but if Gobs<0 the reflection contributes to the next positive 
observation. 

=2 Gobs=Σ{jLpF2}: Sums of powder integrated intensities 
 

cod: code for reflections indicating the scale factor number to be applied (for twinned 
crystals or inhomogeneous data). 
If Ipow=2 and Nvk≠0 cod is the multiplicity of the reflection. 
If Ipow=2 and Nvk=0 the multiplicity is automatically calculated using the symmetry 
operators generated from the symbol of the space group. 

 
For Irf=4 
c1, c2, c3: Not yet used (but they are read!) (coefficients for extinction corrections) 

 
For Irf=-4 
c1, c2: Real and Imaginary part of the partial calculated structure factor or the reflection. The 

program will add this contribution to the structure factor calculated with the given atoms: 
� Ftot= F + Fp= (A+ i B) + (c1+ i c2). See comments for Irf=3. 

 
 
 

Examples: 
Twinned Orthorhombic crystal with two domains 

(a,b,c) (b,a,c) 
                 h  k  l    Gobs    Sigma   cod 
                 ............................. 
                 2  0  0     -1.0    0.0     2 
                 0  2  0   3221.0   12.1     1 
                 3  1  1     -1.0    0.0     2 
                 1  3  1   1221.0    8.2     1 
 
                  Powder cluster of peaks 
 
                 1  1  1     23.2    0.4     1  Isolated peak 
                 ............................. 
                 5  3  1     -1.0    0.0     1  Cluster of peaks: four 
                 3  4  2     -1.0    0.0     1  independent reflections 
                 4  4  1     -1.0    0.0     1    contribute to 
                 5  0  3    832.1    9.4     1 <- this observation 
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The combination of the Rietveld method together with a modeling of the peak shape is 
extremely useful when the materials under study suffer from bad crystallization. The presence 
of structural defects like dislocations, stacking faults, anti-phase domains, micro-strains and 
small crystallite sizes manifests in the diffraction pattern by a broadening of the Bragg peaks. 
In most cases the Voigt approximation for peak broadening is sufficient to get quantitative 
explanation of the existing defects through the different hkl and angular dependence of the 
broadening. In this paper we give an introduction to the treatment of microstructural effect 
using the program FullProf. 
 
Introduction 
 
The microstructural effects within FullProf are treated using the Voigt approximation: both 
instrumental and sample intrinsic profiles are supposed to be described approximately by a 
convolution of Lorentzian and Gaussian components. The TCH pseudo-Voigt profile function 
[1] is used to mimic the exact Voigt function and it includes the Finger‘s treatment of the 
axial divergence [2]. The integral breadth method to obtain volume averages of sizes and 
strains is used to output a microstructural file where an analysis of the size and strain 
contribution to each reflection is written. No physical interpretation is given by the program; 
only a phenomenological treatment of line broadening in terms of coherent domain size and 
strains due to structural defects is performed. The user should consult the existing broad 
literature to go further in the interpretation of the results. A recent book [3], gathering 
different articles, is a good introduction to microstructural problems. 
 
Some useful expressions for microstructural analysis 
 
A particular peak shape will be generally denoted as ( )xΩ , the argument is x T T= − h , (T is 
the scattering variable and Th the Bragg position) and the FWHM will be called H.  
Let us define explicitly the most important parameters defining the relevant peak shapes for 
microstructural analysis. The Voigt approximation is based on the assumption that the 
contribution of microstructural effects to the final peak shape can be approximated by a Voigt 
function: convolution of a Gaussian and a Lorentzian. The normalized Gaussian function is 
defined as: 
  
  (1) 2( ) exp( )G GG x a b x= −
where: 

 2

2 ln 2 4ln 2
G Ga b

H Hπ
= =  



The integral breadth of the Gaussian function is: 1
2 ln 2G

G

H
a

πβ = =  

The normalized Lorentzian function is defined as: 
 

 2( )
1

L

L

aL x
b x

=
+

 (2) 

where: 

 2

2 4
L La b

H Hπ
= =  

The integral breadth of the Lorentzian function is: 1
2L

L

H
a

πβ = =  

It is important to realize that the requirement of normalization (i.e. ( ) 1x dx
+∞

−∞
Ω =∫ ) is essential 

in a Rietveld program than can automatically perform quantitative phase analysis. This 
requirement is not common in the literature on microstructural analysis, where the parameters 
aG and aL are taken as the height of the peak. See the appendix for the relations between the 
parameters defining the both the normalized and non-normalized pseudo-Voigt functions. 
  
The Voigt function defined as the convolution of a Lorentzian and a Gaussian: 
 

  (3) ( ) ( ) ( ) ( ) ( )V x L x G x L x u G u du
+∞

−∞
= ⊗ = −∫

where  and G x  have different FWHM (( )L x ( ) LH  and , respectively). The shape of the 
Voigt function is determined by the relative importance of the two components . The 
Voigt function can be written in a closed form in terms of the complex error function and the 
integral breaths of the Lorentzian (

GH
( , )L GH H

Lβ ) and Gaussian components ( Gβ ): 
( ) ( , , ) ( , , )L G L GV x V x H H V x β β= =  

 

 1( ) Re L
G

G G

V x erf x iπ ββ
β β π

−
  

= +     
 (4) 

where: 

 
2

0

2( )
x terf x e dt

π
−= ∫  (5) 

 
The pseudo-Voigt function, ( )pV x , is an approximation of the Voigt function that substitutes 
the two shape parameters LH  and  by the pair (GH , )Hη : 
 
 ( ) ( ) (1 ) ( ) 0 1pV x L x G xη η′ ′= + − ≤η ≤  (6) 
 
The ( )pV x  function is a linear combination of a Lorentzian ( )L′  and a Gaussian  of the 
same FWHM ( ) , so there are two parameters characterizing the peak shape: 

( )G′
H

, )( ) ( ,pV x pV x Hη= . If L’(x) and G’(x) are normalized, ( )pV x  is also normalized. It is easy 
to verify that the FWHM is the same for L(x), G(x) and pV(x). 



The integral breadth of a normalized pseudo-Voigt function is just the inverse of the 
maximum value. If the function is multiplied by a constant (integrated intensity) the integral 
breadth doesn’t change: 

( ) ( ) 1
(0) (0) (0)

2
(1 ) ln 2

i
pV

i

pV

x dx I pV x dx

I pV pV
H

β

πβ
η η π

Ω
= = =

Ω

=
+ −

∫ ∫
 (7) 

 
Numerically it is more easy and fast to calculate the pseudo-Voigt approximation (6) instead 
of directly using the expression (4). The mapping between the pairs (  and , )L GH H ( , )Hη  can 
easily be obtained using the numerical approximation provided by TCH expressions[1]:  
 

( , ) ( , )G LH F H Hη =  (8) 
 

5 5 4 3 2 2 3 4( 2.69269 2.42843 4.47163 0.07842 )G G L G L G L G LH H H H H H H H H H H= + + + + + 5
L  (9) 

 

 
2 3

1.36603 0.47719 0.11116L LH H
H H

η   = − +  
   

LH
H




)

 (10) 

 
The inversion of the above two expressions leads to the relations: 
 

1( , ) ( ,G LH H F H η−=  (11) 
 

 20.72928 0.19289 0.07783LH
H

3η η= + + η  (12) 

 

 2(1 0.74417 0.24781 0.00810 )GH
H

η η η= − − − 3 1/ 2  (13) 

 
The integral breath of the Voigt function is then calculated using the expression (7) of the 
pseudo-Voigt approximation, through the previous calculation of ( , ) ( , )G LH F H Hη =  using 
the expressions (9) and (10). 
The intrinsic profile of a particular reflection due to size effect has an integral breadth Sβ , the 
Scherrer formula: 

*

1
cosV

S S

D λ
β θ β

= =  (14) 

gives the volume-averaged apparent size of the 
crystallites in the direction normal to the scattering 
planes. This apparent size has a perfectly defined 
physical interpretation: 
 

( ) 3

1,...

1 1 ,
i

V
i N i C

D L
N V=

= ∑ ∫∫∫ h rx y d  (15) 

 
or in terms of the normalized column-length distribution p
x
y

LhC

h=(h,k,l)

Figure 1 : Scheme for interpreting the 
apparent size of a particular grain (see 
text). 
V(L): 



 
0

( )VV
D L p L

∞

= ∫ dL  (16) 

The integrals (15) give the average for all crystallites of the sample in reflection position (N) 
of the volume average of the length of the cords (column-length) normal to the scattering 
planes for each crystallite. It is clear that the relation of the apparent size with physical 
dimensions of the coherent domains is not direct. We should normally assume a particular 
average shape of the crystallite (e.g. spheres) in order to relate the apparent sizes obtained for 
different Bragg reflections with characteristics dimensions (e.g. diameter). 
 
The intrinsic profile of a particular reflection due to a strain effect has an integral breadth Dβ , 
the apparent strain is defined as cotDη β= θ  [4]. We shall use the so-called maximum strain, 
which is derived from the apparent strain as: 
 

 1
4 2 D

de
d

dη β∆
= = =  (17) 

 
The relation of this definition of strain with the root-mean-square (RMS) strain can be found 
in the literature [3]. In the Voigt approximation the mean-square strain can be written in terms 
of the Gaussian and Lorentzian components and the distance L separating two cells along the 
normal to the scattering planes. If L is the undistorted distance and ∆L is the distortion, the 
local strain is ε(L)= ∆L/L, so the mean-square strain is: 

    
2

2 2
2( )

2
GD LDL d

L
β βε
π π

 
= + 
 

         (18) 

 
The treatment of microstructural effects within FullProf 
 
There is a new file containing information about the microstructure (extension “.mic”) that is 
output only if the user provides an input file containing the instrumental resolution function 
(IRF, see manual for the different ways of giving resolution parameters). At present, this 
option works only for constant wavelength mode. 
The FWHM of the Gaussian ( ) and Lorentzian (GH LH ) components of the peak profile have 
an angular dependence given by: 
 

2 2 2 2
2( (1 ) ( )) tan tan

cos
G

G ST D
IH U D V Wξ θ θ
θ

= + − + + +α  (19)  

[ (( ( )) tan
cos

Z
L ST D

Y FH X Dξ θ
θ

)]+
= + +

αα  

 
If the user provides a file with the IRF, the user should fix V and W to zero, then the rest of 
parameters in the above formula have a meaning in terms of strains (U ) or size 
(Y I ) . The functions  and 

, ,Dα X

Z ), ,G α ( )ST DD α ( ZF α  have different expressions depending on the 
particular model used of strain and size contribution to broadening. The parameter ξ  is a 
mixing coefficient to mimic Lorentzian contribution to strains.  
 



The anisotropic strain broadening is modeled using a quartic form in reciprocal space. This 
corresponds to an interpretation of the strains as due to static fluctuations and correlations 
between metric parameters [5].  

                     (2 2 2
2

1 ;hkl i
hkl

)M Ah Bk Cl Dkl Ehl Fhk M hkl
d

α= = + + + + + =  (20) 

The metric parameters iα  (direct, reciprocal or any combination) are considered as stochastic 
variables with a Gaussian distribution characterized by the mean iα  and the variance-

covariance matrix C . Here we consider the set: ij { } { }, , , ,i A B C Dα =

hkl

,E F .The position of the 

peaks is obtained from the average value of M  given by: ( );ihklM M hα kl=

hkl

. The 

broadening of the reflections is governed by the variance of M : 
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∑
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Where the non-diagonal terms may be written as product of standard deviations multiplied by 
correlation terms:C S ( , )ij i jS corr i j= . This original formulation can be used with a total 
control of the correlation terms that must belong to the interval [-1, 1]. When using this 
formulation the user cannot refine all parameters (up to 21) because some of them contribute 
to the same term in the quartic form in reciprocal space, however this allows a better 
interpretation of the final results. Taking the appropriate caution one can test different degrees 
of correlation between metric parameters. There are several special formulations, within 
FullProf, for working with direct cell parameters instead of using reciprocal parameters. 
 
A useful notation corresponding to a grouping of terms was proposed by Stephens [6] who 
also included a phenomenological Lorentzian contribution to the microstrains (the parameter 
ξ  in the equation 19). The final grouping of terms simplifies to: 

 

                ( ) ( ) [ ]
{ }

2

2

2
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H K L
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 
 
  
 

∑   

 (22) 
 

The Stephens’ notation can also be used within FullProf. A maximum of 15 parameters can 
be refined for the triclinic case. Whatever the model used for microstrains the mixing 
Lorentzian parameter, ξ , may be used. In FullProf the function , being 2 (ST DD α ) Dα  the set of 
parameters C or ij HKLS , is given by: 

 



( )2 2
2 8

2

180( ) 10  8Ln2 hkl
ST D

hkl

M
D

M
σ

π
−  =  

 
α      (23) 

 
 

An example of anisotropic strain refined 
using this formulation is shown in Figure 
2, where the neutron diffraction pattern of 
the low temperature phase of Nd2NiO4 is 
refined using the diffractometer D2B at 
ILL [7]. 

