

NEUTRON SOURCES

Antonino Pietropaolo

CNISM and NAST Center

University of Tor Vergata

nast

Nanoscience Nanotechnology Innovative Instrumentation

10th School of Neutron Scattering "F.P. Ricci"

Summary

- \checkmark The neutron particle
- ✓ Neutron production mechanisms
- ✓ Neutron sources
- ✓ An overview on large scale neutron facilities
- ✓ Neutronics of spallation neutron sources

The neutron particle

1935

Discovery of the neutron 1932

James Chadwick

Clifford G. Shull

"for the development of the neutron diffraction technique"

Bertram N. Brokhouse

"for the development of neutron spectroscopy"

Main properties

Charge= 0 Barionic Number= 1 Interactions: Electroweak, strong, gravitational Spin = $\frac{1}{2}\hbar$ Internal structure (QCD) = udd (2/3,-1/3,-1/3) Weak decay (T_{1/2} = 889.1 ± 2.1 sec) $n \rightarrow p + e^- + \overline{v}_e$

Magnetic moment: μ_m = - 0.966 236 40(23) x 10⁻²⁶ JT⁻¹ Electric Dipole moment: $|d| = 3.0 \times 10^{-26} \text{ e cm}$ Mass = 1.6749 x 10⁻²⁷ kg (appreciable effects in neutron interferometry)

A little of physics

The spontaneous fission

Induced Fission

Nuclear fission can be induced by bombarding atoms with neutrons.

The nuclei of the atoms then split into 2 equal parts.

Induced fission decays are also accompanied by the release of neutrons.

A neutron travels at high speed towards a uranium-235 nucleus.

A neutron travels at high speed towards a uranium-235 nucleus.

A neutron travels at high speed towards a uranium-235 nucleus.

The neutron strikes the nucleus which then captures the neutron.

The nucleus changes from being uranium-235 to uranium-236 as it has captured a neutron.

The uranium-236 nucleus formed is very unstable.

It transforms into an elongated shape for a short time.

The uranium-236 nucleus formed is very unstable.

It transforms into an elongated shape for a short time.

The uranium-236 nucleus formed is very unstable.

It transforms into an elongated shape for a short time.

It then splits into 2 fission fragments and releases neutrons.

It then splits into 2 fission fragments and releases neutrons.

It then splits into 2 fission fragments and releases neutrons.

It then splits into 2 fission fragments and releases neutrons. 141 56Ba

Delayed fission neutrons

• Neutrons generated by fission are prompt, while from the fission products, that in turn decay via a weak process, are emitted neutrons that are called "delayed neutrons".

$$(A,Z)^{**} \rightarrow (A,Z \pm 1)^{**} + e^{\pm}$$
$$(A,Z \pm 1)^{**} \rightarrow (A-1,Z \pm 1)^{**} + n$$

These delayed neutrons are almost monoenergetic as they proceed from the decay of a single nuclear excited state of the fission product

Nuclear Fusion

In nuclear fusion, two nuclei with low mass numbers combine to produce a single nucleus with a higher mass number.

$^{2}_{1}$ H + $^{3}_{1}$ H - $^{4}_{2}$ He + $^{1}_{0}$ n + Energy

ENERGY

The charge particle induced reactions

At low energies (let say below 100 MeV) interactions with formation of compound (not stable) nuclei that in turn decay with emission of neutrons is likely to occur A few examples:

$$\alpha + T \rightarrow \begin{cases} {}^{3}He + n + X \\ {}^{3}H + p + X \\ d + d + X \\ d + n + p + X \\ n + n + p + p + X \end{cases}$$

T being the Target and X represents the final state of the Target

These reactions where fragmentation of the projectile (α particle) occurs are important at **very high energies** (e.g. in the cosmic rays, 10-12% of the cosmic rays flux are α) as π exchange is a likely mechanism
Examples of neutron sources

Radioisotopes

Figure 2: Neutron kinetic energy spectrum produced in the spontaneous fission of Californium nuclei.

