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Notation

θB Bragg angle

γN Gyromagnetic ratio of the neutron

ΩL Larmor precession frequency

mN Neutron mass

Ef Fermi energy

TC Curie Temperature

TN Néel Temperature

M Magnetic moment vector

M(r) Magnetisation at r

M(k) Magnetic structure factor at k.

M⊥(k) Magnetic interaction vector at k.

M⊥ Magnetic interaction vector (shorthand form)

M∗
⊥(k) Complex conjugate of M⊥(k)

M∗
⊥ Complex conjugate of M⊥(k) (shorthand form)

M⊥i ith component of magnetic interaction vector

N(k) Nuclear structure factor at k.

N Nuclear structure factor (shorthand form)

N∗ Complex conjugate of nuclear structure factor
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Notation (cont.)

P Incident polarisation
P modulus of P
Pi ith component of incident polarisation
P′ Scattered polarisation
P′

i ith component of scattered polarisation
P′′ Polarisation created by scattering
P′′

i ith component of polarisation created by scattering
P Polarisation tensor
Pij ij th element of the polarisaton tensor
Pij Polarisation matrix (the experimental result)
Pij ij th element of the polarisaton tensor
k Crystallographic scattering vector k = kf −k i

k |k|
r A vector in real space
a b c Unit cell vectors
g A reciprocal lattice vector
l A lattice vector
τ Magnetic propagation vector
û A unit vector parallel to u
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Introduction

I In the following we will consider how the theory of neutron
scattering can be amplified to take account of neutron
polarisation.

I For simplicity the discussion will concentrate on elastic Bragg
scattering although most of the formulae are equally
applicable to inelastic scattering if the appropriate
cross-sections are substituted and energy conservation
terms are taken into account.

I We first consider what is meant by Neutron Polarisation
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Polarisation of a single neutron

The spin wave-function of any single neutron can be written

ψS = aψ
+ +bψ

− where aa∗ +bb∗ = 1

ψ+ and ψ− are eigenfunctions of spin with eigenvalues ± 1
2 respectively.

Using the Pauli spin matrices

σx =
(

0 1
1 0

)
σy =

(
0 −ı
ı 0

)
σz =

(
1 0
0 −1

)
The matrix for the component of spin in a direction with spherical polar
coordinates θ φ is

Sθ ,φ = 1
2

(
cosθ sinθ(cosφ − ısinφ)
sinθ(cosφ + ısinφ) −cosθ

)
Operating with Sθ ,φ on ψS gives
-1.5ex]

Sθ ,φ ψS = ( 1
2 cosθ +sinθ cosφ + ısinθ sinφ)ψ+ +sinθ(cosφ − ısinθ sinφ − 1

2 cosθ)ψ−

ψS is an eigen function of Sθ ,φ with spin eigenvalue 1
2 when

tan
θ

2
=

|a|2

|b|2
and tanφ =

ℑ(ab∗)
ℜ(ab∗)

A single neutron is always perfectly polarised in some direction
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A Neutron Beam

I Experimentally we are always dealing with beams containing
many neutrons each of which may be polarised in a different
direction.

I We determine the numbers of neutrons scattered with spins
parallel and anti-parallel to some chosen polarisation
direction.

I This is equivalent, in quantum mechanical terms, to
determining the mean value of the neutron spin parallel to
this direction.

I Evaluation of the mean values of properties of systems, such
as neutron beams, which consist of an incoherent
superposition of particles in different pure states is
conveniently done using the density matrix formalism.

I A very clear account of this formalism is given by:
U. Fano,(1957) Rev. Mod. Phys 19 74.
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The quantum mechanical density matrix

I Consider a pure state described in terms of the eigenvectors
un of a complete set of operators by the wave-function
ψ = ∑ncnun.

I The mean value of the property given by an operator Q
represented by the matrix Qnm is

〈Q〉 = ∑
n,m

Qmnc
∗
mcn

I A mixed state can be described by a superposition of pure
states ψ i with statistical weights pi .

I The mean value of Q for the mixed state is

〈Q〉 = ∑
n,m

Qmn∑
i

pici
m
∗
ci

n

I The density matrix is defined as

ρn,m = ∑
i

pici
m
∗
ci

n

and 〈Q〉 = ∑
n,m

Qnmρnm = ∑
m

(Qρ)mm= Tr(Qρ)
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The Polarisation density matrix

I The polarisation of a neutron beam parallel to a unit vector û
with components ux,uy,uz is defined by

Pu =
N+u −N−u

N+u +N−u = 2〈Su〉 so that −1 < Pu < 1

where N+u and N−u are the numbers of neutrons in the beam
with spins parallel and antiparallel to u.

I We define a polarisation density matrix ρ such that

Pu = 2〈Su〉 = Tr(ρσu)

with σu =
(

uz ux− ıuy

ux + ıuy −uz

)
and Tr(ρ) = 1
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The Polarisation density matrix

I Like any Hermitian matrix ρ can be expressed as a linear
combination of the unit matrix I and the three Pauli spin
matrices σx,σy,σz. Let

ρ = A(I +pxσx +pyσy +pzσz) = A

(
1+pz px− ıpy

px + ıpy 1−pz

)
A = 1

2 for Tr(ρ) = 1

I then

Pu = 1
2Tr

((
uz ux− ıuy

ux + ıuy −uz

)(
1+pz px− ıpy

px + ıpy 1−pz

))
= (uzpz+uxpx +uzpz)

I A polarisation vector P with components px,py,pz can be
identfied whose properties ensure that that

Pu = 2〈Su〉 = û(P· û) and ρ = 1
2(I +P·σ)
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Useful traces

The following properties of the unit matrix and the Pauli spin
matrices are used to help in evaluating the required traces

Tr(I) = 2
Tr(σi) = 0

Tr(σiσj) = 2δ ij

Tr(σiσjσk) = 2ıε ijk

Tr(σiσjσkσl) = 2(δ ij δ kl −δ ikδ jl +δ il δ jk)

i, j,k, l each run over all three components x,y,z and ε ijk is the
antisymmetric third rank unit tensor: ∑j,k ε ijk = (A×B)i
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The scattering cross-section

Within the Born approximation the intensity I of neutrons scattered with
scattering vector k = kf −k i is given by

I = C ∑
q,q′,i,i′

pqpi

〈
ψ
∗
q′φ

∗
i′

∣∣∣V†
q,q′,i(k)Vq,q′,i(k)

∣∣∣φiψq

〉
δ (∆E)

I ψq,ψq′ and φi ,φi′ represent the initial and final states of the scatterer
and the neutron respectively.