  S_400     S_040      S_004     S_220
22.04(78) 17.74(57)  0.016(2)  -38.8(1.2)
Lorentzian Parameter:  0.093(2)

Nd2NiO4, LT

A-strain h k l
43.4585  0 1 2
48.1172  1 0 2
 7.1018  1 1 0
 5.9724  1 1 1
 4.1383  1 1 2
 9.7952  0 0 4
 4.0162  1 1 3
79.5271  0 2 0
87.5578  2 0 0

Figure 2: High angle part of the neutron powder
diffraction pattern (D2B, ILL) of the low temperature
phase of Nd2NiO4 [11]. (top) Comparison of the
observed pattern with the calculated pattern using the
resolution function of the diffractometer. (bottom)
Observed and calculated pattern using an anisotropic
model of strains with non-null values given in the
panel. A list of apparent strains (x 10-4), extracted from
the microstructure file, for a selected number of
reflections is also given. 

 
Concerning anisotropic size broadening it 
is possible to use a very general 
phenomenological model, using the 
Scherrer formula, that considers the size 
broadening can be written as a linear 
combination of spherical harmonics 
(SPH). At present the anisotropic size is 
supposed to contribute to the Lorentzian 
component of the total Voigt function. A 
Gaussian contribution will be introduced 
using a mixing parameter similar to that 
used for anisotropic strain. The explicit 
formula for the SPH treatment of size 
broadening is the following: 
 

( ),lmp lmpa y= Θ Φh h h∑
h

 
cos cos lmpD
λ λβ

θ θ
=

 
Where βh  is the size contribution to the 
Figure 3: Simulated “observed” powder 
diffraction pattern corresponding to a single 
component (tetragonal aluminum oxide) of a 
multiphase real sample containing crystallites of 
nanoscopic size. The observed pattern has been 
calculated using the parameters determined for 
the  real material.  (a) Comparison of the 
instrumental resolution function of a CuKα
powder diffractometer with the “observed” 
pattern, (b) Rietveld refinement using an 
isotropic model, (c) Rietveld refinement using 
spherical harmonics

(a) (b)

(c)Figure 3: Simulated “observed” powder 
diffraction pattern corresponding to a single 
component (tetragonal aluminum oxide) of a 
multiphase real sample containing crystallites of 
nanoscopic size. The observed pattern has been 
calculated using the parameters determined for 
the  real material.  (a) Comparison of the 
instrumental resolution function of a CuKα
powder diffractometer with the “observed” 
pattern, (b) Rietveld refinement using an 
isotropic model, (c) Rietveld refinement using 
spherical harmonics

(a) (b)

(c)



integral breadth of reflection h, and ( ),lmpy Θ Φh h  are the real spherical harmonics with 
normalization as in [8]. The arguments are the polar angles of the vector h with respect to the 
Cartesian crystallographic frame. After refinement of the coefficients a  the program 
calculates the apparent size (in angstroms) along each reciprocal lattice vectors if the IRF is 

provided in a separate file. 

lmp

 
In Figure 3 we can see the aspect of the 
refinement of a diffraction pattern 
corresponding to a tetragonal material 
(aluminum oxide) and, in  Figure 4, the 
visualizing of the results obtained by 
reading with GFourier  [12] the output 
binary file generated with FullProf when 
Jvi=5 
 
An important type of defects that give rise 
to size-like peak broadening is the presence 
of anti-phase domains and stacking faults. 
These defects produce selective peak 
broadening that cannot be accounted using a 
small number of coefficients in a SPH 
expansion. In fact only a family of 
reflections verifying particular rules suffers 
from broadening. For such cases there are a 
number of size models built into FullProf 
corresponding to particular sets of 
reflections that are affected from 
broadening. In Figure 5 it is represented the 
case of Pd3MnD0.8 [9] of structure similar to 
Au3Mn and showing the same kind of 
defects: anti-phase domains [10].  
In Figure 6 a portion of the final 
microstructural file is shown. 
 
Other models for size broadening in 
FullProf following particular rules for each 
(hkl) are available. Moreover an anisotropic 
size broadening modeled with a quadratic 
form in reciprocal space is also available. 
The expression presently used in FullProf is 
the following: 
 

( )2 2 2 2
s 1 2 3 4 5 6( ) k  d  ZF h k l kl hl hα α α α α α= + + + + +α k  

c

a

a

b

b

c The visualization of the average crystallite 
shape is done by using GFOURIER to read 
the binary file: myPCR_size_n.bin 
generated when an IRF file is used and Jvi=5

35 Å

70 Å

43 Å

c

a

c

a

a

b

a

b

b

c

b

c The visualization of the average crystallite 
shape is done by using GFOURIER to read 
the binary file: myPCR_size_n.bin 
generated when an IRF file is used and Jvi=5

35 Å

70 Å

43 Å

 
Figure 4: Visualisation of the average crystallite 
shape obtained from refinement of spherical 
harmonics coefficients in a tetragonal material. 

Figure 5: Portion of the neutron diffraction pattern of
Pd3MnD0.8 at room temperature obtained on 3T2
(LLB, λ = 1.22 Å). On top, the comparison with the
calculated profile using the resolution function of the
instrument. Below the fit using IsizeModel = -14.
Notice that only the reflections with indices of
different parity are strongly broadened. An isotropic
strain, due to the disorder of deuterium atoms, is also
included for all kind of reflections. 



Where ks is defined as ks=360/π2 × λ 10-3 for the 2θ space and ks=2/π × Dtt1 10-3 for TOF and 

Energy space. Simple crystallite shapes as infinite platelets and needles (IsizeModel = 1 
and –1, respectively) are also available. 

!  MICRO-STRUCTURAL ANALYSIS FROM FULLPROF (still under development!) 
!  ================================================================== 
!  Pattern No:  1 Phase No:   1 Pd3MnD.8 - CFC 
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
!  Integral breadths are given in reciprocal lattice units (1/angstroms)x 1000
!  Apparent sizes are given in the same units as lambda (angstroms) … 
!  Apparent strains are given in %% (x 10000) (Strain= 1/2 * beta * d) 
!  An apparent size equal to 99999 means no size broadening 
............................................................................. 
! 
!  The standard deviations appearing in the global average apparent size and  
!  strain is calculated using the different reciprocal lattice directions. 
!  It is a measure of the degree of anisotropy, not of the estimated error 
 
 ...   betaG     betaL ...  App-size App-strain    h     k     l     twtet ...
 ...  1.4817   11.5859 ...     93.58   41.6395     1     0     0   17.7931 ...
 ...  2.0954   11.9584 ...     93.58   41.6395     1     1     0   25.2665 ...
 ...  2.5664    1.5573 ...  99999.00   41.6395     1     1     1   31.0743 ...
 .............................................................................
 ...  4.6855   13.5301 ...     93.58   41.6395     3     1     0   58.5562 ...
 ...  4.9142    2.9820 ...  99999.00   41.6395     3     1     1   61.7169 ...
 ...  5.1327    3.1146 ...  99999.00   41.6395     2     2     2   64.7864 ...
 ...  5.3423   13.9286 ...     93.58   41.6395     3     2     0   67.7802 ...
 ...  5.5440   14.0510 ...     93.58   41.6395     3     2     1   70.7114 ...
 .............................................................................
 
Figure 6:  Portion of the microstructural file (extension mic) corresponding to the fitting of the neutron 
diffraction pattern in Figure 5.  
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Ca2MnO4     (I 41/acd), RT
a=5.187 Å,  c=24.123 Å

Broadening: (hkl), l=2n+3

 
Figure 7: Selective size broadening observed by
neutron diffraction at room temperature (3T2, LLB)
for superstructure reflections in Ca2MnO4[11]. (top)
Size parameter fixed to zero. (bottom) Single size
parameter according to the rule (hkl), l=2n+3. The
indices of the most intense Bragg reflections affected
by size broadening are also given. 

Together with the size broadening models 
built into FullProf and described above, 
there is another way of fitting independent 
size-like parameters for different sets of 
reflections. The user may introduce 
his(her) own rule to be satisfied by the 
indices of reflections provided the rule can 
be written as a linear equality of the form: 

1 2 3 4n h n k n l n n n5+ + = +

i

. Where n  is an 
arbitrary integer and  are 
integers given by the user. A size 
parameter is associated to each rule (a 
maximum of nine rules may be given per 
phase) that may be refined freely or 
constrained using the codewords 
appropriately. 

( 1,2, )n i = ...5

 
To access this option in FullProf the value 
of IsizeModel should be in the interval 
[-2,-9]. The absolute value of 
IsizeModel corresponds to the number 
of rules (independent parameters) to be 
given. If all ni=0 the rule is not used. To 



give a single rule one must put IsizeModel = -2 and put zeros for the last condition. This is 
needed in order to avoid the confusion with the case of an infinite needle. In Figure 7 we give 
an example using IsizeModel = -2 and if Figure 9 the relevant part of the PCR file is 
written. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . 
! Selective Size-Broadening: 
! hkl cond.      (n1.h + n2.k + n3.l=n n4 +/- n5)   Size-par      Code 
  0  0  0          0      0      1      2      3     9.61440   661.000 
  0  0  0          0      0      0      0      0     0.00000     0.000 
 
Figure 8: Portion of the PCR file for IsizeModel = -2 corresponding to the refinement in Figure 7. The 
first set of zeros below the text ‘hkl cond.’ is not used at present.
inally, a general formulation for peak shifts, due to defects or to residual stresses, has also 
een implemented. For JSOL≠0, the lines corresponding to shift parameters are read in the 
CR file. Selective shifts can be selected when IShif < -1. For this option a set of up to 
BS(IShif) (≤10) lines can be given. The lines define rules to be satisfied by reflections 
ndergoing shifts with respect to the theoretical Bragg position due to some kind of defects 
stacking and twin faults for instance).  The rules are similar to those of selective size 
roadening discussed above. The position of the reflections satisfying the rules are displaced 
ccording to the expressions: 

 
2θS  =2θB + 2 Shift d2 tanθ × 10-2  (2θ space) 

TOFS=TOFB − Shift d3 Dtt1 × 10-2  (T.O.F. space) 
ES=EB − Shift/(2d) Dtt1 × 10-2  (Energy space) 

 
here the index B stands for the theoretical Bragg position of the non-defective material and 

hift is the shift parameter to be refined.  
he shift of Bragg reflections may also be due to external stresses or residual stresses. For 

hose cases it is more appropriate to use the following generalized model for shifts. The model 
s implemented for IShif = 100+NumLaue (with NumLaue the number of the Laue class 
ccording to FullProf manual) , and a set of parameters corresponding up to quartic form in 
kl can be refined. The position of a reflection is displaced according to the expressions: 

2θS  =2θB + 2 Sh d2 tanθ × 10-2  (2θ space) 
TOFS=TOFB − Sh d3 Dtt1 × 10-2  (T.O.F. space) 

ES=EB − Sh /(2d) Dtt1 × 10-2  (Energy space) 

he expression used for calculating the scalar Sh for reflection h is given by: 

{ 2} { 4}

2 4h
H K L H K L

HKL HKL
H K L H K L

S D h k l D h k l
+ + = + + =

= +∑ ∑  

he free parameters for this option are the sets 2HKLD and 4HKLD . To refine these parameters 
he average cell parameters of the non-stressed material should be fixed during the 
efinement. 

inally, in the desperate case where a simple rule for the hkl dependency of peak broadening 
nd shifts cannot be easily obtained, there is the possibility of relaxing the peak broadening, 



with respect to the resolution function, and the shifts, with respect to the Bragg positions, for 
individual reflections. This can help in determining a posteriori a physical rule governing the 
behavior of  broadening and shifts. An example of the relevant part of a PCR file in which this 
last option is used is given in Figure 9. 
 