²⁵²Cf spontaneous fission:

spectrum well described by the relation:

$$\frac{dN}{dE} = E^{\frac{1}{2}}e^{-\frac{E}{T}} \qquad T \approx 1.3 \text{ MeV}$$

 $I \approx 2.3 \ 10^6 \ n \ s^{-1} \ \mu gr^{-1}$

3.8 n/fission + 9.7 γ (85% prompt τ < ns and high energy)

Photoproduction

Charged particle induced reactions

Neutrons from fusion plasma TOKAMAK

Inertial fusion laser & heavy ions

The NOVA reactor @ Lawrence Livermore labs (CA, US)

Inertial confinement is the other direction or research towards plasma confinement. This technique involves imploding a small fuel pellet (most likely a 50/50 mixture of deuterium and tritium). If it is compressed quickly and hard enough, temperature and density rise, allowing the reaction to reach or exceed the Lawson criterion. It is the inertia of the imploding pellet that keeps it confined momentarily. Because it is confined only by its own inertia, the plasma lasts for about one nanosecond.

Therefore, to achieve breakeven point, a very large density is needed, usually around 1024 particles/cm3, which is many times more than lead. The fuel pellet, or target, is compressed and heated with what are called energy drivers. These highpowered sources of energy are usually either high-powered laser or ion beams, which bombard the target from all sides symmetrically. The outer layer of the pellet vaporizes and moves away from the pellet like a rocket. This projection creates shock waves which go on to compress and heat the core. The compressed fuel then burns, releasing much energy, and expands. This is partially offset by the shock waves, which tend to continue compressing the material. This behavior is known as inertia. The result is an inertial confinement fusion reaction.

Sources at large scale facilities

Fission Reactors

Cold and hot sources

Heinz Maier Leibnitz Reactor FRM-II (Munich, Germany)

Reactor Type:

Nominal Thermal 20MW Power: **Reactor Core:** single, cylindrical fuel element (inside 118mm, outside 243mm, approx. 700mm height) 113 involuted, curved fuel plates uranium silicide-aluminium dispersion • graded uranium densities (1,5gcm⁻³ und 3,0gcm⁻³) • enrichment factor 93% 235U approx. 8kg uranium in total duration of cycle approx. 52 days ٠ 5 cycles per year central control rod (hafnium) with beryllium follower Shut-down Systems: five shutdown rods in moderator tank (hafnium) Cooling: primary system: pool water (H₂O), throughput 1000m³h⁻¹, temperature 37/52°C secondary system: closed circuit (H₂O) tertiary system: wet cooling units (H₂O), heat dissipation to atmosphere Pool: approx. 700m³ deionised water isolating gate between decay pool and reator pool Reactor Pool heavy concrete, density 4,5gcm⁻³, thickness 1,5m Wall: Building: reactor building 42m x 42m, 30m high neutron guide hall: experimental area approx. 50m

Neutron Flux Density: • 8x10¹⁴cm⁻²s⁻¹ maximum (thermal, undisturbed)

Characteristic Data

tank 2.5m in diameter and 2.5m high

compact reactor core in the centre of a D₂O-Moderator

.

Reattore IBR-2 Dubna

Worlwide reactors

Reactor	Location	First	Power,	Flux,	Cold and Hot
		Operation	MW	n/cm ² -sec	Sources
OPAL ^a	Lucas Heights, Australia	2007	20.	4.0×10^{14}	1 Cold
NRU ^a	Chalk River, Canada	1957	120.	3.0×10^{14}	—
CNF	Chalk River, Canada	~2012	40.	4.0×10^{14}	1 Cold
CARR ^b	Beijing, china	2006	60.	8.0×10^{14}	1 Cold 1 hot (?)
ILL-HFR ^a	Grenoble, France	1972	58.	1.2 x 10 ¹⁵	2 Cold, 1 Hot
Orphée ^a	Saclay, France	1980	14.	3.0×10^{14}	2 Cold, 1 Hot
BER-2 ^a	Berlin, Germany	1973	10.	2.0×10^{14}	1 Cold
FRM-2 ^a	Munich, Germany	2004	20.	7.0 x 10 ¹⁴	1 Cold, 1 Hot
BNC ^a	Budapest, Hungary	1959	10.	1.6×10^{14}	1 Cold
Dhruva ^b	Trombay, India	1985	100.	1.8×10^{14}	
JRR-3M ^a	Tokai, Japan	1962	20.	2.0×10^{14}	1 Cold
Hanaro ^a	Taejon, Korea	1996	30.	2.8×10^{14}	—
PIK ^a	St. Petersburg, Russia	?	100.	1.2×10^{15}	1 Cold, 1 Hot
HFIR ^a	Oak Ridge, United States	1966	85.	1.2×10^{15}	1 Cold
NBSR ^a	Gaithersburg, United States	1969	20.	4.0×10^{14}	1 Cold