I pq and pi are the statistical weights of ψq and φi .

I V(k) is the fourier transform of the interaction between the neutron
and the scatterer.

I δ (∆E) with ∆E = h̄2(k2
f −k2

i )/2mN +Eq′ −Eq ensures conservation of
energy.

The density matrix formalism can be used to do the sum over the initial
states of the neutron giving

I = C∑
q

pqTr(V†
q,q′,i(k)Vq,q′,i(k)ρ)δ (∆E)

P.J. Brown September 2006 Neutron Polarimetry: I Theory of Polarised Neutron Scattering 12



Notation

Polarised Neutron
Scattering

Neutron
Polarisation

The Scattering
Cross-section for
Polarised
Neutrons
The cross-section
and scattered
polarisation

Magnetic scattering

Nuclear scattering

Combined magnetic
and nuclear
scattering

The Blume
Maleev Equations

The scattered polarisation

The scattered polarisation is obtained by determining the average
of the spin of the scattered neutrons.

P′I = 2C ∑
q,q′,i,i′

pqpi

〈
ψ

∗
q′φ

∗
i′

∣∣∣V†
q,q′,i(k) S Vq,q′,i(k)

∣∣∣φiψq

〉
δ (∆E)

which, using the density matrix becomes

P′I = C∑
q

pqTr(V†
q,q′,i(k)SVq,q′,i(k)ρ)δ (∆E)

The traces are to be taken over the neutron spin coordinates only
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The magnetic interaction vector

For magnetic scattering the relevant interaction is that between
the neutron magnetic moment and the the magnetic induction of
the scatterer.

V(r) = 2B(r) ·S= 2(µ0H +M(r)) ·S
where M(r) is the magnetisation distribution in the crystal.

The kth Fourier component is

M⊥(k) = k̂×M(k)× k̂ with M(k) =
∫

M(r)exp(−ik · r)dr3

where k̂ is a unit vector parallel to the scattering vector k.
I M(k) is the magnetic structure factor
I M⊥(k) is the magnetic interaction vector.
I both M(k) and M⊥(k) are in general complex vectors.
I For pure magnetic scattering V(k) = 2M⊥(k) ·S
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Polarisation dependence of magnetic
scattering

For magnetic elastic scattering the equation for the scattered
intensity becomes

I = 1
2CTr

(
(M∗

⊥ ·σ) (M⊥ ·σ)(I +P·σ)
)

Evaluating the traces gives for the intensity

I = C∑
i,j

(M∗
⊥iM⊥j)δ ij + ∑

i,j,k

(ıM∗
⊥iM⊥jPk)ε ijk

= C(M⊥ ·M∗
⊥ +M∗

⊥×M⊥ ·P)
The scattered polarisation is given by

P′I = 1
2CTr

(
(M∗

⊥ ·σ) σ (M⊥(k) ·σ) (I +P·σ)
)

P′
j I = C∑

ik

ıM∗
⊥iM⊥kε

ijk +M∗
⊥jM

∗
⊥kPk−M∗

⊥iM⊥iPj +M∗
⊥iM⊥jPi

P′I = C
(
− ıM∗

⊥×M⊥ +M∗
⊥(M⊥ ·P)+M⊥(M∗

⊥ ·P)−P(M∗
⊥ ·M⊥)

)
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Simple examples

I M⊥(k) ‖ M∗
⊥(k), M∗

⊥(k)×M⊥(k) = 0

I Part parallel to P :- −P|M⊥(k)|2
I Part parallel to M⊥(k) :-

2ℜ(M⊥(k)(P·M∗
⊥(k)))

I The scattered polarisation is rotated
by 180◦about the direction of M⊥(k).

P

M⊥

P|M⊥|2

–P|M⊥|2

2M⊥(P⋅M⊥)P'

I M⊥(k) ⊥ M∗
⊥(k), M⊥(k) ·M∗

⊥(k) = 0

I The scattered polarisation is always
parallel to k

I But the intensity is zero if P is parallel
to M⊥(k)×M∗

⊥(k)
M⊥

Pk

M⊥∗

P′= -iM⊥×M⊥∗

Only neutrons with spins parallel to M∗
⊥(k)×M⊥(k) are

scattered
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Nuclear Scattering

I The interaction between an atomic nucleus and a neutron can be
represented by the Fermi pseudo-potential, a scalar field which is
zero except very close to the nuclei.

I When all spins of the nuclei are randomly oriented the neutron
nuclear scattering interaction is independent of the neutron
polarisation.

V(k) = ∑
i

bi exp(ık · r i) = N(k)

I N(k) is the nuclear structure factor a complex scalar quantity
I The equation for the scattered intensity is then simply

I = 1
2CTr(N∗(k)N(k)(I +P·σ) = C|N(k)|2

I The scattered polarisation is given by

P′I = 1
2CTrN∗(k) σ N(k)(I +P·σ)

P′
i I = C|N(k)|2Pi giving P′ = P

I The polarisation is unchanged by nuclear scattering from nuclei with
randomly oriented nuclear spins.
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Magnetic Nuclear interference (intensity)

When both nuclear and magnetic scattering occur in the same
reflections the joint interaction potential is

V(k) = (N(k)+2M⊥(k) ·S)
The equation for the scattered intensity is then

I = 1
2CTr(N∗ +M∗

⊥ ·σ†)(N+M⊥ ·σ)(I +P·σ)
The extra terms are those involving products of N and M⊥ they
are

Tr(N∗M⊥(k) ·σ)(I +P·σ) = N∗M⊥ ·P
and its complex conjugate NM∗

⊥ ·P
Finally

I = C
(
|N|2 +2ℜ(NM∗

⊥ ·P)+ |M⊥|2− ıM∗
⊥×M⊥

)
The extra term in the intensity is non-zero when the phase
difference between N and component of M⊥ parallel to P is not
exactly (2n+1)π

2 .
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Magnetic Nuclear interference (polarisation)

The polarisation of the scattered beam is

P′I = 1
2C

(
N∗ +M∗

⊥ ·σ†)S(N+M⊥ ·σ)(I +P·σ)
)

The extra terms are

Tr(N∗
σ M⊥ ·σ)(I +P·σ) = N∗M⊥ + ıN∗M⊥×P

and their complex conjugates NM∗
⊥ + ıNM∗

⊥×P

giving 2ℜNM∗
⊥ +2ℑP×NM∗

⊥

I The real part of the product NM∗
⊥ gives a component of scattered

polarisation parallel to itself.
I It is independent of the incident polarisation and is due to the

polarisation dependence of the cross-section implicit in the term
2ℜ(NM∗

⊥)
I The imaginary part of the product NM∗

⊥ rotates the scattered
polarisation towards the direction perpendicular to both itself and P.