 

!----------------------------------------------------------------------- 
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:  1.06 
!----------------------------------------------------------------------- 
 Myphase 
! 
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth     ATZ   Nvk Npr More 
   6   0   0 0.0 0.0 1.0   0   0   0   0   0     5050.20   0   7   1 
! 
!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref 
   0   0   0   0   0   0  1.0000  0.0000  0.0000  0.0000   1   3 
! 
P 3 1 c                  <--Space group symbol 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 
  0.00000  0.00000  0.07373  0.01902  0.00000  0.00000  0.00000  0.00000 
     0.00     0.00   251.00   241.00     0.00     0.00     0.00     0.00 
! Special reflections: 
!  h   k   l  nvk   D-HG^2    Cod_D-HG^2  D-HL   Cod_D-HL    Shift   Cod_Shift 
   1   0   1    0  0.00000       0.000  0.04417   551.000  -0.01236    561.000 
   2   0   0    0  0.00000       0.000  0.03056   571.000  -0.00274    581.000 
   3   0   1    0  0.00000       0.000  0.00759   591.000  -0.00119    601.000 
 
 
Figure 9: Portion of the PCR file when Nsp_Ref ≠ 0. In red there are the important parts concerned with 
this option. Notice that we need to give explicitly the indices (en eventually the propagation vector for
magnetic structures) of the reflections suffering from anomalous broadening or shift. The Gaussian and
Lorentzian broadening shifts with respect to the instrumental resolution width, as well as the shift with 
respect to the calculated value of the peak position using the cell parameters, are free variables. 

Note: A non-negligible part of the present text has been previously published in [13]. 
 
 
Appendix 
 
The non-normalized pseudo-Voigt appears in many papers. Let us call the non-normalized 
function as: 

( ) ( ) (1 ) ( )n n n n npV x L x G xη η= + −   (0) 1npV =  
where: 

2

1( ) (0) 1
1n n

L

L x L
b x

= =
+

 

2( ) exp( ) (0) 1n G nG x b x G= − =  
 
The integral breadth of a non-normalized pseudo-Voigt function of peak intensity I0 and 
FWHM=H is given by: 
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∫ ∫ ∫

∫ ∫  

 
The integral breadth of a particular peak is independent of the formulation of the pseudo-
Voigt function. Both descriptions give the same FWHM and the same integral breadth, so the 
numerical relation between the η values is given by: 
 

Non-normalized: (1 )
2 2pVn n n
H H

ln 2
π πβ η η= + −  

 

Normalized: 2
(1 ) ln 2pV

Hπβ
η η π

=
+ −

 

 
2(1 )
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H H Hπ π πη η
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ABSTRACT

In these notes the limitations of neutron di�raction for determining the true

magnetic structure of some compounds are discussed� The analytical expres�
sions linking the measurable quantities to the model of a magnetic structure
do not contain a crucial parameter� the phase factor between two Fourier co�
e�cients not related by symmetry� The impossibility to obtain this parame�
ter by conventional methods precludes the access to the true spin arrangement
in the solid� The problem is �rst formulated analytically and illustrated by
some simple examples� secondly we shall present some real examples concerning
incommensurate�to�commensurate magnetic phase transitions and� �nally� some
conclusions are stated

�� Introduction

It is frequent the discovery of magnetic compounds that exhibit more than one prop�
agation vector� The typical case is the so called multi�k structures� observed in some
intermetallic compounds of high crystallographic symmetry �� Multi�k structures refers
to a magnetic structure in which more than one arm of the star of k participates into
the actual spin arrangement �� That is� the transition chanel� in terms of the Izyumov	s
school �� has more than one propagation vector� Symmetry relations between the Fourier
coe
cients of the magnetic structure� when all the propagation vectors belong to a single
star� can be obtained by group theory using the geometrical method of Bertaut � or the
algebraic straightforward expressions that have been given by Izyumov and collaborators
�� The practical determination of the transition chanel could be di
cult because the mag�
netic phase transition� and the concommitant domain formation� produces satellites �in a
single crystal di�raction pattern
 which are not distinguishable �in usual conditions
 from
those of a true multi�k structure� External �elds have to be applied to decide what is the
actual situation� More unusual is the case showing two propagation vectors not belonging
to the same star� However� a well known case is particularly common� the conical struc�
tures� Nagamiya � has given the conditions for two independent propagation vectors to
describe constant moment �CM
 magnetic structures� Nagamiya treated combinations of
propagation vectors of the form k� � ���H �or k� � ���H � k� � �q
 and k� � q at the
interior of the Brillouin Zone �k� � IBZ
� so that the relative orientation of the Fourier
coe
cients is �xed and the relative phase is irrelevant� In this paper we shall formulate
the problem in its full generality in relation with the practical structure determination�
For that a summary of the most important scattering formulas is �rst given�

�� Neutron Scattering Cross Sections and Magnetic Structure Factor

For polarized neutrons the total scattered intensity and the �nal polarisation of scat�
tered neutrons for the scattering vector h is given by the Blume	s equations �� The
scattered intensity is�

Ih � NhN
�
h �NhfP �M�

�hg�N�
hfP �M�hg�M�h �M

�
�h � iP � fM�h �M�

�hg ��


�In this paper we use the terms spin and magnetic moment indistinctly� The term spin arrangement is
also used as synonymous of magnetic structure

�



The equation de�ning the scattered polarisation is�

PsIh � PNhN
�
h �NhM

�
�h �N�

hM�h � iP� fM�hN
�
h �M�

�hNhg�M�hfP �M�
�hg

� M�
�hfP �M�hg � PfM�h �M

�
�hg� ifM�h �M�

�hg ��


Where P and Ps are the incident and scattered neutron polarisation� Nh is the nuclear
structure factor and M�h is the magnetic interaction vector de�ned as�

M�h � e� �M�h
� e
 �M�h
� �e �M�h

e ��


M�h
 is the magnetic structure factor� and e is the unit vector along the scattering
vector h� The scattering vector is h�H�k where H is a reciprocal lattice vector of the
crystal structure and k the propagation vector corresponding to the current magnetic
re�ection� For a pure magnetic re�ection Nh � �

The magnetic structures that we are considering have a distribution of magnetic mo�
ments that can be expanded as a Fourier series�

mlj �
X

fkg

Skj expf���ikRlg ��


The sum is extended to all propagation vectors that could belong to di�erent stars�
The Fourier coe
cients Skj are� in general� complex vectors� The magnetic structure
factor can be written as�

M�H� k
 � p
ncX
j��

fj�H� k
Skj expf��i�H� k
rjg ��


The sum is over all the magnetic atoms in the crystallographic cell� The constant
p�� re���
 is ������ and allows the conversion of the Fourier components of magnetic
moments� given in Bohr magnetons ��B
 to scattering lengths units of �����cm� fj�H�k

is the magnetic form factor and rj is the vector position of atom j� In the above expression
the atoms have been considered at rest� If thermal motion is considered and if symmetry
relations are established for coupling the di�erent Fourier components� we obtain the
general expression of the magnetic structure factor�

M�h
 � p
nX

j��

Ojfj�h
Tj�iso

X
s

MjsSkjTjs expf��i��H� k
fS j tgsrj � �kjs�g ��


The sum over j concerns the atoms of the magnetic asymmetric unit for the wavevector
k �the Fourier component with index k contributes only to the k�satellite
� So that j labels
di�erent sites� The anisotropic temperature factor� Tjs� is not generally necessary to be
used in magnetic re�nements�Tjs � �
� The sum over s concerns the di�erent symmetry
operators of the crystal space group that belong to the wave vector group� The matrix
Mjs transform the components of the Fourier term Skj � Skj� of the starting atom j� to
that numbered as js in the orbit of j� The phase factor �kjs has two components�

�kjs � �kj � �kjs ��


�kj is a phase factor which is not determined by symmetry� It is a re�nable parameter
and it is signi�cant only for an independent set of magnetic atoms �one orbit
 which
respect to another one� �kjs is a phase factor determined by symmetry� The Fourier
component k of the magnetic moment of atom j�� Skj � is transformed to

Skjs � MjsSkj expf���i�kjsg ��


�



The matrices Mjs and phases �kjs can be deduced from the atomic basis functions�
obtained by applying projection operator formulas� corresponding to the active represen�
tation�s
 participating in the de�nition of the actual magnetic structure� The sign of �kjs
changes for �k�

In the general case Skj is a complex vector with six components� These six components
per magnetic orbit constitute the parameters that have to be re�ned from the di�raction
data� Symmetry reduces the number of free parameters per orbit to be re�ned� An alter�
native expression of the magnetic structure factor can be written as a function of mixing
coe�cients �parameters to be re�ned
 and the atomic components of the basis functions
of the relevant representation�s
 �� In the case of a commensurate magnetic structure one
can calculate the magnetic structure factor in the magnetic unit cell� In such a case Skj
are real vectors corresponding to the magnetic moment of the atom j� the matrices Mjs

are real and all phases verify �kjs � �� The crystallographic magnetic groups theory can
be fully applied in such a case ��

If the magnetic structure represents an helical order the Fourier coe
cients are of the
form�

Skj �
�

�
�m�juj � im�jvj� expf���i�kjg ��


where uj and vj are orthogonal unit vectors� If m�j � m�j � m� the magnetic structure
for the sublattice j corresponds to a classical helix �or spiral
 of cylindrical envelope� All
j atoms have a magnetic moment equal to m�� If m�j �� m�j the helix has an elliptical
envelope and the moments have values between min�m�j�m�j
 and max�m�j�m�j
� If
m�j � � the magnetic structure corresponds to a modulated sinusoid of amplitude m�j�

�� The phase between independent k�vectors

When more than two independent propagation vectors appears in the di�raction pat�
tern� the analysis of the data is unable to give a unique answer to the problem of the
magnetic structure� In general is not possible to discriminate between the presence of
two magnetic phases co�existing in the crystal and a coherent superposition of these two
magnetic structures� We shall be concerned only with the latter picture� Even from this
hypothesis it is not possible to get uniqueness� This can be seen adding a phase factor�
depending only on k� to the Fourier series equation ��
�

mlj �
X

fkg

Skj expf���i�kRl ��k
g ���


The magnetic structure factor �equation ��
� transforms to�

M�H� k
 � p expf��i�kg
ncX
j��

fj�H� k
Skj expf��i�H� k
rjg ���


The phase �k appears in the expresion of the magnetic structure factor as a multi�
plicative phase factor that does not change the intensity of equation ��
 or the scattered
polarisation of ��
 for a pure magnetic re�ection� The phases �k are not accesible experi�
mentally� so the real magnetic structure cannot be obtained from di�raction measurements
alone�

The most simple case in which the phase plays an important role is the sinusoidally
modulated structure in a simple Bravais lattice �a single magnetic atom per primitive
cell
 when the propagation vector takes special values� The Fourier coe
cient and the
corresponding magnetic moment at cell l are�

Sk �
�

�
mou expf���i�kg ml � mou cos ���kRl ��k


�



The phase �k plays no role when k � IBZ and has no rational components� A change in
the phase has the same e�ect as a change of the origin in the whole crystal� All magnetic
moments between �mou and mou are realized somewhere in the lattice� However� if
k � ���H and �k � ��� the magnetic structure is a CM�structure with the sequence
f��� ���� � ���g� This structure is indistinguishable of the sinusoidally modulated
structure obtained with an arbitrary value of �k� If all the components of k are rational
the selection of the phase can have important consequences for the spin arrangement� This
is the simplest case in which the physical picture depends on the election of a parameter
��k
 that is not accessible by di�raction methods� Physical considerations lead us to prefer
one model among several other� For instance� CM�structures are normally expected at
vey low temperatures when magnetic atoms have an intrinsic magnetic moment� This
condition reduces the number of ways to combine non symmetry�related propagation
vectors to several speci�c cases that have been discussed by Nagamiya �� Let us discuss
some unusual simple cases that will be illustrated with real examples�

�� Fluctuating magnetic structures

The magnetic structures with more than one pair �k��k
 of propagation vectors not
satisfying the Nagamiya	s conditions are� as is the sinusoidally modulated magnetic struc�
ture� general non�constant moment structures� We shall call these spin con�gurations�
�uctuating structures y�

Fluctuating Structures with irrelevant phase�factors

This case corresponds to the combination of k � ���H and q � IBZ vectors� To
simplify the notation we shall treat only one of the atoms of a particular Wycko� site
and we drop the reference index� The propagation vector q describes a helical con�gura�
tion� and k corresponds to a uniaxial antiferromagnetic con�guration� so that the Fourier
coe
cients of the atom are�

Sq �
�

�
m��u� iv� expf���i�qg Sk � m�n

where� as above� u and v are orthogonal unit vectors de�ning the plane of the spiral of
axis w � u� v� and n is a unit vector de�ning the axis of the spin con�guration related
to propagation vector k � ���H� The director cosines of n with respect to the axes
� u�v�w
 are �n�� n�� n�
� The magnetic moment distribution of a coherent superposition
of the two types of Fourier coe
cients is given by the following formula �notice that
�l � ���qRl ��q
 and lh � HRl
�

ml � m� cos ���qRl ��q
u�m� sin ���qRl ��q
v�m� expf��iHRlgn

� m� cos�lu �m� sin �lv�m����
lhn

� �m� cos�l � ���
lhm�n�
u� �m� sin �l � ���
lhm�n�
v� ���
lhm�n�w���


The modulus of the magnetic moment can be calculated by taking the square of
equation ���
�

m�

l � m�

�
�m�

�
� �m�m����
lh�n� cos �l � n� sin�l


� m�

�
�m�

�
� �m�m����
lh cos	l ���


If n is parallel to w the moment is constant and we obtain an antiferromagnetic con�
ical structure �if H� �� we obtain the classical ferromagnetic conical structure
� For the

yThe term �uctuating has no dynamic content in the present context

�



general orientation of n �non vanishing components in the u�v plane
 the modulus of
this distribution is not constant� The amplitude varies between the two extreme valuesq
m�

�
�m�

�
� �m�m� sin 
 and

q
m�

�
�m�

�
� �m�m� sin 
� being 
 the angle of n with w�

A real system in which this behaviour seems to take place is the compound CsMnF�
	�

Another interesting system is TbMn�Ge� 
 z� The second wave vector� in this case� is k � �
and the associated magnetic moment lies within the u�v plane de�ning the spiral plane
of the �rst propagation vector� This gives rise to a distorted spiral structure�
In all these cases� the selection of the phase factor �q is completely irrelevant� That is�
the physical picture obtained after using the equation ���
 is not changed by varying the
phase factor�

Fluctuating Structures Approaching CM�structures

We shall now consider the case of two pairs of propagation vectors �k��k
 and �q��q

verifying k�q � IBZ� Such a magnetic structure has as Fourier coe
cients�

Sk �
�

�
�Rk � iIk
 Sq �

�

�
�Rq � iIq
 expf�i�g

Using the notation �kl � ��kRl the magnetic moment distribution is given by�

ml � Rk cos�kl � Ik sin�kl �Rq cos��ql ��
 � Iq sin��ql ��
 ���


This moment distribution is generally a non�CM structure and the change of the phase
factor � can modify the physical picture if both vectors k and q have rational components�
This last case is interesting when the components are simple integer fractions because one
can treat the problem using the magnetic cell and search for a magnetic space group that
�x automatically the phase� The �nding of such a commensurate magnetic structure does
not eliminate the problem of uniqueness of the magnetic moment distribution compatible
with the experimental results� However� the possibility to have a simple spin arrangement
with magnetic moments of atoms approaching the expected intrinsic moment is more sat�
isfying form the physical point of view�

If a CM�structure can be found re�ning the magnetic structure using the magnetic
cell� a particular set of equations ���
 can be established for atoms inside the magnetic
cell and the phase factor � can be obtained solving these equations� Of course� to get a
set of compatible equations the vectors R and I cannot be arbitrary� An example can be
readily shown if we consider only real Fourier coe
cients in equation ���
� We can write
for the 	�component�

R�
q cos��ql ��
 � m�

l � R�
k cos �kl �� � � cos��

m�
l � R�

k cos �kl

R�
q

� �ql

The above equations must be veri�ed for the set of points l inside the magnetic cell
and for all components simultaneously� This indicates that only very special relation�
ships between Fourier coe
cients must be veri�ed to have a single � to connect the two
descriptions�

An interesting example is the magnetic ordering of TbGe� �� This compound crys�
tallizes in the space group Cmcm� �a � ����� b � ����� c � ���� �A
� with Tb�atoms in
positions ��c
 � ��� y� ���
� Below the N�eel temperature �TN � ��K
 the magnetic order
is characterized by two independent propagations vectors k � �kx� �� �
 and q � �qx� �� qz

with kx � qx � �

�
and qz � �

�
� Below Tic � ��K the propagation vectors lock�in

to commensurate values� Both vectors verify k�q � IBZ with a two�arm star for k

zSee also the article� Magnetic Spiral Structures in the Hexagonal RMn�Ge� Compounds� by P�
Schobinger�Papamantellos� J� Rodr�	guez�Carvajal� G� Andr�e and K�H�J� Buschow� in these proceedings

�



�Gk � C�cm
 and a four�arm star for q �Gq � Cc
� The re�nement of the magnetic
structure at low temperature in the magnetic unit cell using powder di�raction data
provides a quasi�collinear structure with two types of Tb�atoms having similar moments
�m�Tb�
 � ����B�m�Tb�
 � ����B
� The re�nement using real Fourier coe
cients for all
propagation vectors �including the second pair of the star of q
 gave similar agreement� A
systematic search of the phase factors using a computer program �� allows the �nding of
a consistent set of phases that produces �uctuations of m�Tb
 between ����B and ����B�
The spin arrangement is similar to that observed in the magnetic cell re�nement� For the
incommensurate phase we suppose that the spin arrangement does not change dramati�
cally� so that the phases found for the lock�in phase are still valid�
Symmetry analysis can be applied to each wave vector separately� There is no interfer�
ence terms between re�ections belonging to di�erent sets of satellites� so that we can
proceed as if two magnetic di�erent phases co�exist and only at the end of the analysis
we can think in the coherent superposition of both phases� The computer program �� we
have written can be used as a general tool for searching phase factors between Fourier
coe
cients belonging to non�symmetry related wave vectors giving the lowest �uctuation
between mmin and mmax�

�� Conclusions

The physical origin of the stabilization of two propagation vectors belonging to di�er�
ent stars is not yet clear in the absence of external �elds� In Bravais lattices we have to
think in the action of higher order terms �biquadratic
 in the spin hamiltonian to stabilize
two propagation vectors� In complex crystal structures the nature of the ground state is
not known in the general case and� probably� it is not necessary to invoke higher order
terms to stabilize two non�related propagation vectors� Only the case of conical structures
�k � � and q � IBZ
 has been studied with some detail �� for the spinel lattice� We can
conclude that only a physical model based in the microscopic spin�spin interactions is able
to �x completely the phases appearing in the Fourier expansion of the magnetic moment
distribution in the solid� Experimentally� other techniques �like M ossbauer spectroscopy�
neutron or X�ray topography� ��SR� etc���
 may help� in some cases� to distinguish between
several models� Unfortunately there is no general method to overcome this phase problem�
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MAGNETIC STRUCTURE DETERMINATION FROM POWDER 
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JUAN RODRIGUEZ-CARVAJAL 
Laboratoire Léon Brillouin, (CEA-CNRS), CEA/Saclay, 91191 Gif sur Yvette Cedex, FRANCE 

E-mail: juan@llb.saclay.cea.fr 

In this paper the techniques for magnetic structure determination from neutron powder diffraction 
(NPD) data as implemented in the program FullProf are reviewed. In the general case the magnetic 
moment of an atom in the crystal is given as a Fourier series. The Fourier coefficients are complex 
vectors constituting the “unknowns” to be determined. These vectors define the magnetic structure 
and they correspond to the “atom positions” of an unknown crystal structure. The use of group 
theoretical methods for the symmetry analysis is needed to find the smallest set of free parameters. In 
general the Fourier coefficients are linear combinations of the basis functions of the irreducible 
representations of the wave vector group. The coefficients of the linear combinations can be 
determined by the simulated annealing (SA) technique comparing the calculated versus the observed 
magnetic intensities. The SA method has been improved and extended to the case of incommensurate 
magnetic structures within FullProf. 

1 Introduction 

In the last years the Rietveld Method (RM) has allowed great progress in the analysis 
of powder diffraction data. The RM is not designed for structure determination, it is just a 
least squares optimisation of an initial model of the crystal and magnetic structure 
supposed to describe approximately the experimental powder diffraction pattern. It is 
important to start with a “good” initial model in order to succeed the refinement 
procedure. In this paper we shall be concerned with the problem of getting the initial 
model of a magnetic structure in order to refine it from powder diffraction data. We shall 
describe the basis of the technique and the way the magnetic structure determination is 
implemented in the program FullProf. 

2 The formalism of propagation vectors for describing magnetic structures. 

The reader interested in the basis of the elastic magnetic scattering in relation with 
magnetic structures may consult the references [1, 2]. Here we will follow the reference 
[3] but using a different convention for the sign of phases and a somewhat different 
notation. The intensity of a Bragg reflection (we neglect here the geometrical factors) for 
non polarised neutrons is given by: 

*
hhhhh MM ⊥⊥ ⋅+= *NNI  (1) 

where Nh is the nuclear structure factor and the magnetic interaction vector M⊥h is 
defined as: 

( )( ) ( ) ( )( )hMeehMehMeM h ⋅−=××=⊥  (2) 
M(h) is the magnetic structure factor, and e is the unit vector along the scattering vector 
h=H+k, where H is a reciprocal lattice vector of the crystal structure and k the 
propagation vector corresponding to the current magnetic reflection. The magnetic 
structures that we are considering have a distribution of magnetic moments that can be 
expanded as a Fourier series: 
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{ }
∑ −=

k
k kRSm ljlj iexp π2  (3) 

The sum is extended to all propagation vectors that could belong to different stars. 
The Fourier coefficients Skj are, in general, complex vectors. The magnetic structure 
factor corresponding to such a magnetic structure can be written as: 

( ) ( ) ( ){ }{ }
1

2k kM h h S H k t r
n

iso
j j j js j j jss

j s

p O f T M exp i Sπ
=

ψ = + − ∑ ∑   (4) 

The sum over j concerns the atoms of the magnetic asymmetric unit for the wave 
vector k. We are concerned only with magnetic atoms within the crystallographic unit 
cell, so that j label different sites: fj(h) is the magnetic form factor and rj is the vector 
position of atom j. The constant p = re γ/2 = 0.2695 allows the conversion of the Fourier 
components of magnetic moments, given in Bohr magnetons to scattering lengths units of 
10-12 cm. The sum over s concerns the different symmetry operators of the crystal space 
group that belong to the wave vector group Gk (subgroup of the crystallographic space 
group formed by the operators leaving invariant the propagation vector). The matrix Mjs 
transform the components of the Fourier term Skj of the starting atom j to that numbered 
as js in the orbit of j. The phase factor ψkjs has two components:  
   jsjjs kkk φψ +Φ=   (5) 

Φ kj is a phase factor that is not determined by symmetry. It is a free parameter and it 
is significant only for an independent set of magnetic atoms (one orbit) which respect to 
another one. φkjs is a phase factor determined by symmetry. The Fourier component Skj of 
the representative starting atom j is transformed to 

{ }jsjjsjs iexpM kkk SS φπ2−=  (6) 

The matrices Mjs and phases φkjs can be deduced from the atomic basis functions, 
obtained by applying projection operator formulas, corresponding to the active 
representation(s) participating in the definition of the actual magnetic structure. The sign 
of φkjs changes for -k. In the general case Skj is a complex vector with six components. 
These six components per magnetic orbit constitute the parameters that have to be refined 
from the diffraction data. Symmetry reduces the number of free parameters to be refined. 
In some cases, transformations like expression (6) cannot be obtained from the basis 
functions of the irreducible representations of the propagation vector group; for those 
cases an alternative expression of the magnetic structure factor can be written as a 
function of "mixing coefficients" (parameters to be refined) and the atomic components of 
the basis functions of the relevant representation [4]. The expression of the Fourier 
coefficients in terms of the atomic components of the basis functions is given as: 

( )k
kS Sjs jm m

m
Cν ν

λ λ
λ

= js∑  (7) 

The formula of the magnetic structure factor is then transformed to: 
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1

2k
kM h h S h r

n
iso

j j j jm m s j j
j m s

p O f T C js exp iν ν
λ λ

λ

π
=

 = −Φ ∑ ∑ ∑   (8) 

In the above expressions, ν labels the active irreducible representation, Γν, of the of 
the propagation vector group Gk, λ labels the component corresponding to the dimension 
of the representation Γν, m is an index running between one and the number of times the 
representation Γν is contained in the global magnetic representation ΓM. Finally  ( )jsn

ν
λ

kS



 

are constant vectors obtained by the application of the projection operator formula to unit 
vectors along the directions of the unit cell basis. An addition sum over ν is sometimes 
necessary when more than one irreducible representation is involved in the magnetic 
phase transition. See reference [4] for details. 