Accelerator-driven pulsed neutron sources

LINAC sources

Electrons-induced neutron production Bremsstrahlung

Some examples

$$-\left(\frac{dE}{dx}\right) = \frac{NEZ(Z+1)e^2}{137m_0^2c^4} \left(4ln\frac{2E}{m_0c^2} - \frac{4}{3}\right)$$

$$\frac{\left(dE/dx\right)_{Brems}}{\left(dE/dx\right)_{Bethe}} = \frac{E(MeV)Z}{700}$$

At the typical electron energies (E≈ 50 MeV) and for the typical values of Z of the target (e.g.Z = 92 for U), the erngy loss due to Bremsstrahlung is more intense by a factor of about 6

GELINA Facility @ Geel (Belgio)

Neutron energy range: 1 meV-20 MeV

Neutrons bunches duration: < 1 ns

repetition rates: up to 800 Hz

Total neutron flux of the target: 3.4 x 10¹³ neutrons/s

Spallation production

A comparison among neutron production mechanisms

	Electrons (bersaglio U)	Protons (bersaglio U)	Reactors (U)
Reaction	Bremsstrahlung	Spallation	Nuclear fission
Typical incident particle energy	100 MeV	800 MeV	_
Neutron Yield	5 x 10 ⁻² n/e ⁻	30 n/p	1 n/fissione
Deposited energy	2 GeV	55 MeV	180 MeV

Neutronics of spallation neutron sources

Projectiles, targets and moderators

Why protons ?

 $P_n = 1 - \exp(-\frac{R}{\lambda})$ **R**: particle range [g cm⁻²] λ : mean free path [g cm⁻²]

 $\lambda = 33A^{1/3}$ for E > 100 MeV it is almost constant and for heavy nuclei its value is about 200 g cm⁻² $R(^{207}Pb) = 705$ g cm⁻² at E = 1.1 GeV (protons). If *d* is the target's thickness,

 $d = 3\lambda \Rightarrow P_n = 0.95$, for ²⁰⁷Pb d = 60 cm with E = 1.1 GeV protons

Fixing E, for a given ion R ∝ A/Z²
Heavy ions are not suitable as projectiles as it
is visible from the trend of the Yield/charge for different ions

Deuteron seems the best but one should considers the cost to accelerate heavy ions at about 1-2 GeV. Protons are more convenient

Figure 2. Measured neutron yield per charge, Y_i/Z_i , from a Pb target, 20 cm in diameter and 60 cm in length, bombarded by various light ions as a function of incident ion energy per ion charge, E_i/Z_i . For ³He ions, only one measured point is given.

What energy has to be used ?

	Electrons (U target)	Protons (U target)	Reactors (U fissile target)
Reaction	Bremsstrahlung radiation	Spallation	Nuclear fission
Typical energy of the incident particles	100 MeV	800 MeV	_
Neutron Yield	5 x 10 ⁻² n/e ⁻	30 n/p	1 n/fissione
Deposited Energy	2 GeV	55 MeV	(180 MeV)

Choice of the spallation target

Figure 4. Calculated values of total leakage-neutrons, *Y*, from various bare targets as a functio of proton energy. 'Sub 15 MeV neutron' means that high-energy neutrons are not included: (onl sub 15 MeV neutrons are plotted). A cylindrical target, 10 cm in diameter and 32 cm in length, i assumed, with a cylindrical proton-beam profile of 4.7 cm in diameter.

Figure 5. Calculated values of source neutrons (sub 15 MeV neutrons) directly produced by the spallation reaction (the so-called O5R neutrons), total neutron production in target including secondary neutron production by (n, xn) reactions, etc, neutron losses by absorption and escape from front and back surfaces, and resulting leakage-neutrons from cylindrical surface, as a function of target radius. Two different targets, U (left) and W (right), are compared for the case $E_p = 3$ GeV.