I It only occurs when the difference in phase between the nuclear
and magnetic structure factors is not an integral multiple of π.
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A simple example

When M⊥ and N are in phase (NM∗
⊥-N∗M⊥= 0).

The origin can be chosen so that both are real and ;
γ = |M⊥(k)|/N(k) is the ratio between them.

I The component of scattered
polarisation parallel to the
incident polarisation has length
P(1− γ2)

I The part parallel to M⊥ has
length 2(Pcosφγ2 + γ)

I The scattered polarisation
vector P′ is found by
completing the parallelogram

I If P decreases or γ approaches
unity P′ rotates towards M⊥.

I For P = 0 or γ = ±1, P′is
parallel to M⊥.

P(1−γ2)

O
φ 2Pγ2cosφ

2γ

P'

 2Pγ2cosφ
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The Blume Maleev Equations

The complete equation for the scattered polarisation is

P′I = C
(

P|N|2 +2ℜNM∗
⊥ +2ℑP×NM∗

⊥

−ℑ(M⊥×M∗
⊥)+2ℜ(M∗

⊥(M⊥ ·P)−P|M∗
⊥|2

)
This, together with that for the scattered intensity

I = C(|N|2 +2ℜ(NM∗
⊥ ·P)+ |M⊥|2− ıM∗

⊥×M⊥

comprise the Blume-Maleev equations.

These were derived, at almost the same time by Sergei Maleev
and Martin Blume.
M. Blume,(1963) Phys. Rev. 130 1670.

S.V. Maleev,V.G. Bar’yaktar and R.A.Suris,(1963) Sov. Phys. - Solid State 4 2533.

They are the fundamental equations used to interpret polarised
neutron scattering experiments.
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The Blume Maleev Equations II

The scattered polarisation P′ and scattered intensity I are given in
terms of the incident polarisation P by

P′I = P(|N(k)|2−M⊥(k) ·M∗
⊥(k)) part parallel to P

+ 2ℜ[M⊥(P·M∗
⊥(k))] part parallel to M⊥

+ 2ℜ[M⊥(k)N∗(k)]
+ P×2ℑ(M⊥N∗(k)) part perpendicular to P and M⊥
−ℑM⊥(k)×M∗

⊥(k)) part parallel to k

I = |N(k)|2 +M⊥(k) ·M∗
⊥(k) polarisation independent part

+ 2ℜ(P·M⊥(k)N∗(k)) polarisation dependent parts
+P·ℑ(M⊥(k)×M∗

⊥(k))
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The polarisation tensor

The Blume Maleev equations may be written in tensor form

P′ = PP+P′′ or in components P′
i = Pij Pj +P′′

i

P′′ is the polarisation created in the scattering process.

Polarisation axes can be defined with:
I x parallel to the scattering vector k.
I z perpendicular to the scattering plane (vertical)
I y completing the right handed cartesian set

With this choice of axes there can be no components of M⊥(k)
parallel to x.
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The polarisation tensor in polarisation
coordinates

On polarisation axes this tensor equation can be can be written
as:

P =

 (N2−M⊥
2)/Ix Jnz/Ix Jny/Ix

−Jnz/Iy (N2−M⊥
2 +Ryy)/Iy Ryz/Iy

−Jny/Iz Rzy/Iz (N2−M⊥
2 +Rzz)/Iz



P′′ =

 −Jyz/I
Rny/I
Rnz/I

 Ix = M⊥
2 +N2 +PxJyz

Iy = M⊥
2 +N2 +PyRny

Iz = M⊥
2 +N2 +PzRnz

I = M⊥
2 +N2 +PxJyz+PyRny+PzRnz

N2 = N(k)N∗(k) M⊥
2 = M⊥(k) ·M∗

⊥(k)
Rij = 2ℜ(M⊥i(k)M⊥j

∗(k)) Rni = 2ℜ(N(k)M⊥i
∗(k))

Jij = 2ℑ(M⊥i(k)M⊥j
∗(k)) Jni = 2ℑ(N(k)M⊥i

∗(k))

Note that when written in this simplified way P isn’t strictly a tensor
because the denominators may depend on the input polarisation
direction
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Outline: Polarisation Analysis

Introduction to Neutron Polarimetry
Neutron Polarisation
Polarisation Analysis
Controlling the polarisation direction

Techniques for neutron polarimetry
The classical polarisation analysis technique
XYZ polarisation analysis

Spherical Neutron Polarimetry (SNP)

Polarisation analysis experiments
Types of PA experiment
Separation of magnetic and nuclear scattering
Correction for polarising efficiency
Magnetic scattering from polycrystalline samples
Paramagnetic scattering
XYZ polarisation analysis using a multi-detector
Magnetic defect scattering
Spatial correlations above Tc
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Polarimetry

I A polarimetric experiment is one in which the relationship
between the directions of incident and outgoing polarisations
is measured.

I A neutron beam is polarised when the average over all
neutrons in the beam of the expectation value of a
component of spin 〈Sz〉 is non-zero for some direction z

I The polarisation direction is the one in which this average is
maximised.
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Neutron Polarisation

I It was shown in the previous lecture that a polarisation vector
can be used to describe the polarisation of a neutron beam

I For practical purposes the component of the polarisation,
parallel to an arbitrary direction z, is given by

Pz = (N+−N−)/(N+ +N−)
where N+ and N− are the number of neutrons in the beam
whose spins are respectively parallel and anti-parallel to z.

I The polarisation P can be treated as a classical vector.

|P| =
√

Px
2 +Py

2 +Px
2
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Polarisation Analysis

Neutron polarisation analysis experiments are those in which a
polarised beam is incident on the sample and the numbers of
scattered neutrons whose spins are parallel and anti-parallel to
the direction of analysis are measured.

The results can be expressed using the generalised polarisation
dependent cross-sections σ i,j .

The superscripts i and j each stand for one of three orthogonal
directions x,y,z.

j defines the direction of incident polarisation and i the direction of
analysis.

For example: σz,–x gives the probability that a neutron initially in a
state with spin anti-parallel to x will be scattered to a state in
which its spin is parallel to z.