If the magnetic structure has several propagation vectors k, it is not possible in 
general to determine unambiguously the spin configuration, because the phase between 
the different Fourier components cannot be determined. Fortunately, nature often selects 
simple solutions and many magnetic structures have a single propagation vector, or 
display some symmetry constraints that reduce the complexity of the periodic magnetic 
structure given by Eq.3. Solving a magnetic structure consist of finding a set of 
propagation vectors indexing the whole set of magnetic reflections and a set of “mixing 
coefficients” (or, equivalently, the components of the Fourier coefficients and phases) 
providing a good agreement between the intensities of the observed and calculated (using 
the above expressions) magnetic reflections. In some cases the search for a good starting 
model may be formulated in terms of other set of parameters. For instance, in cases of 
conical/helical structures involving magnetic atoms with a common cone-axis, the 
magnetic structure factor can be written in terms of the module of the magnetic moments, 
the angle between the moments and the cone-axis, and phases between the different 
atoms. This description in real space gives a more intuitive picture of the magnetic 
structure. 

3 The search for the propagation vector and symmetry analysis. 

The first problem to be solved before attempting the resolution of the magnetic structure 
is the determination of the propagation vector(s), i.e. its “periodicity”. To find k is 
necessary to index the magnetic reflections appearing below the ordering temperature. 
With a single crystal the task is somewhat easy, but is tedious for a powder because only 
the module of reciprocal vectors is available. We have developed a method for searching 
the propagation vector of a commensurate or incommensurate structure implemented in 
the program SuperCell [5]. Once an approximate propagation vector is obtained the 
symmetry analysis according to references [4] can be started. The program BasIreps may 
be used for obtaining the vectors ( )jsn

ν
λ

kS  in Eq.7 for each crystallographic site occupied 
by magnetic atoms.  

To solve the magnetic structure, the integrated intensities of the magnetic reflections 
may be obtained using the method of “profile matching”, simultaneously with the 
Rietveld method, implemented in the program FullProf [3, 5]. This mixed procedure has 
to be used with caution: no structural parameter of the known phase must be refined. This 
is the usual case of neutron diffraction patterns of magnetically ordered compounds, 
where the nuclear reflections coexist with the magnetic reflections. For illustration 
purposes we show in Fig.1 the plot of the observed versus calculated pattern of a portion 
of the simulated diffraction pattern of DyMn6Ge6 at low temperature after performing the 
extraction procedure. The magnetic structure has two propagation vectors k1=(0,0,0) and 
k2=(0,0,δ), with δ ≈0.165 with respect to the reciprocal lattice of the crystallographic unit 
cell. All satellite reflections are indexed with h=H±k2. There are also contributions to the 
same positions of the nuclear reflections, h=H (k1=0), accounting for a ferromagnetic 
component. The spin arrangement corresponds to a double cone magnetic structure. 
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Figure 1. Profile matching refinement of the DyMn6Ge6 neutron diffraction pattern at low temperature. The 
profile of the calculated nuclear contribution (upper reflection marks) is also displayed as a thick continuous 
line. The second set of reflection markers corresponds to the magnetic peaks. Markers at the same positions as 
the nuclear (first set) reflections correspond to k1=(0,0,0), the extra markers are the position of the satellites 
corresponding to k2=(0,0,δ). 

4 The resolution of magnetic structures from powder data: the simulated 
annealing method 

We shall describe the Simulated Annealing (SA) technique to solve the magnetic structure 
using clusters of overlapped reflections as single observations. The merging of clusters is 
automatically performed using the option “profile matching” of the program FullProf [5]. 
The SA method described below is also valid for the analysis of single crystal data where, 
except for domains, there is no reflection overlap. 

The SA algorithm is a general-purpose optimisation technique for large combinatorial 
problems introduced in 1983 by Kirpatrick, Gelatt and Vecchi [6]. The function, E(ω) to 
be optimised with respect to the configuration described by the vector state ω is called the 
“cost” function. In the context of magnetic structures the configuration ω is the list of all 
the components of the Fourier coefficients of magnetic atoms existing in the chemical unit 
cell and this list is obtained from the independent parameters ß that are those really 
participating in the annealing procedure. The most general case of parameters constituting 
the vector ß corresponds to the set of mixing coefficients of the linear combination given 
by Eq.8, but, as stated above, another set of parameters in real space (moment amplitudes, 
angles, …) may also be used. First we select an initial configuration, ωold, then each step 
of SA method consists of a slight change of the old configuration to a new one, ωnew. If 
∆=E(ωnew)-E(ωold) ≤ 0 the new configuration serves as old configuration for the next step. 
If ∆ is positive, ωnew is accepted as current configuration only with certain probability that 
depends on the so-called “temperature”, T, parameter and ∆. The probability, given by the 
Boltzman factor exp(-∆/Τ), that a worse configuration is accepted is slowly decreased on 
“cooling”. 



 

For magnetic structure determination, the cost function can be chosen as the 
conventional crystallographic R-factor, or some function related to it. In the new version 
of FullProf [5] the following expression is used: 

  E[ω(ß)]= R[ω(ß)] = c Σk|Iobs(k)- SΣj(k)Icalc(j)[ω(ß)]| 
The sum over k is extended for all the “observations” (clusters of overlapped reflections), 
and that over j(k) for all the reflections contributing to the observation k. The constant 
factor c is given by: 1/c=IT =ΣkIobs(k). S is a scale factor.  
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Figure 2. Evolution of the cost function for accepted configuration in
the resolution of the magnetic structure of DyMn6Ge6 by simulated 
annealing as a function of the sequential order of temperatures. For a
single temperature on can see the dispersion of the R-factor, 
corresponding to the different configurations, that is reducing as
temperature decreases. 

To start solving a 
magnetic structure with the 
SA method one has to 
create the intensity file 
where the indices of each 
reflection and its intensity 
are written. This is 
performed automatically 
within FullProf by using 
profile matching modes 
and the option that outputs 
the overlapped reflection 
clusters in a file that can be 
used as input for the SA 
method. The usual PCR 
file [5] of FullProf is then 
used for controlling the 
algorithm. A pseudo-code 
describing the SA 
procedure was given in 
reference [3]. The SA 

parameters are those defining the limits of loops in the algorithm described in [3]: T_ini = 
initial temperature, N = maximum number of temperatures, NcyclM = number of 
Montecarlo cycles per temperature, Accept=Minimum percentage of accepted 
configurations; and the “cooling” schedule T(t+1)=qT(t) (q<1, q ≈ 0.9). The user may 
select either a fixed step for each variable (that are defined within a simulation box of 
hard or periodic limits) or a variable step (Corana’s algorithm) that is dynamically 
adapted in order to have an adequate rate of accepted configurations for each temperature 
[7]. 

The starting point may be an arbitrary configuration or a given one. At variance with 
least-squares optimisation methods, the SA algorithm never diverges. Always the 
algorithm proceeds roughly in two steps. The first step, at high temperatures, the 
algorithm is searching for the “basin of attraction” of the minimum in the configuration 
space, this part constitutes the “magnetic structure determination”. Once the region is 
attained, a more or less sharp drop in the average “energy” (R-factor) occurs. Then, the 
second step starts when the average R-factor is low enough, the algorithm enters in its 
phase of “refinement”, where the good configuration has already been found, and 
performs a progressive improvement of the solution. This is clearly seen in the behaviour 
of the cost function versus the ordinal number of the temperature parameter in Fig.2, 
illustrating the case of DyMn6Ge6. In figure 3 it is shown the behavior of the amplitude of 
the magnetic moments of Dy and Mn atoms. The plot shows that there are a large 



 

dispersion at the stage of “magnetic structure solution” (starting phase of the algorithm) 
and a progress toward definite values within the “refinement” region.  
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Figure 3. Evolution of the magnetic moment of Dy and Mn versus the 
number of sequential temperature. Similar plots can be observed for 
other magnetic parameters (cone angles and magnetic phase angles). 

For a given set of constraints the final average R–factor should be reasonably good 
(below 20%) except for contradictory or false constraints. False minima are encountered 

when the number of free 
parameters is of the same 
order of magnitude than 
the number of 
observations and/or the 
observations are of bad 
quality (very weak 
magnetic reflections and 
large errors associated to 
them). Ambiguities can 
be easily discovered. 
When the intensity data 
do not depend on a 
parameter, this shows an 
anomalous behaviour: in 
a plot similar to that of 
Fig. 3, large oscillations 
persist even at low 
temperature. 

In conclusion, we 
have shown that the SA algorithm can be used for the magnetic structure determination 
even in the case of complex incommensurate magnetic structures. The method is 
straightforward and is fully implemented in the program FullProf that is publicly 
available [5]. 
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Content of the talk

� Overview of the Fourier coefficients formalism 
for describing magnetic structures and it relation 
with basis functions of the Irreps of Gk.

� Steps for Solving and refining magnetic 
structures using Neutron Powder Diffraction and 
the programs of the FullProf Suite

� Neutron Powder Diffraction and magnetic 
structures. The magnetic structure factor as 
implemented in FullProf.

� Examples and tutorials
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{ }
{ }
∑ −=
k

k kRSm ljsljs iexp π2

∗= jsjs kk- SSNecessary condition for real moments mljs ⇒

Magnetic structures
Magnetic moment of each atom: Fourier series

Identification of Fourier coefficients with magnetic 
moments for:  
k=(0,0,0) ,  k = ½ H (H: reciprocal lattice vector)

{ }
{ }

( ) )(
2

ln

jsljsljs -1iexp k

k

k SkRSm =−= ∑ π

l : index of a direct lattice point (origin of an arbitrary unit cell)
j : index for a Wyckoff site (orbit)
s: index of a sublattice of the j site
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{ }
{ }
∑ −=
k

k kRSm ljsljs iexp π2

Magnetic structures
Magnetic moment of each atom: Fourier series

General expression of the Fourier coefficients (complex 
vectors)  for an arbitrary site (drop of js indices ) when k
and –k are not equivalent:

1
( )exp{ 2 }

2k k k k
S R Ii iπ φ= + −

Only six parameters are independent. The writing above 
is convenient when relations between the vectors R and I
are established (e.g. when |R|=|I|, or R . I =0) 
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{ }
{ }
∑ −=
k

k kRSm ljsljs iexp π2

Magnetic structures
Magnetic moment of each atom: Fourier series

The program Fp_Studio performs the above sum and 
represents graphically the magnetic structure.
This program can help to learn about this formalism because 
the user can write manually the Fourier coefficients and see 
what is the corresponding magnetic structure immediately.

Web site: http://www.ill.fr/dif/Soft/fp/
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! Artificial example for a helical magnetic structure
SPACEG P m m m             
CELL     3.754168    5.729970    7.269413  90.0000  90.0000  90.0000   
multiple  
box 0 2 0 1 0 2
ATOM HO    HO      0.50000  0.50000  0.50000  color 0 0 1 1 radius 0.8
ATOM NI    NI      0.00000  0.00000  0.00000  color 1 0 0 1 
{
LATTICE P
K     0.113450000   0.00000   0.00000
SYMM  x,y,z 
MSYM  u,v,w, 0.0 
!                x        y        z        options
MATOM Ho HO   0.50000  0.50000  0.50000 color 0 0 1 1  scale 0.6  GROUP

!    K  MSY   Rx        Ry Rz Ix       Iy Iz MagPh
SKP   1  1  0.00000  0.00000  4.99300    0.00000  4.99300  0.00 0.00000

MATOM Ni NI   0.00000  0.00000  0.00000 color 1 0 0 1  GROUP
!    K  MSY   Rx        Ry Rz Ix       Iy Iz MagPh
SKP   1  1  0.00000  0.00000  2.00000    0.00000  2.00000  0.00 0.00000
}

Example of FST file for FullProf Studio
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k =(0,   0,   0)

a

b

c

Fp_Studio: k=(0,0,0)
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k=(1/2,   0,   0)

a

b

c

Fp_Studio: k=(1/2,0,0)
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k=(1/2,   0,   1/2)

a

b

c

Fp_Studio: k=(1/2,0,1/2)

INSTITUT MAX VON LAUE - PAUL LANGEVINNeutron School St Margherita di Pula, September/October 2006 Juan Rodriguez-Carvajal

k=(0.11345,   0.0,   0.0)
a

c

Fp_Studio: k=(δδδδ,0,0)  Sk ≈≈≈≈ R (sinusoidal)
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k =(0.11345, 0.0, 0.2345)

a
b

c

Fp_Studio: k=(δδδδ,0,νννν)  Sk ≈≈≈≈ R (sinusoidal)
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Fp_Studio: k=(δδδδ,0,0) Sk ≈≈≈≈ R+iI (helical: R.I=0)
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Fp_Studio: k=(δδδδ,0,0) Sk ≈≈≈≈ R+iI (helical: R.I=0)
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According to the Landau theory of phase transitions, it is expected 
that the configuration of the magnetic moments can be described in 
terms of the basis functions of the Irreps of the propagation 
vector group Gk (subgroup of the SG formed by those elements that 
leave k invariant). The Irreps of Gk are tabulated or can be calculated 
independently of the problem