Effect of the geometry

Deposited power into the target

Figure 8. Calculated values of fractional energy deposition in the target to the proton-beam energy, $F_{\rm h}$, as a function of proton kinetic energy ($E_{\rm p}$). SNS and SIN mean the present ISIS and SINQ, respectively. Data labelled 'MEAS' are measured values.

Angular distribution of the neutrons prodeuced by $\mathbf{p} + \mathbf{W} (E_p = 1 \text{ GeV})$ reactions. Angles are measured with respect to the incident direction of the protons.

Moderators

Letargy

By moderating, the peak of the energy distribution shifts at lower energy

Target-moderator coupling

High fluxes but the input port of the beamline "sees" the target (intense n and γ background Fluxes lower by a factor of about 2 but the beamline does not "see" the target (lower background)

Mostly used with vertically incident protons pulses

Energy Spectra

Figure 19. Measured energy spectra from three H_2O moderators with fits by equation (5.1) (upper) and those from two H_2 moderators with fits (lower). For the definition of coupled and decoupled moderators, see section 5.2: 'high intensity' and 'high-resolution' mean decoupled unpoisoned and poisoned moderators, respectively.

$$\tau_p = \frac{1.2}{\sqrt{E(eV)}} \mu s$$

FWHM of the neutorn pulòse at the energy E in the "slowing down" region

Pulse shape of neutrons

ISIS pulsed neutron source

The ion source

lons formation from a plasma

The OLD Cockcroft-Walton

- •DC accelerator
- •10-stage voltage multiplier (5.5 kHz)

Cockcroft-Walton accelerates H⁻ ions from 6 keV (from the source) to about a circa 665 keV (I \approx 35 mA) before beam injection into the **LINAC**.

The RFQ Acceleration stage

The Quadrupole Lens

Focusing in one plane, de-focusing in the other

Alternating Gradient Focusing

Net focusing can be achieved by a system of focusing and defocusing elements

Radio Frequency Quadrupole

The LINAC

Caratteristiche principali

$L_{Linac} \approx 40 \text{ m}$

4 accelearation stages "drift tubes": $L_{DT} \approx 10 \text{ m}, \phi \approx 1 \text{ m}$

Acceleration method: RF @ 202.5 MHz

$E_{f'H} \approx 70 \text{ MeV}$

Before injection into the synchrotron $H^- \rightarrow p$ by means of a AIO sheet ("**STRIPPER**")

The Synchrotron

Caratteristiche principali

R_{eff} ≈ 26.0 m

Magnets: to tilt the proton trajectory (Lorentz force)

B ≈ 0.17–0.71 T

RF electric fields to accelerate protons

RF: 1.3–3.1 MHz

Intensity of the magnetic field, the frequency, the amplitude and pahse of the RF have to synchronised to obtain proper acceleration. The synchrotron packs protons into bunches.

> F = 50 Hz $E_{f,p} \approx 800 \text{ MeV}$ P $\approx 1 \text{ MW max}$

All beam in synchrotron extracted in one turn $\beta = v/c = 0.84$, 163 m circumference \rightarrow revolution time = 0.65 µs $4 \mu C \div 0.65 \mu s \rightarrow 6 A$ circulating current Extracted pulse ~0.3 µs long (double peak proton pulse)

The target station

Caratteristiche

~2.5×10¹³ protons

 $(Q \approx 4 \mu C)$ per pulse onto a W target

(50 pps \rightarrow F = 50 Hz)

~15–20 neutrons/ proton

~4×10¹⁴ neutrons/pulse

THE ISIS TARGET

R

ISIS spallation neutron source

Spallation sources worldwidepresent and future

STFC-ISIS United Kingdom

Spallation Neutron Source (SNS) United States of America

J-PARC Japan

European Spallation Source (ESS) Sweden

Paul Sherrer Institute (PSI) Switzerland

nTOF @ CERN Switzerland

China Spallation Neutron Source (CSNS) China

In coclusion.....

Development of spallation sources

A few useful references

- C. G. Windsor, "Pulsed Neutron Scattering", Taylor & Francis LTD (1981);
- N. Watanabe, "Neutronics of spallation sources", Rep. Progr. Phys. 66, 339 (2003);