P.J. Brown September 2006 Neutron Polarimetry:II Polarisation Analysis 5

Introduction to
Neutron
Polarimetry
Neutron Polarisation

Polarisation Analysis

Controlling the
polarisation direction

Techniques for
neutron
polarimetry

Polarisation
analysis
experiments

The polarisation matrix

I The polarisation matrix Pij is defined so that its component
Pij is the component of scattered polarisation parallel to i
when the incident beam is polarised parallel to j

I The components Pij can be obtained from the polarisation
dependent cross-sections.

Pij = (σ ij −σ
–i,j)/(σ ij +σ

–i,j)

I The polarisation dependent cross-sections contain additional
intensity information.

BUT
I The Pij can be measured with much higher precision than

the individual cross-sections because they are obtained from
ratios of intensities measured without having to move the
sample.

P.J. Brown September 2006 Neutron Polarimetry:II Polarisation Analysis 6



Introduction to
Neutron
Polarimetry
Neutron Polarisation

Polarisation Analysis

Controlling the
polarisation direction

Techniques for
neutron
polarimetry

Polarisation
analysis
experiments

Neutron precession in an external field
(classical)

I Classically an object with moment of inertia I and magnetic
moment µ inclined at an angle θ to a uniform magnetic field
B will precess about the field direction at the Larmor
frequency:

ΩL = µBcosθ/I

I For a neutron with spin Sand gyromagnetic ratio γN

ΩL = SγNBcosθ/h̄

I The angle of precession φ depends upon the path integral∫
Bd̀ of the neutron in the field.

φ = 2πSγNmNλ

∫
Bd̀
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Neutron precession in an external field
(quantum-mechanical)

Exactly the same result can be obtained quantum mechanically
using simple perturbation theory.

I A neutron with spin wave function ψ(0) = aψ+ +bψ− has x
and y and z components of spin ℜ(ab∗), ℑ(ab∗) and
1
2(aa∗−bb∗) respectively.

I If a and b are real the spin is in the x-z plane inclined at an
angle θ = 2tan−1(a/b) to the quantisation axis z.

I The matrix elements of the perturbing Hamiltonian due to a
magnetic field B parallel to z switched on at t = 0 are zero for
t < 0 and

H++ = −γNa2B H−+ = 0
H+− = 0 H−− = γNb2B

for t > 0
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Neutron precession in an external field
(quantum-mechanical)

I If the unperturbed energy is E0, the perturbed wave-function
after time t becomes

ψ(t) =
(

aexp
iγNa2Bt

h̄
ψ

+ +bexp− iγNb2Bt
h̄

ψ
−
)

exp
−iE0t

h̄

I the x and y components of the spin are

Sx = 2ℜ
(

abexpı(a2−b2)
γNB

h̄
t

)
= abcos(a2−b2)

γNB
h̄

t

Sy = 2ℑ
(

abexpı(a2−b2)
γNB

h̄
t

)
= absin(a2−b2)

γNB
h̄

t

I The z component of the spin doesn’t vary
I So the spin precesses around the field direction with angular

frequency (a2−b2)γNB/h̄ = γNBcosθ/h̄ = ΩL .
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Neutron precession in non-uniform fields

Two extreme conditions can be recognised.

1. Adiabatic approximation
The change in field direction during one cycle of Larmor
precession (2π/ΩL) is negligibly small compared with the
field itself.

I Transitions between the two spin states take place very
gradually.

I The wave-function changes only slowly so that it always
approximates to an eigenstate of the current Hamiltonian.

The neutron polarisation follows the field direction.

2. An abrupt transition
The field changes rapidly from one uniform value to another.

I When the distance is much less than that needed for a
complete Larmor precession.

The neutron polarisation direction does not change at the
boundary but passes immediately from one precession
regime to the other.
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Neutron precession in non-uniform fields

Adiabatic, and abrupt changes in the directions of magnetic
fields, together with controlled precession, are the means used to
manipulate the neutron polarisation in polarisation analysis
experiments.

The distance travelled by a neutron, wavelength λ in time 2π/ΩL

is
λL = h̄2/γNmNλB

For a field of 10−4 T (1 gauss) λL ≈ 3 m for 1 Å neutrons

I Adiabatic conditions are achieved by separating different
field regimes by distances long compared with λL

I An abrupt field transition, one in which the change takes
place in a distance much less than λL is often achieved using
current sheets, or by screening with sheets of mu-metal or
superconducting foils.
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Uni-directional polarisation analysis

The original polarisation analysis setup is that of Moon, Riste and
Koehler R.M. Moon, T. Riste, and W.C. Koehler,(920) 1969 Phys.Rev. 181.

Spin Flipper F1

Guide Field

Spin Flipper F2

Guide Field

Polarising Field

Analysing Field

Sample Field
Polarising 
Monochromator

Analyser 
Sample Detector

In its simplest arrangement all the fields are parallel to the vertical
direction which is that of polarisation and analysis.
The sample field can be rotated about both vertical and horizontal axes.
The guide fields are arranged so that the neutron spins rotate
adiabatically from the direction of the polariser to that of the sample field
and finally to that of the analyser.
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Uni-directional polarisation analysis

I The uni-directional technique allows four cross-sections:
σ++, σ+–, σ–+ and σ–– to be measured.

I The first superscript indicates the direction of incident
polarisation, it is + when F1 is deactivated ( P ‖ H) and -
when it is activated ( P ‖ −H).

I The second subscript indicates the direction of analysis,
switched using F2.

I These four cross-sections can be identified with four
components of the general cross-sections defined previously.

σ
++ = σ

i,i , σ
+– = σ

–i,i . . . etc.

I For an orientation i of the sample field, only the single
component Pii of the polarisation matrix, will be obtained.
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XYZpolarisation analysis

A more general version of the uni-directional technique allows the
field at the sample to be varied without rotating a magnet.

Analysers

Detector banks

Sample

Flipper
Polariser

Chopped 
Neutron 
beam

Helmholtz
Coils

Guide 
fields

I The efficiency of measurement can be increased by using banks of
detectors.

I There is a super-mirror analyser in front of each detector.
I The direction of the field at the sample position is chosen by

adjusting the currents in the three mutually perpendicular Helmholtz
coils.
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XYZpolarisation analysis

I The guide fields and the distances between different
components must be sufficient to ensure adiabatic
transitions between the field regimes at the polariser, sample
and analysers.

I Any components of polarisation not parallel to the local field
will precess around it.

I So only the components of polarisation parallel to the sample
field are well defined.

I The XYZ technique allows 12 of the generalised
cross-sections to be measured.

I They are: σ i,i , σ i–i , σ–i,i and σ–i,–i

I Note that if i 6= z the direction i is different for each element of
the detector.