Group theory: Representation analysis

,
,

... ( )njl im jl im

jl im

H J S S O Sαβ
α β

α β

= +∑

But, knowing the classical Hamiltonian of the spin system, 
the ground state (magnetic structure at T= 0 K) should 
minimize the energy

The symmetry of the Hamiltonian may be higher than the 
space group symmetry (e.g. isotropic exchange interactions)
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A reducible representation of the propagation vector group can be 
constructed by selecting the atoms of a Wyckoff position and applying 
the symmetry operators to both positions and axial vectors (spins). 
This gives rise to the so called Magnetic Representation of dimension: 
3na (being na the number of atoms in the primitive cell) 

Mag Perm Axial nν ν
ν⊕

Γ = Γ ⊗ Γ = Γ∑

This representation can be decomposed in Irreps and the number of 
times a particular Irreps,       , is included can be easily calculated νΓ

Group Theory: Representation Analysis

The basis functions, for each Irrep and each sublattice of a Wyckoff site, 
can be calculated by using the projection operator formula. The basis 
functions are constant vectors of the form (1,0,0), (0.5, 1,0) … with 
components referred to the crystallographic unitary frame: {a/a, b/b, c/c} 
attached to each sublattice.
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( )k

kS Sjs n n

n

C jsν ν
λ λ

λ

= ∑
The coefficients           are the free parameters of the 
magnetic structure (order parameters of the phase 
transition in the Landau theory)

nC
ν

λ

Indices:
k : reference to the propagation vector
ν : reference to the irreducible representation

n : index running from 1 up to nν ⇒
λ : index running from 1 up to

Mag nν ν
ν⊕

Γ = Γ∑
νΓ

dim ( )νΓ

Relation of Fourier coefficients and basis 
functions of Irreps 

Fourier coeff. Basis vectors
νννν
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Content of the talk

� Overview of the Fourier coefficients formalism 
for describing magnetic structures and it relation 
with basis functions of the Irreps of Gk.

� Steps for Solving and refining magnetic 
structures using Neutron Powder Diffraction and 
the programs of the FullProf Suite

� Neutron Powder Diffraction and magnetic 
structures. The magnetic structure factor as 
implemented in FullProf.

� Examples and tutorials
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Magnetic neutron scattering

( ) ( ) ( ) ( )2

1

2

Q m Q
a Q Q m Q mM er f p f

Q
γ ⊥

 
= − = 

 

( ) ( ) 3exp( )Q r Q r rmf i dρ= ∫
m

m⊥⊥⊥⊥

Q=Q e
Only the perpendicular
component of m to Q=2πh
contributes to scattering

p=0.2696 10-12 cm
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*

hhhhh MM ⊥⊥ ⋅+= *NNI

hM e M(h) e M(h) e (e M(h))⊥ = × × = − ⋅

k Hh += ⇐⇐⇐⇐ Scattering vector

Intensity (non-polarised neutrons)

Magnetic interaction vector

h
e

h
=

Magnetic Bragg scattering
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h
M e M(h) e M(h) e (e M(h))⊥ = × × = − ⋅

k Hh += h
e

h
=

( )h h

{h}

c i i iy I T T b= Ω − +∑

⇐⇐⇐⇐ Scattering vector

( ) *

h h h hM MI S jLO ⊥ ⊥= ⋅

Magnetic Interaction Vector:

Magnetic Structure   Factor :
hM⊥

M(h)

Magnetic Powder Diffraction
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( ) ( ) ( ){ }{ }
1

2
k

M h h S H k t r
n

j j j js js
j s

p O f T exp i Sπ
=

 = + ∑ ∑

j :  index running for all magnetic atom sites in the magnetic 
asymmetric unit (j =1,…n )

s :  index running for all atoms of the orbit corresponding to the
magnetic site j (s=1,… nj). Total number of atoms: N = Σ nj

{ }t
s

S Symmetry operators of the propagation vector group

The magnetic structure factor

Maximum number of parameters for a 
general incommensurate structure: 6N
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( )k

kS Sjs n n

n

C jsν ν
λ λ

λ

= ∑

Fourier coefficients as linear combinations of the 
basis functions of the irreducible representation of 
the propagation vector group Gk

( ) ( ) ( ) { }
1

2kM h h S h r
n

j j j n n s j

j n s

p O f T C js exp iν ν
λ λ

λ

π
=

= ∑ ∑ ∑

Group Theory: Symmetry Analysis
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( ) ( ) ( ){ }{ }
1

2
k k

M h h S H k t r
n

j j j js j js
j s

p O f T exp i Sπ
=

 = + −Φ ∑ ∑

Standard Fourier coefficients refinement:
A magnetic phase has Jbt = +/- 1

The magnetic symmetry is introduced together with 

explicit symmetry operators of the crystal structure.

The refined variables are directly the components of the 

Skjs vectors. Not all components of Skjs are free (reason 

of the phase factors) and a relation exist between Skj1
and Skjs

The different ways of treating magnetic 
structures in FullProf

{ }1 2k k kS Sjs js j jM exp iπ φ= −
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!-------------------------------------------------------------------------------
!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern# 1:     4.09
!-------------------------------------------------------------------------------
LaMnO3
!
!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

1   0   0 0.0 0.0 1.0   1   0  -1   0   0          0.000   0   7   0
!
P m m m                  <--Space group symbol
!Nsym Cen Laue MagMat

4   1   3   1
!
SYMM   x,y,z
MSYM   u,v,w,0.0
SYMM   -x,-y,z+1/2
MSYM   -u,-v,w,0.0
SYMM   -x+1/2,y+1/2,-z+1/2
MSYM    u,-v,w,0.0
SYMM   x+1/2,-y+1/2,-z
MSYM   -u, v,w,0.0
!
!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      Rx  Ry      Rz
!     Ix     Iy     Iz    beta11  beta22  beta33   MagPh
Mn1  MMN3  1  0  0.50000 0.00000 0.00000 0.04338 1.00000   0.000 3.847   0.000

0.00    0.00    0.00    0.00    0.00    0.00 131.00    0.00
0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00

Standard Fourier components refinement
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Coefficients of basis functions refinement:
A magnetic phase has Jbt = +/- 1 and Isy=-2

The basis functions of the Irreps (in 

numerical form) are introduced together 

with explicit symmetry operators of the 

crystal structure.

The refined variables are directly the 

coefficients  C1, C2, C3, ….

( ) ( ) ( ) [ ]{ }∑ ∑∑ Φ−=
= λ

ν
λ

ν
λ π

n

jjsn

s

n

n

j

jjj iexpjsCTfOp k

k rhShhM 2
1

( )k

kS Sjs n n

n

C jsν ν
λ λ

λ

= ∑

nC
ν

λ

The different ways of treating magnetic 
structures in FullProf
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LaMnO3
!
!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

1   0   0 0.0 0.0 1.0   1   0  -2   0   0          0.000   0   7   0
!
P m m m                  <--Space group symbol
! Nsym   Cen  Laue Ireps N_Bas

4     1     1    -1     3
! Real(0)-Imaginary(1) indicator for Ci

0  0  0
!
SYMM x,y,z
BASR   1  0  0   0  1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
SYMM -x+1,-y,z+1/2
BASR  -1  0  0   0 -1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
SYMM -x+1/2,y+1/2,-z+1/2
BASR   1  0  0   0 -1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
SYMM x-1/2,-y+1/2,-z
BASR  -1  0  0   0  1  0   0  0  1
BASI   0  0  0   0  0  0   0  0  0
!
!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      C1  C2      C3
!     C4     C5     C6      C7      C8      C9     MagPh
Mn1  MMN3  1  0  0.50000 0.00000 0.00000 0.04338 1.00000   0.000 3.847   0.000

0.00    0.00    0.00    0.00    0.00    0.00 131.00    0.00
0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00

Basis functions coefficients refinement
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Content of the talk

� Overview of the Fourier coefficients formalism 
for describing magnetic structures and it relation 
with basis functions of the Irreps of Gk.

� Steps for Solving and refining magnetic 
structures using Neutron Powder Diffraction and 
the programs of the FullProf Suite

� Neutron Powder Diffraction and magnetic 
structures. The magnetic structure factor as 
implemented in FullProf.

� Examples and tutorials

INSTITUT MAX VON LAUE - PAUL LANGEVINNeutron School St Margherita di Pula, September/October 2006 Juan Rodriguez-Carvajal

LaMnO3 : 50K and 150 K

Magnetic scattering in LaMnO3
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Difference: 50K -150K

Magnetic reflections

Thermal expansion

LaMnO3 : magnetic scattering

Magnetic scattering in LaMnO3
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Symmetry Analysis 
BasIreps, MODY, 

SARAh

Propagation vector

⇐⇐⇐⇐ Space Group

Atom positions

Magnetic structure 
solution (Sim. Ann.) 

FullProf

Integrated intensities

⇐⇐⇐⇐ Atomic components

of basis functions

Propagation vector(s)
SuperCell

Step

Peak positions of 

⇐⇐⇐⇐ magnetic reflections

Cell parameters

Input

Steps for magnetic structure determination 
using powder diffraction
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The Program SuperCell
(distributed within the FullProf Suite and accessible 

from WinPLOTR)

Program: SuperCell (J.Rodríguez-Carvajal, LLB-December-1998)

• This program can be used to index superstructure reflections from
a powder diffraction pattern. 

• The first approach consist in searching the best "magnetic unit cell"
compatible with a set of observed SUPERSTRUCTURE lines in the
powder diffraction pattern.

• If the first approach fails to give a suitable solution, the superstructure 
may be incommensurate and a direct search for the propagation
vector and one of its harmonics have to be used.  

SuperCell
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LaMnO3: Extraction of magnetic integrated intensities

Main magnetic reflections

Propagation vector k=(0,0,0) ⇒ magnetic cell=crystal cell

Extraction of magnetic intensities in LaMnO3
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Code of files

Working 

directory

Title

Space group

symbol 

or generators

Brillouin 

Zone label 
k-vector

Axial/polar

Number of 

atoms
Atoms 

positions

Atoms in 

Unit Cell

GUI for BasIreps
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BasIreps provides the basis functions (normal modes) of the 

irreducible representations 

of the wave-vector group Gk

{ }
{ }

2
k

k

m S kR
ljs js l

exp iπ= −∑

( )jsC n

n

njs

ν
λ

λ

ν
λ

k

k SS ∑=

Output of BasIreps ⇒⇒⇒⇒ Basis Functions (constant vectors)

( )jsn

ν
λ
k
S

Output of BasIreps

INSTITUT MAX VON LAUE - PAUL LANGEVINNeutron School St Margherita di Pula, September/October 2006 Juan Rodriguez-Carvajal

Example of BasIreps output
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k=(0,0,0), ν=1, n=1,2,3
λ=1, j=1, s=1,2,3,4

Format for FullProf

( )jsn

ν
λ
kS

Example of BasIreps output
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Magnetic structure determination in 
complex systems

Simulating Annealing (SAnn)
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Simulated Annealing:
The SA method is a general purpose optimisation technique
for large combinatorial problems introduced by:

Kirpatrick, Gelatt and Vecchi, Science 220, 671-680 (1983).

Minimize a cost function, energy E(ωωωω), with respect to 
the configuration vector ωωωω.

Origin: Monte Carlo methods for simulating properties 
of liquids (Metropolis algorithm)

Algorithm trying to mimic the process of annealing a sample to obtain 
a good crystalline state (ground state):
A temperature schedule (starting high temperature + cooling 

rate) is needed.

Procedure to generate new configurations (Markov chains) and a 

Boltzmann probability to explore the phase space (importance 

sampling)

What is Simulated Annealing?
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The SA method applied to structural problems:

• J. Pannetier, J. Bassas-Alsina, J. Rodríguez-Carvajal
and V. Caignaert, Nature 346, 343-345 (1990)

• J.M. Newsam, M.W. Deem and C.M. Freeman, 
Accuracy in Powder Diffraction II. 
NIST Special Publ. No. 846, 80-91 (1992)

• J. Rodríguez-Carvajal, Physica B 192, 55-69 (1993)
(program MAGSAN)

Simulated Annealing 
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Look directly for coefficients of the expansion: 

or components of Sk and phases, explaining the 
experimental data

•Minimize a reliability factor with respect to the     
“configuration vector”

1 2 3 4 5, , , , ,...ω mC C C C C C=

( ) ( ) ( )2 2

1

,ω h h ω
N

m r r
obs calc

r

R c G G
=

= −∑

( )jsC n

n

njs

ν
λ

λ

ν
λ

k

k SS ∑=

Simulated Annealing for magnetic structures
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Simulated Annealing run of FullProf
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Simulated Annealing run of FullProf
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Magnetic structure 
Refinement 
FullProf

Complete structural 
⇐⇐⇐⇐ model should be

provided

Input

In many cases the number of free parameters is too 
much high to be refined by LSQ: try to reduce the 
number of parameters or make soft constraints.

