IX school of neutron Scattering "Francesco Paolo Ricci"

Neutron Diffraction Experiment on Water sample

Gudrun and EPSR data analysis

Davide Flammini
Carolina Ziparo

Contents

- Sample and instrument
- Structure factors definition
- Data analysis
- Conclusions

The sample:water

- Neutron Diffraction experiment
- Instrument: SANDALS at ISIS neutron facility (pulsed source)

SANDALS

Small Angle Neutron Diffractometer for Amorphous and Liquid Samples

Using SANDALS it is possible to measure the static structure factor, S(Q), of a material over a wide range of momentum transfers

Incident Wavelength:	0.05 to 4.5 Å	
Q-range:	0.1 to 50 Å	
Moderator:	Liquid methane at 110K	
Incident Flight Path:	11m	
Final Flight Paths:	0.75m to 4.0m	

The neutron diffraction experiment

Total Structure Factor

Atomic concentrations and scattering lengths

$$F(Q) = \sum_{\alpha,\beta} c_{\alpha} c_{\beta} b_{\alpha} b_{\beta} (S_{\alpha\beta}(Q) - 1)$$

Partial Structure Factors

$$S_{\alpha\beta}(Q) - 1 = 4\pi\rho \int_0^\infty r^2 (g_{\alpha\beta}(r) - 1) \frac{\sin(Qr)}{Qr} dr$$

Atomic density

Partial Pair Distribution Functions

How can we obtain $S_{\alpha\beta}(Q)$?

- We have to perform an isotopic substitution of H with D
- We have 3 S_{αβ}(Q) to evaluate
- We need 3 different concentration of D:

```
> H_2O (0\%)
```

$$>D_2O$$
 (100%)

How we can perform the data analysis?

- Can subtraction
- MC simulation to correct the inelastic contribution
- Start with EPSR to refine the potential
- Start with accumulation
- Analysis Results
- Conclusions

Can Subtraction

- Can subtraction to obtain only the sample signal
- In principle each can is different although is made of the same material
- So we have to measure each of them

Can Signals

Nominal thickness: 0.1 cm

Sample Can	Thickness (cm)	
H ₂ O	0.095	
D_2O	0.090	
HDO	0.094	

Inelastic Correction

- The slope of the H2O at low q values is due to the inelastic scattering
- •The $q \to \infty$ level of different sample is due to the difference between the incoherent differential cross sections of hydrogen and deuterium

MC simulation to correct the inelastic contribution

- •We start an EPSR simulation without potential refinement
- •We used the SPC-E (Simple Point Charge Enhanced) reference potential

$$U^{ref} = \varepsilon_{\alpha\beta} \left[\left(\frac{r_{\alpha\beta}}{\sigma_{\alpha\beta}} \right)^6 - \left(\frac{r_{\alpha\beta}}{\sigma_{\alpha\beta}} \right)^{12} \right] + \frac{q_{\alpha}q_{\beta}}{4\pi\varepsilon_0 r_{\alpha\beta}}$$

Atom	ε (KJ/mol)	σ (Å)	q(e)
0	0.65	3.166	-0.8476
Н	0	0	0.4238

MC simulation to correct the inelastic contribution

Start with EPSR to refine the potential

- Cubic box with 500 water molecules
- Box edge of ~25 Å

- •We switched on the referential potential refinement of the system used for the MC simulation
- Wait for the system to thermalize

Start with accumulation

- Once the system reach the energy minimum we start accumulating configurations (put iinit=0)
- EPSR makes an average of equivalent configurations of the system

Increase of H bonds!!

Fit and difference with experimental data

Partial Pair distribution function :g(r)

- •The peaks are at the same position then the water at ambient T
- •There are no visible difference on the structure respect to ambient T

Empirical potential

The correction to the reference potential is very small

Angle distribution function

- The O-H-O maximum at 180^o represents the H bond
- The O-O-O maximum around 100⁰ describes the tetrahedral structure

Spatial density function

Coordination Number

Water Percolation function

•There is the evidence of the formation of a big cluster of almost all molecules of the box. We can say that the water is percolating

Conclusions

We carried out a data analysis on a sample of water at 45 °C using Gudrun and EPSR

- At this T the water still present an ordered tetrahedral structure
- There is the evidence of the presence of a lot of H bonds
- Fitting our data with a box of 500 molecules we can see a big cluster of almost all the molecules —> Percolation
- The water structure do not show evident differences with ambient T water

Acknowledgements

Our teachers Silvia Imberti and Rosaria Mancinelli

 The IX school of neutron Scattering "Francesco Paolo Ricci"

- All the speakers
- The band of Baretto