I The three diagonal components Pxx, Pyy and Pzz of the
polarisation matrix can be derived.
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xyzcross-sections from XYZdata

I When using a multidetector the x and y polarisation directions differ
at each element of the detector.

I A set of axes X,Y,Z are defined parallel to the axes of the
Helmholtz coils.

I X is parallel to the incident beam and Z ‖ z for all detector elements.

I For a detector element at scattering angle 2θ , x is at an angle
α = π

2 −θ to X in the X–Y plane.

In polarisation coordinates PX = Pcosα −Psinα 0
PY = Psinα Pcosα 0
PZ = 0 0 P

σX,X = σx,x cosα + σ–y,–ysinα

σX,−X = σx,–x cosα + σ–y,ysinα

σY,Y = σx,x sinα + σy,ycosα

σY,−Y = σx,–x sinα + σy,–ycosα

. . . etc.

A matrix equation relates σx,x, σx,–x, σy,y, σy,–y etc. to σX,X, σX,–X, σY,Y,
σY,–Y etc.
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Transverse components of polarisation

I Neither of the two previous techniques allow components of
the scattered polarisation which are not parallel to the
incident polarisation direction to be measured.

I This is because any such components precess around the
field direction and so their direction at the analyser is
undefined.

I The off-diagonal components of the polarisation matrix
depend on these transverse components.

I The presence, but not the identity, of transverse components
may be inferred from reduction in the size of the diagonal
components (depolarisation).

I Full information about the transverse components of
scattered polarisation can be obtained if the scattering
sample is in zero field.

I Spherical neutron polarimetry (SNP) is the name given to
polarisation analysis experiments in which all the generalised
cross-sections can be measured.
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SNP with CRYOPAD

One way of realising the conditions in which transverse
components of polarisation can be measured is to use
superconducting Meissner screens to isolate a zero-field region
and provide an abrupt transition between different magnetic field
regimes.

The cryostat containing
two cylindrical Meissner
shields is in the form of a
hollow cylinder.

The sample and its inde-
pendent sample environ-
ment can be placed in-
side

Cryostat outer wall

Cryostat inner wall

Outer Meissner shield

Inner Meissner shield

Incident beam
nutator

Scattered 
beam nutator

to analyser

from
monochromator

Zero Field scattering region

The nutator magnets align the ingoing and outgoing polarisation in the
plane perpendicular to the beam at an angle θ to the vertical.
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SNP with CRYOPAD

Cryostat outer wall

Cryostat inner wall

Outer Meissner shield

Inner Meissner shield

Primary precession coil

Secondary 
precession coil

Incident beam
nutator

Scattered 
beam nutator

to analyser

from
monochromator

Zero Field scattering region

Two precession coils,
wound from supercon-
ducting wire, lie between
the two Meissner shields.

The primary coil is a
complete toroid.

The

secondary coil is part of a second toroid, wound over the primary coil, in
the region through which the incident beam passes.

In passing through these coils the polarisation precesses about a
horizontal axis through an angle χ proportional to the currents in the
coils.
F. Tasset, P.J. Brown, E. Lelièvre-Berna, T Roberts, S. Pujol, J. Alibon, and E.

Bourgeat-Lami,(69) Physica B 267-268 1999.
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Rotation of the polarisation in CRYOPAD

Initially the incident beam is polarised along its direction of motion.

θ

χ

φφ

Nutation region Outer Meissner screen

Precession region

Inner Meissner screen

Zero field region
φφ

In the nutation region the field changes gradually from a direction parallel
to the beam to one perpendicular to it at θin to the vertical. The neutron
spins follow the field adiabatically.

Between the two Meissner screens the neutron spins precess through an
angle χin about the horizontal axis of the precession coils.

The inner Meissner screen isolates the zero field region from the
precession fields and within it the polarisation is unchanged except by
interaction with the sample.
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Measuring the scattered polarisation

I The field components on the scattered beam are equivalent to
those in the incident beam.

I The spins in the scattered beam are guided so that those oriented
with the chosen χout,θout are parallel to the field axis at the analyser.

I The angles θin,θout are fixed by the angles of rotation of the
magnetic fields in the nutators.

I The angles χin,χout are fixed by suitable adjustment of the currents
in the primary and secondary precession coils.

I For a reflection with Bragg angle θB the directions of incident
polarisation and of analysis can be made parallel to the orthogonal
directions x,y,z with x ‖ k and z vertical by setting the angles

θin χin θout χout

x π

2 −θB
π

2 θB − π

2 − π

2
y −θB

π

2 −θB
π

2
z 0 0 0 0
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Types of experiment

I Separation of magnetic and nuclear scattering
Examples

I Weak magnetic scattering in powder diffraction
I Paramagnetic scattering

I XYZpolarisation analysis using a multi-detector
Examples

I Magnetic defect scattering
I Spatial correlations above TC

I Determination of the direction of the magnetic interaction
vector: Examples

I Unique solution of complex magnetic structures
I Studies of magneto-electric domains
I Determination of anti-ferromagnetic form factors

The rest of this lecture will cover the first two types: the third is
more complex and will be treated later.
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Separation of magnetic and nuclear scattering

I Magnetic scattering will contribute to the spin-flip
cross-section (σ i,−i) whenever the magnetic interaction
vector M⊥(k) is not parallel polarisation direction P (Pi).

I Coherent nuclear scattering from disordered nuclear spins
only enters the spin non-flip cross-section (σ i,i).

I The magnetic interaction vectors which contribute to a
reflection with scattering vector k from a polycrystaline
sample will be distributed randomly in the plane
perpendicular to k.

I If the incident polarisation is aligned perpendicular to the
scattering plane then, on average, half of the interaction
vectors will be parallel and half perpendicular to it.

I Half the magnetic scattering will be spin-flip and half spin
non-flip.