Use spherical components of Fourier coefficients in order to 
have better control of the amplitude of the magnetic moment

Different runs of SAnn jobs may give you an idea of 
the degeneracy of solutions for your particular problem.

Refinement of magnetic structures using 
neutron powder diffraction
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Content of the talk

� Overview of the Fourier coefficients formalism 
for describing magnetic structures and it relation 
with basis functions of the Irreps of Gk.

� Steps for Solving and refining magnetic 
structures using Neutron Powder Diffraction and 
the programs of the FullProf Suite

� Neutron Powder Diffraction and magnetic 
structures. The magnetic structure factor as 
implemented in FullProf.

� Examples and tutorials
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Tutorial-1: 
Magnetic Structure of KTb3F12

• A simple case where symmetry analysis gives a very 
important information to interpret the results.

• Space Group: I4/m, prop. vector k=(1,0,0) (a=7.63Å, 
c=7.52Å), 2 magnetic atoms {Tba,Tbb} in special 
positions (3 magnetic atoms per primitive unit cell)

Eight 1D-Irreps some of them are complex.

• The final magnetic structure is reduced to the 
refinement of only a single parameter.
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Steps for using the Simulated Annealing option within FullProf for 
Magnetic Structure Determination

1- Refine the crystal structure in the paramagnetic state

1’- If there is a structural phase transition at TN/TC, then refine the 
crystal structure in the ordered state using high-Q reflections 
without magnetic contribution

3- In the ordered state fix all structural parameters and introduce 
the magnetic contribution as a new phase using the Le Bail fit 
mode and putting More=1 and Jvi=11

4- The above step produces an output file *.int that can be 
used as input data for Simulated Annealing runs

2- Indexing: determine the propagation vector
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Tb3+/Tb4+ Charge ordering in KTb3F12: 
magnetic frustration in the Tb3+ sublattice
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Structure of    KTb3+Tb24+F12

Tb3+

Tb4+
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Structure of    KTb3+Tb24+F12

Tb3+

Tb4+

K+
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Topology of Magnetic ions in KTb3+Tb24+F12

Tb3+

Tb4+
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Refinement of the crystal structure of: 
KTb3F14 at 5K

S.G.: I 4/m, 
a ≈ 7.68, c ≈ 7.52
3T2 (LLB),  λ=1.22 Å
T=5K

This allows to know all 

structural parameters near the 

Néel temperature (TN=3.65K)
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Powder diffraction patterns of KTb3F14

Data obtained in G4.1 (LLB)
λ=2.43 Å
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How to prepare a PCR file for generating integrated intensities for SAnn?

!-------------------------------------------------------------------------------
!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern# 1:     0.45
!-------------------------------------------------------------------------------
KTb3F12-M
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More

0   0   0 0.0 0.0 1.0   2 -1 0   0   0          0.000   1   7   1
!
!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref
11 0   0   0   0   0  1.0000  0.0000  0.0000  0.0000   1   0

!
I -1                     <--Space group symbol
!-------> Profile Parameters for Pattern #  1
!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model
4.3356       0.00000   0.00000   0.00000   0.00000   0.00000  0

0.00000     0.000     0.000     0.000     0.000     0.000
!       U         V          W           X          Y        GauSiz   LorSiz

0.794074  -0.280000   0.080000   0.000000   0.045159   0.000000   0.000000
61.000      0.000      0.000      0.000     71.000      0.000      0.000

!     a          b         c        alpha      beta       gamma
7.695388   7.695388   7.540170  90.000000  90.000000  90.000000
31.00000   31.00000   41.00000    0.00000    0.00000    0.00000

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L D_L
1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 0.00000

0.00     0.00     0.00     0.00     0.00     0.00     0.00 0.00
! Propagation vectors:

1.0000000   0.0000000   0.0000000          Propagation Vector  1
0.000000    0.000000    0.000000
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Profile matching (Le Bail) fit: KTb3F14

S.G.: I 4/m, 
a ≈ 7.63Å, c ≈ 7.52Å
k = (1, 0, 0) 

This fit provides a file with pure integrated 

magnetic intensities suitable for running 

simulated annealing in FullProf
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Example of *.int file generated by FullProf using
More=1, Jvi=11

Phase No:   2 KTb3F12-M                Overlapped reflections re-grouped
(4i4,2f12.2,i4,3f14.4)                <- Format of h,k,l,iv, Int, sigma, multip.
2.4260   0   2                      <- Wavelength, type of data, powder ind.
1                                  <- Number of propagation vectors

1   1.00000   0.00000   0.00000     <- Propagation vector
0   0   0   1       -1.00       47.42   2

-1   1   0   1    18893.78       67.06   2
-1   0   1   1        0.00        1.00   2  Negative intensity means that
-2  -1   1   1       -1.00        0.00   2  the reflection contributes to the
-2   1   1   1       -1.00        0.00   2  next positive observation
0  -1   1   1       -1.00        0.00   2
0   1   1   1        0.00        0.00   2
0   2   0   1       -1.00        7.41   2
0  -2   0   1       -1.00        1.00   2
1  -1   0   1       -1.00        7.41   2
1   1   0   1       -1.00        7.41   2

-3   0   1   1       -1.00        0.42   2
-1  -2   1   1       -1.00        0.42   2
-1   2   1   1       -1.00        0.42   2
1   0   1   1     6566.70       14.85   2

-2   0   2   1       -1.00        2.24   2
-1  -1   2   1       -1.00        2.24   2
-1   1   2   1       -1.00        2.24   2
0   0   2   1     1327.23        4.48   2

. . . . . . . . . . . . . . . . . . . . . . .
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How to prepare a Simulating Annealing PCR file?

COMM KTb3F12 - T=1.4K - G4.1
! Files =>
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut

1   0   1   0   0   0   0 0   0   0   0 0   0   8   3 0   0   0   1
!
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana

0   0   1   0   1   0   0   0   0   3   5   0   0   0   0   0 0
!
!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0
1  0.10  1.00  1.00  1.00  1.00     15.0000   0.100000    94.9000   0.000   0.000

!
!

8    !Number of refined parameters
!-------------------------------------------------------------------------------
!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:     2.03
!-------------------------------------------------------------------------------
KTb3F12-M
!
. . . . . . . . . 

Cry=3 tells the program to use the Simulated annealing mode 
Nre=8 number of free parameters with box constraints
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!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More
3   0   0 0.0 0.0 1.0  -1   4  -1 0   0          0.000   1   0   0

!
I -1                     <--Space group symbol
!Nsym Cen Laue MagMat

1   1   1   1
!
SYMM  x,y,z
MSYM  u,v,w,0.0
!
!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      Rm  Rphi  Rtheta
!     Im   Iphi   Itheta  beta11  beta22  beta33   MagPh
T3_1 JTB3  1  0  0.00000 0.00000 0.50000 0.06775 1.00000   0.09 0.976  0.000

0.00    0.00    0.00    0.00    0.00   11.00   31.00   41.00
0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00

T4_1 JTB3  1  0  0.00000 0.50000 0.25000 0.03425 1.00000   1.909 1.927 0.00
0.00    0.00    0.00    0.00    0.00   21.00   51.00   61.00

0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00

T4_2 JTB3  1  0  0.00000 0.50000 0.75000 0.03425 1.00000   1.909 0.561 0.00
0.00    0.00    0.00    0.00    0.00   21.00   71.00   81.00

0.000   0.000   0.000   0.000   0.000   0.000 0.00000
0.00    0.00    0.00    0.00    0.00    0.00    0.00

No symmetry constraints:

Spherical components, m_Tb4+(1)= m_Tb4+(2)

How to prepare a Simulating Annealing PCR file?
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!  Scale Factors
!  Sc1       Sc2        Sc3        Sc4        Sc5        Sc6
4.336 0.000      0.000      0.000      0.000      0.000

0.00      0.00      0.00      0.00      0.00      0.00
!  Extinction Parameters
! Ext1       Ext2       Ext3       Ext4       Ext5       Ext6   Ext7   Ext-Model
0.000      0.000      0.000      0.000      0.000      0.000  0.000       0

0.00       0.00       0.00       0.00       0.00       0.00       0.00
!     a          b         c        alpha      beta       gamma

7.695388   7.695388   7.540171  90.000000  90.000000  90.000000
0.00000    0.00000    0.00000    0.00000    0.00000    0.00000

! x-Lambda/2  +          Not yet used parameters
0.00000     0.00000     0.00000     0.00000     0.00000

0.00        0.00        0.00        0.00        0.00
! Propagation vectors:

1.0000000   0.0000000   0.0000000 Propagation Vector  1
0.000000    0.000000    0.000000

No profile parameters, 
part of the file similar to single crystal format

How to prepare a Simulating Annealing PCR file?
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! Limits for selected parameters (+ steps & BoundCond for SA):
1 0.0000      9.0000      0.5831   0  Rmom_T3_1
2 0.0000      9.0000      0.0582   0  Rmom_T4_1
3 0.0000    360.0000    2.0000   1  RPhi_T3_1
4 0.0000    180.0000    2.0000   0  RThet_T3_1
5 0.0000    360.0000    2.0000 1  RPhi_T4_1
6 0.0000    180.0000      2.0000 0  RThet_T4_1
7 0.0000    360.0000    2.0000 1  RPhi_T4_2
8 0.0000    180.0000      2.0000 0  RThet_T4_2

!
! T_ini   Anneal  Accept NumTemps NumThCyc InitConf

5.000   0.900   0.050       45    0    0
! NCyclM   Nsolu Num_Ref Nscalef  NAlgor

150       1   110   0       0

Parameter number Ranges and steps
boundary conditions

Random initial 

configuration
Corana algorithm

Initial step = range
Automatic treatment(1) or 

fixed(0) scale factor 

Number of reflections to 

consider

How to prepare a Simulating Annealing PCR file?
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Simulated Annealing run of FullProf
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Simulated Annealing run of FullProf

INSTITUT MAX VON LAUE - PAUL LANGEVINNeutron School St Margherita di Pula, September/October 2006 Juan Rodriguez-Carvajal

Symmetry analysis for magnetic structure determination of KTb3F12

Space group: I4/m
Cell parameters: a=7.695 Å, c=7.540 Å
Propagation vector k = (1, 0, 0)
Results of BasIreps:
Gk= I4/m (invariant vector),  k ≡ -k
8 irreducible representations of dimension 1 (some complex!)

Site Tb3+:  1 sublattice ⇒ 1: (0,0,1/2) 

Site Tb4+:  2 sublattices ⇒ 1: (0,1/2,1/4)     2: (0,1/2,3/4) 

1 5 7mΓ = Γ ⊕ Γ ⊕ Γ

2 3 5 6 7 8mΓ = Γ ⊕ Γ ⊕ Γ ⊕ Γ ⊕ Γ ⊕ Γ
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Symmetry analysis for magnetic structure determination of KTb3F12

Basis functions of the Irreducible representations

1

5

7

: (0, 0, )

: ( , 0, 0) (0, , 0)

: ( , 0, 0) (0, , 0)

k

k

k

S

S

S

v

v i v

v i v

Γ =

Γ = + −

Γ = +

Site Tb3+:  
1 sublattice (0,0,1/2) 

Possible magnetic structures: 
1 5 7,Γ Γ ⊕ Γ
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Symmetry analysis for magnetic structure determination of KTb3F12

2

3

5

6

7

: (1) (0, 0, ); (2) (0, 0, )

: (1) (0, 0, ); (2) (0, 0, )

: (1) ( , 0, 0) (0, , 0); (2) ( , 0, 0) (0, , 0)

: (1) ( , 0, 0) (0, , 0); (2) ( , 0, 0) (0, , 0)

: (1) ( , 0, 0) (0, , 0); (2) ( , 0, 0)

k k

k k

k k

k k

k k

S S

S S

S S

S S

S S

u u

u u

u i u u i u

u i u u i u

u i u u

Γ = = −

Γ = =

Γ = + = +

Γ = + − = − +

Γ = + − = +

8

(0, , 0)

: (1) ( , 0, 0) (0, , 0); (2) ( , 0, 0) (0, , 0)k kS S

i u

u i u u i u

−

Γ = + = − + −

Site Tb4+:  2 sublattices (0,1/2,1/4), (0,1/2,3/4) 

2 3 5 7 6 8, , ,Γ Γ Γ ⊕ Γ Γ ⊕ Γ
Possible magnetic structures: 
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Symmetry analysis for magnetic structure determination of KTb3F12

Site Tb4+:  2 sublattices (0,1/2,1/4), (0,1/2,3/4), 

Possible magnetic structures:

Only the mixed representation  Γ5⊕ Γ7 is possible for having
magnetic moments in both sites. We have found experimentally 

that the Tb4+ orders according to the representation Γ3 that is not 
allowed for the Tb3+ site, so this ion should not have a magnetic 
moment.
The representation Γ3 is one dimensional, so there exist a magnetic 
Shubnikov group that is easily found realizing that for this 
representation the four-fold axis is primed (negative character) 
contrary to the mirror plane. 