I If the incident polarisation is parallel to k, all the magnetic
scattering will be spin-flip.
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Corrections for Polarising efficiency

Polarisation analysis instruments are never perfect, so we need to
determine the corrections which must be made for

1. Incomplete polarisation of the incident beam, P < 1

2. Imperfect efficiency of the flippers ε1,ε2 < 1

3. Imperfect efficiency of the analyser P′ < 1

The number of "+" neutrons scattered by the sample when F1 is off is

S++ = I0
(
Pσ

++ +(1−P)σ−+)
The number of these analysed as "+" is

A++ = FAP′S++ = I0FAP′ (Pσ
++ +(1−P)σ−+)

where FA is the reflectivity of the analyser

Similarly the number of "–" neutrons scattered by the sample when F1 is
off is

S+− = I0P
(
σ

+− +(1−P)σ−−)
and the number of these analysed as "+" is

A−+ = FA(1−P′)S+− = I0FA
((

1−P′)(
Pσ

+− +(1−P)σ
−−))
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Corrections for Polarising efficiency

The total number of "+" neutrons recorded by the analyser is
I++ = I0FA

(
P′ (Pσ

++ +(1−P)σ−+)
+(1−P′)

(
Pσ

+− +(1−P)σ−−))
by switching F1 on we get

I−+ = I0FA
(
P′(Pε1σ

−+ +(1−Pε1)σ++ +(1−P′)(Pε1σ
−− +(1−Pε1)σ+−)

)
with F1 off and F2 on

I+− = I0FA
(
P′

ε2(Pσ
+− +(1−P)σ−−)+(1−P′

ε2)(Pσ
++ +(1−P)σ−+)

)
and finally with both flippers on
I−− = I0FA

(
P′

ε2(Pε1σ
−− +(1−Pε1)σ+−)+(1−P′

ε2)(Pε1σ
−+ +(1−Pε1)σ++)

)
If all the efficiencies are known these four equations enable the

four cross-sections to be determined.

Note
Further uncertainties may be introduced by errors in fixing the
polarisation directions.
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Magnetic scattering from a powder sample

PA is particularly useful for separating the magnetic ssattering
when τ=0 and the moments are small.
A very early experiment on V2O3 by Moon provides an example
Moon R M,(1970) Phys. Rev. Letts 25 527.
A horizontal field was rotated so that the polarisation at the sample was
always parallel to the scattering vector

T=77 K

σx,x

σx,–x

The experiment confirmed that the (001) and (100) peaks were indeed of
magnetic origin
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Paramagnetic scattering

I The disordered moments in a paramagnet only contribute to
diffuse magnetic scattering.

I It is superposed on diffuse nuclear scattering due to thermal
vibration, all types of nuclear disorder and multiple scattering.

I Only paramagnetic and nuclear spin disorder scattering
contribute to the spin-flip cross-section.

I Nuclear spin scattering is distinguished from magnetic
scattering because all components of the nuclear spin
contribute, not just those perpendicular to the scattering
vector.

I If nuclear spins are randomly oriented 2/3 always give
spin-flip scattering regardless of the polarisation direction.

I When P ‖ k σx,–x = σpara+ 2
3σnspin

I When P ⊥ k σz,–z = 1
2σpara+ 2

3σnspin

I So σx,–x−σz,–z = 1
2σpara
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Paramagnetic scattering from MnF2

The polarisation dependence of paramagnetic scattering was first
demonstrated in the original paper of Moon, Riste and Koehler

σx,-x

σz,-z
σx,x

σz,z

The data were ob-
tained by rocking
the analyser crystal
through the elastic
position

I There is no incoherent nuclear scattering from MnF2.
I The small peak in σx,x is due to multiple nuclear scattering.
I Multiple nuclear scattering is also responsible for the small

difference between σz,z and σz,–z.
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Paramagnetic scattering from ferromagnetic
metals

I The paramagnetic scattering from ferromagnetic metals is of
particular interest because it can show whether or not
localised moments persist in the paramagnetic state above
the Curie transition.

I In ferromagnetic metals it is generally accepted that the
magnetic electrons participate in the Fermi surface.

I The magnetisation is due to exchange splitting of the spin-up
and spin-down bands.

I The question posed is to what extent this exchange splitting
persists into the paramagnetic phase in which "up" and
"down" are no longer properly defined.

I The Stoner (itinerant electron) and Heisenberg (localised
moment) models represent two limiting cases.
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The Stoner and Heisenberg models

Stoner Model Heisenberg Model

0

Ef

∆

Stoner
Exitations

0 1.0Q(rlu)

Stoner
Exitations

Stoner Exitations

Local moment well defined

Local moment well defined

Spin
Wave

Spin
Wave

Ef

Eh

Ej

0
0 1.0Q(rlu)

E
ne

rg
y

Q0

Q0

∆ is the exchange splitting of the bands
with ∆ < Ef

Atomic moments only well defined in
the small range of Q–Energy space
where single particle (Stoner) excita-
tions are not excited.

The bands are flat and separated
by ∆ = Eh; the intra-atomic ex-
change(Hunds rule) energy.

The inter-atomic exchange energy Ej
determines TC and the zone-boundary
spin-wave energy.

Atomic moments are well defined up to
energies Eh.
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Paramagnetic Scattering: 3d transition metals

Measurements made on powders and single crystals on a triple axis PA
spectrometer on the ILL hot source.
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I Use of hot neutrons and
modest resolution ensures a
wide energy acceptance

I Measurements on powders
allow the intensities to be
readily placed on an absolute
scale

I The results for Pd2MnSn follow the Mn2+ form factor as predicted
by the Heisenberg model.

I For Fe and Ni the rapid fall of the effective moment with increasing
Q shows that some ferromagnetic correlations persist at
temperatures well above TC.

I They have a longer range for Ni than for Fe.

Booth J G et al.,(1982) J de Physique 43 C7-363.
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XYZpolarisation analysis using a multi-detector

I Measurements of diffuse scattering can be made much more
efficiently using a multi-detector.

I This is particularly true for experiments at long wavelength or
high resolution for which the volume of phase space sampled
at each point of a scan using a single detector is very small.

I The XYZpolarisation analysis technique combined with
multi-detection is also more appropriate at wavelengths
greater than 1.5 Å where polarising super-mirrors can be
used.

I For such wavelengths the Larmor precession lengths in
moderate fields will allow adiabatic changes in field direction
in a reasonably compact instrument.

I The uncertainty in definition of the direction of polarisation is
also inversely proportional to the wavelength.
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Magnetic defect scattering

I A long wavelength is used so that very few, or even none, of
the reciprocal lattice points lie inside the Ewald sphere.

I All the scattering is then incoherent and due to different
types of disorder.

I The ability to separate the magnetic and nuclear
contributions to the diffuse scattering allows magnetic
perturbations to be distinguished from, and perhaps related
to, atomic short range order.

I In dilute alloys the magnetic disorder scattering allows the
perturbation in the magnetisation distribution due to
individual solute atoms to be determined.

I In ferromagnetic alloys magnetic and nuclear components
can be distinguished by applying saturating fields parallel
and perpendicular to the scattering vector.

I For anti-ferromagnetic and paramagnetic systems the XYZ
PA technique is particularly appropriate.

P.J. Brown September 2006 Neutron Polarimetry:II Polarisation Analysis 33

Introduction to
Neutron
Polarimetry

Techniques for
neutron
polarimetry

Polarisation
analysis
experiments
Types of PA
experiment

Separation of
magnetic and nuclear
scattering

Correction for
polarising efficiency

Magnetic scattering
from polycrystalline
samples

Paramagnetic
scattering

XYZ polarisation
analysis using a
multi-detector

Magnetic defect
scattering

Spatial correlations
above Tc

Example: Magnetic correlation in β –Mn

I The β phase of metallic manganese shows no long-range magnetic
order.

I There is however much evidence to suggest that it is on the verge of
magnetic order and moment localisation.

I XYZpolarisation analysis been used to study magnetic correlations
in dilute solutions of Al in β–Mn.
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I The nuclear and magnetic cross-sections were extracted from XYZ
PA data collected using D7 at ILL.

Stewart R J and Cywinski R,(2004) JMMM 272Ð276 676.
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Nuclear correlation in a β –Mn-Al alloy

I A Monte-Carlo procedure was used to obtain the atomic
short-range order parameters from the Q-dependence of the
nuclear cross-section.
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I The parameter s(α i) oscillates about zero with maxima and
minima at approximately the radii of successive shells of
neighbours.

I The Al atoms tend to avoid one-another.
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Magnetic correlation in β –Mn

I This atomic model allows the magnetic correlation function to
be deduced from the magnetic cross-section.

I It was assumed that the Mn moments are localised so that
〈Sz〉2 = S(S+1) for each Mn atom is well defined.
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I The magnetic correlations oscillate.
I They are anti-ferromagnetic for the first and third neighbour

shells and ferromagnetic for the second.
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Spatial correlations above TC

I XYZPA experiments can yield not just the radial correlation
functions but also information about the spatial anisotropy of
the correlations.

I La2CuO4 is of interest both as the parent compound of a
family of high-temperature superconductors and as a very
good realization of a two-dimensional quantum Heisenberg
antiferromagnet (2DQHAF).

I There is a lot of experimental evidence which suggests that
the nearest-neighbor Heisenberg model is inadequate and
that four-particle exchange may be significant.

I The dynamical spin correlations just above the Neél
temperature have been measured using XYZPA, to test the
predictions the proposed quantum non-linear sigma model.
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Dynamical spin correlations above TC in
La2CuO4

Neutron scattering intensity in the h0` plane of La2CuO4 at room
temperature measured using the multidetector on D7.

I XYZPA allows separation of the nuclear and magnetic parts.
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The coherent structural scattering

The intensity is at the reciprocal
lattice nodes

The purely magnetic scattering

A rod of scattering is developing
along the (10̀ ) direction showing
the cross-over to 2D correlations.

Toader A M et al.,(2005) Phys. Rev. Letts 94 197202.
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Limitations of structure determination from
intensity measurements

To recapitulate:

The magnetic structure factor M(k) =
∫

M(r)exp(ik · r)dr3

The magnetic interaction vector M⊥(k) = k̂×M(k)× k̂
where k̂ is a unit vector parallel to the scattering vector k.

I Both M(k) and M⊥(k) are complex vectors
I The magnetic cross-section for unpolarised neutrons is

proportional to |M⊥(k)|2

I The only directional information comes from the fact that
M⊥(k) is the projection of M(k) onto the plane perpendicular
to the scattering vector.
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What can polarisation analysis add?

Whether there are components of M⊥(k) perpendicular to the
polarisation direction

I Such components will flip the neutron spin
I If the incident polarisation direction can be varied the

direction of M(k) can be determined
I The ability to analyse polarisation in directions perpendicular

to the incident direction is required to obtain complete
information.

I hence Spherical Neutron Polarimetry (SNP)
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Polarisation Matrices: The experimental result

The usual experimental strategy with SNP is to measure the
scattered polarisation P′ with the incident polarisation P parallel to
polarisation x, y, z in turn.
This determines the polarisation matrix.

The polarisation matrix Pij is the experimental quantity most
closely related to the polarisation tensor.

The matrix element Pij gives the ith component of scattered
polarisation when the incident polarisation is in the jth direction.

Pij =
〈

Pij Pj +P′′i )
Pj

〉
configs

The average is over all the different configurations (structural and
magnetic) present in the sample.
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The polarisation tensor

It is useful to recall here the form of the polarisation tensor:

P =

 (N2−M⊥
2)/Ix Jnz/Ix Jny/Ix

−Jnz/Iy (N2−M⊥
2 +Ryy)/Iy Ryz/Iy

−Jny/Iz Rzy/Iz (N2−M⊥
2 +Rzz)/Iz



P′′ =

 −Jyz/I
Rny/I
Rnz/I

 Ix = M⊥
2 +N2 +PxJyz

Iy = M⊥
2 +N2 +PyRny

Iz = M⊥
2 +N2 +PzRnz

I = M⊥
2 +N2 +PxJyz+PyRny+PzRnz

N2 = N(k)N∗(k) M⊥
2 = M⊥(k) ·M⊥(k)

Rij = 2ℜ(M⊥i(k)M⊥j
∗(k)) Rni = 2ℜ(N(k)M⊥i

∗(k))
Jij = 2ℑ(M⊥i(k)M⊥j

∗(k)) Jni = 2ℑ(N(k)M⊥i
∗(k))
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Rotation of the polarisation

Off-diagonal terms in the polarisation matrix correspond to
rotation of the polarisation direction.

They are of two kinds.

1. Pyz and Pzy which depend upon Ryz = 2ℜ(M⊥y(k)M⊥z
∗(k))

They can be reduced to zero by choosing either the y or z
axis parallel to M⊥.

2. Elements Pxy, Pxz,Pyx and Pzx which represent rotations
towards, or away from, the scattering vector.

They are always present when nuclear and magnetic
scattering occur together with a phase difference which is
neither 0 or π.
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Direction of Polarisation Rotation

When the scattered polarisation is rotated with respect to the
incident polarisation direction it is important to understand what
determines the direction of rotation,

I For rotations in the x–y plane (Pyz, Pzy) it is the orientation of
M⊥ within that plane.
If M⊥ is inclined at an angle φ to y measured towards
positive z; both Pyz and Pzy will be positive for 0 < φ < π

2 ,
π < φ < 3π

2 and negative for π

2 < φ <= π, 3π

2 < φ < 2π

I For rotations towards or away from the scattering vector it is
the phase angle ψ between the nuclear and magnetic
structure factors which determines the direction of rotation.
The signs of Pyx,–Pxy,Pzx and –Pxz are given by that of sinψ

Note that when there is a configuration which gives polarisation
rotation in a particular sense, there is very often a degenerate
configuration which will give rotation in the opposite one.