The Shubnikov group is: IP4’/m

Site Tb3+:  1 sublattice (0,0,1/2) 
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Rietveld refinement of the magnetic structure of KTb3F12 on 
G4.1 (LLB)
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Magnetic Structure of    KTb3+Tb2
4+F12

Tb3+

Tb4+

K+
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Magnetic Structure of    KTb3+Tb2
4+F12

Only Tb4+ is ordered as F 

chains along c that are 

AF coupled in the basal 

plane

Tb3+ does not have  static 

magnetic moment because the 

molecular field due to Tb4+ is 

exactly zero at its site.

Tb3+ remains paramagnetic
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Conclusions about the determination of the magnetic structure of KTb3F12

Simulated Annealing:

In this case, the information contained in the powder diffraction 
pattern is enough to obtain the magnetic structure without symmetry 
constraints.

Symmetry Analysis:

The irreducible representation involved in the magnetic phase 
transition, Γ3, is not allowed for the site of Tb3+, so that this ion 
remains disordered (idle spin, “spin fou”).
One can verify that in the Shubnikov group IP4’/m the magnetic point 
group of the site 2b(Tb3+), 4’/m, is not admissible. 
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Tutorial-2: 
Magnetic Structure of Ho2Cu2O5

• A complex case where symmetry analysis gives too 
much degrees of freedom.

• Space Group: Pna21, prop. vector k=(0,1/2,0) 
(a=10.78Å, b=3.49Å,c=12.42Å), 4 magnetic atoms 
{Ho1,Ho2, Cu1,Cu2} in general positions (16 magnetic 
atoms per primitive unit cell)

A single 2D-Irrep, giving rise to 12 degrees of freedom 
per site (12×4=48).

• The final magnetic structure can be reduced to a 
problem of only four parameters
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Magnetic Structure of Ho2Cu2O5

Diffraction pattern at low 

temperature dominated by 

magnetic scattering
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The nuclear contribution is 

only a small fraction of the 

total area of the diffraction 

pattern

Magnetic Structure of Ho2Cu2O5
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• First step: Indexing is this case is trivial: All 
magnetic reflections can be indexed using the 
propagation vector k=(0,1/2,0)

• Second step: Extraction of integrated 
intensities using a Le Bail fit with FullProf. It 
is supposed that the crystal structure has been 
refined with a high resolution powder 
diffraction pattern. 

Magnetic Structure of Ho2Cu2O5
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• Third step: Symmetry analysis is not of much help. 
There is only a single Irrep of dimension 2 and the 
magnetic representation contains 6 times the Irrep, so 
6×2=12 basis functions exist for each site. A total of 48 
degrees of freedom defines the magnetic structure: all 
moments are independent!

• One can reduce a little bit this number by considering 
only constant moment magnetic structures, but it is 
tedious to try all combinations. 

Magnetic Structure of Ho2Cu2O5
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Irreducible representation of Pna21 for k=(0,1/2,0)

Basis Functions for the general position:
Sk(1): (u+d,v+e,w+f) Sk(2): (-u+d,-v+e,w-f) 
Sk(3): (-p-a,q+b,-r-c) Sk(4): (-p+a,q-b,r-c)

u, v, w, p, q, r, a, b, c, d, e, f are real numbers

( ) ( ) ( ) ( )
1 12 1 2

, , , , 1 / 2 1 / 2, 1 / 2, 1 / 2, 1 / 2, 1/ 2

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0

zPna a n

x y z x y z x y z x y z− − + + − + − + + +

−       
Γ        −       

Magnetic Structure of Ho2Cu2O5
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1 d=e=f=0 a=b=c=0  u = p   v = q   w = r    (+ - - - ; + - + + ; + + - +)
2 d=e=f=0 a=b=c=0  u =-p   v =-q   w =-r    (+ - + + ; + - - - ; + + + -)
3 d=e=f=0 a=b=c=0  u =-p   v = q   w = r    (+ - + + ; + - + + ; + + - +)
4 d=e=f=0 a=b=c=0  u = p   v =-q   w = r    (+ - - - ; + - - - ; + + - +)
5 d=e=f=0 a=b=c=0  u = p   v = q   w =-r    (+ - - - ; + - + + ; + + + -)
6 d=e=f=0 a=b=c=0  u =-p   v =-q   w = r    (+ - + + ; + - - - ; + + - +)
7 d=e=f=0 a=b=c=0  u = p   v =-q   w =-r    (+ - - - ; + - - - ; + + + -)
8 d=e=f=0 a=b=c=0  u =-p   v = q   w =-r    (+ - + + ; + - + + ; + + + -)
9 u=v=w=0 p=q=r=0  d = a   e = b   f = c    (+ + - + ; + + + - ; + - - -)  <=
10 u=v=w=0 p=q=r=0  d =-a   e =-b   f =-c    (+ + + - ; + + - + ; + - + +)
11 u=v=w=0 p=q=r=0  d =-a   e = b   f = c    (+ + + - ; + + + - ; + - - -)
12 u=v=w=0 p=q=r=0  d = a   e =-b   f = c    (+ + - + ; + + - + ; + - - -)
13 u=v=w=0 p=q=r=0  d = a   e = b   f =-c    (+ + - + ; + + + - ; + - + +)
14 u=v=w=0 p=q=r=0  d =-a   e =-b   f = c    (+ + + - ; + + - + ; + - - -)
15 u=v=w=0 p=q=r=0  d = a   e =-b   f =-c    (+ + - + ; + + - + ; + - + +)
16 u=v=w=0 p=q=r=0  d =-a   e = b   f =-c    (+ + + - ; + + + - ; + - + +)
17 d=e=f=0 p=q=r=0  u = a   v = b   w = c    (+ - - + ; + - + - ; + + - -)
18 d=e=f=0 p=q=r=0  u =-a   v =-b   w =-c    (+ - + - ; + - - + ; + + + +)
19 d=e=f=0 p=q=r=0  u =-a   v = b   w = c    (+ - + - ; + - + - ; + + - -)
20 d=e=f=0 p=q=r=0  u = a   v =-b   w = c    (+ - - + ; + - - + ; + + - -)
21 d=e=f=0 p=q=r=0  u = a   v = b   w =-c    (+ - - + ; + - + - ; + + + +)
22 d=e=f=0 p=q=r=0  u =-a   v =-b   w = c    (+ - + - ; + - - + ; + + - -)
23 d=e=f=0 p=q=r=0  u = a   v =-b   w =-c    (+ - - + ; + - - + ; + + + +)
24 d=e=f=0 p=q=r=0  u =-a   v = b   w =-c    (+ - + - ; + - + - ; + + + +)
25 u=v=w=0 a=b=c=0  d = p   e = q   f = r    (+ + - - ; + + + + ; + - - +)
26 u=v=w=0 a=b=c=0  d =-p   e =-q   f =-r    (+ + + + ; + + - - ; + - + -)
27 u=v=w=0 a=b=c=0  d =-p   e = q   f = r    (+ + + + ; + + + + ; + - - +)
28 u=v=w=0 a=b=c=0  d = p   e =-q   f = r    (+ + - - ; + + - - ; + - - +)
29 u=v=w=0 a=b=c=0  d = p   e = q   f =-r    (+ + - - ; + + + + ; + - + -)
30 u=v=w=0 a=b=c=0  d =-p   e =-q   f = r    (+ + + + ; + + - - ; + - - +)
31 u=v=w=0 a=b=c=0  d = p   e =-q   f =-r    (+ + - - ; + + - - ; + - + -)
32 u=v=w=0 a=b=c=0  d =-p   e = q   f =-r    (+ + + + ; + + + + ; + - + -)

Constant moment Magnetic Structures

All constant moment structures have 
3 x 4 = 12 free parameters
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• Fourth step: Simulated annealing in this case is a 
useful tool to explore the possible constant magnetic 
moment structures. Hidden symmetries can be found 
empirically.

One can try to solve the magnetic structure running a long 
Simulated Annealing job constraining the magnetic moments of the
like ionic species to have the same magnitude

m (Ho1) = m(Ho2) ,     m(Cu1) = m(Cu2)
This gives 2 magnetic moment parameters and 4 × 4 × 2 = 32 
angular parameters, so a maximum of 34 parameters

Magnetic Structure of Ho2Cu2O5
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All runs have been performed using 2 moment parameters and 32 
angular parameters (34 parameters)

R(F2)= 4.20%

R(F2)= 2.83%

R(F2)= 3.28%

R(F2)= 2.92%

Some simulated annealing results
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One of the results obtained without symmetry constraints is the 
following: Sol#: 1 RF2=   2.926 ::

Atom        Rx        Ry        Rz

Ho11   -4.4034    0.2361    7.5183
Ho12   -3.5360   -1.0080   -7.9026
Ho13    3.4545    1.1668   -7.9168
Ho14   -3.2197    1.6990   -7.9194

Ho21   -3.2673   -0.6635    8.0532
Ho22   -4.7332   -0.3892   -7.3086
Ho23    4.8049   -0.3962   -7.2612
Ho24   -4.9525   -1.4590   -7.0224

Cu11    0.0353    0.4925    0.7774
Cu12   -0.0833   -0.0805   -0.9137
Cu13    0.1932    0.1403   -0.8895
Cu14   -0.0846   -0.8771   -0.2680

Cu21   -0.8461   -0.2405    0.2730
Cu22   -0.0024   -0.0187   -0.9208
Cu23    0.4949    0.6256   -0.4604
Cu24   -0.5870    0.3512   -0.6168

It is clear that the 
coupling mode of the 
Ho sublattices along x 
and z is

Sx (+ + - +)
Sz (+ - - -)

The coupling mode 
along  y is not clear, but 
looking in the symmetry 
table it must be (+ + 
+ -)

Some simulated annealing results
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• Fifth step: The analysis of SAnn results 
allows to find a hidden symmetry.

The coupling mode of the Ho ions (when using the automatic 
numbering given by BasIreps) is given by the sequence:

Sx Sy Sz
(+ + - + ; + + + - ; + - - -)

This corresponds to the basis function in which we put the 
conditions: 
u=v=w=0 p=q=r=0  d = a   e = b   f = c

Magnetic Structure of Ho2Cu2O5
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• Last step: The refinement of the magnetic structure 
by the Rietveld method is perfectly stable if we select 
the proper free parameters

A part the fact that the coupling mode can be considered the same for all 
sites, we can see from SAnn that the Ho1 and Ho2 sites have also nearly 
the same components, so only 3 free parameters can be selected for all 
Ho3+ ions.

The Cu+2 ions contribution is much lower but we can consider (as seen in
some SAnn results) that the moments are aligned to those of the Ho ions, 
so only the amplitude of the Cu+2 magnetic moment is the additional 
parameter to fix the magnetic structure

Refining the Magnetic Structure of Ho2Cu2O5
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Space Group: Pna21
k=(0,1/2,0)
RBragg = 5.7% 
RMag = 3.0 %

Magnetic Structure of Ho2Cu2O5
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Symmetry Analysis:
The single irreducible representation involved in the magnetic phase transition, 
does not put enough constraints for the magnetic structure. This is quite usual 
when 2D representations and general positions are involved. 

Simulated Annealing:
The magnetic structure can be obtained without symmetry constraints. Only 
putting constant moment constraints an analysis of the results of different runs 
helps to find a hidden symmetry that is consequence of the symmetry of the 

exchange Hamiltonian.

Refinement
A final structure with only 4 parameters can be refined to convergence. LSQ 
does not converge by freeing more parameters.

Conclusions on the magnetic 
structure of Ho2Cu2O5
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Developments:

Structures with constant moments (2D Irreps)

Co-representations (?)

Simplify the tests of the different solutions

Hidden Symmetries : the relevant Irreps are those 
of the Hamiltonian group (using the space group is 
just an approximation favouring the most complex 
cases). Exchange Multiplets from Izyumov is an 

example 

Group theory in the data analysis 
nowadays ?