P.J. Brown September 2006 Neutron Polarimetry:III Fundamentals of Spherical Polarimetry 8
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Depolarisation

I The squared modulus of the scattered polarisation P′

obtained from the Blume-Maleev equations is always greater
than or equal to |P|2

I The amplitude of the polarisation is either increased or
unchanged by scattering from any pure target state.

I Real depolarisation of the scattered beam is an indication
that a mixed state consisting of more than one type of
magnetic domain is present in the target.

I The ability to distinguish depolarisation from rotation of the
polarisation away from the axis of analysis is one of the
features which makes SNP more powerful than axial
polarisation analysis.
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Types of Domain

An understanding of the types of magnetic domain which occur
and the kinds of depolarisation to which they give rise is
fundamental in interpreting polarimetric data.

I Magnetic domains can occur whenever the symmetry of the
ordered magnetic structure is less than that of the
paramagnetic phase.

I If the order of the paramagnetic space group is p and that of
the magnetic space group m, there will be p/m different
domains.

I The domains can be classified according to the type of
symmetry elements that are lost on magnetic ordering
(a) Configuration domains: translational symmetry
(b) 180◦ domains: Time inversion symmetry
(c) Orientation domains: Rotation symmetry
(d) Chirality domains: Centro-symmetry

I The effects produced by the presence of each of these kinds
of domains on the scattered polarisation are quite distinct.

P.J. Brown September 2006 Neutron Polarimetry:III Fundamentals of Spherical Polarimetry 10



Finding the
direction of the
interaction vector

Magnetic
Domains
Depolarisation by
domains

Types of Domain

Configuration
domains

180 degree domains

Orientation domains
(s-domains)

Chirality domains

Magnetic
Structure
Determination
using SNP

Configuration domains

I Configuration domains exist if the propagation vector τ of the
magnetic structure is not transformed either into itself, or
itself plus a reciprocal lattice vector, by all the symmetry
operators of the paramagnetic group.

I Operating with the paramagnetic symmetry elements on τ

generates a set of inequivalent vectors which form the star of
τ.

I Each vector in the star generates a different configuration
domain.

I Each configuration domain gives a completely separate set
of magnetic reflections at positions ±τ from the reciprocal
lattice nodes.

I Each reflection belongs to a distinct configuration domain,
hence effectively to a single state.

I Configuration domains do not give rise to depolarisation.
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Example: Space Group P4/mmmτ = 0, 1
2,0

There are 16 operators in the paramagnetic group
E,4z,2z,−4z,2x,2y,2x+y,2x−y, I , 4̄z,mz,−4̄z,mx,my,mx+y,mx−y

Operators
E, 2y, mx, mz τ1 =⇒ itself (0, 1

2 ,0)
I , 2x, 2z, my τ1 =⇒ –τ1 = (0,– 1

2 ,0)
4z, −4̄z, 2x+y, mx–y τ1 =⇒ τ2 = (– 1

2 ,0,0)
−4z, 4̄z, 2x–y, mx+y τ1 =⇒ –τ2 = ( 1

2 ,0,0)

τ2

τ1

a*

−τ2

−τ1

There are two distinct configuration domains

The hk0 layer of reciprocal space:

I The nuclear reflections
I Magnetic reflections due to τ1

I Magnetic reflections due to τ2

I The complete diagram

P.J. Brown September 2006 Neutron Polarimetry:III Fundamentals of Spherical Polarimetry 12
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180◦ domains

Regions in which all the moment directions in one domain are
reversed with respect to those in the other.

I M⊥ points in opposite directions in the two domains. (Phase
difference of π).

I The two domains are related by the time inversion operator.
I Ferromagnetic domains provide a simple example.

t

In a structure with non-zero propagation
vector (τ 6= 0) 180◦ domains cannot be dis-
tinguished except by the defects associated
with the domain walls.

One domain can be transformed into the
other by a translation t such that
τ · t = (2n+1)/2.

The intensity and the polarisation scattered by the two domains
are identical.
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180◦ domains τ=0

When τ=0 atoms with opposite spins are related by a rotation as
well as a translation.
When the rotation is a proper one (not combined with inversion):

t

+

−

+

+

++

+

+ + +

−−

− −

− −

−−

+

++

+

+ +

−−

− −

+

−

++

−

−−

−

I Atoms with + and – spins are related by a
rotation of π

2 and a translation u = 1
2 , 1

2 ,0
I N and M⊥ are both real: ψNM = 0, π

2
I The terms Rni = 2ℜ(NM∗

⊥) in the
polarisation matrix are non-zero.

I The 180◦ domains are related by a
rotation of π

2 and a translation of t = l +u
I If M⊥ is positive for one domain it is

negative for the other
I The Rni terms have opposite signs for the

two domains.

These domains do not lead to depolarisation, but inhibit the
creation of polarisation parallel to M⊥
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180◦ domains τ=0 (ψNM =±π

4)

When the symmetry element relating atoms with oppositely
oriented spins involves inversion (improper rotation), ψNM =±π

4 .

l

I In this example atoms with opposite spins
are related by a centre of symmetry.

I N is real and M⊥ imaginary. (N and M⊥ in
quadrature)

I The terms Jni = 2ℑ(NM∗
⊥) in the

polarisation matrix are finite.
I They turn the polarisation towards the

direction perpendicular to both P and M⊥
I The two 180◦ domains can be superposed

by inversion and translation by a lattice
vector l .

I Jni changes sign and will rotate the
polarisation in the opposite sense.

This type of 180◦ domain leads to depolarisation of the all
components not parallel to M⊥.
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Orientation domains (s-domains)

Occur when the magnetic space group is not congruent with the
group describing the configurational symmetry.

I lf P is a sub-group of the configurational symmetry G , congruent
with the magnetic space group M , then G = P×S

I The sub-group S is made up of operators contained in G which are
not in the magnetic group.

I If S is of order s there are s possible orientation domains related to
one another by the elements of S .

I The magnetic interaction vectors for reflections related by the
elements of S are different.

M⊥(k) 6= M⊥(Rsk) but M⊥s(k) = M⊥(Rsk)
Rs is an operator in S and M⊥s(k) is the interaction vector for the domain
generated by Rs.

I For collinear structures the magnetic structure factors of reflections
related by the elements of S are equal:

RsM(k) = M(Rsk)
but this is not true in the general case.

P.J. Brown September 2006 Neutron Polarimetry:III Fundamentals of Spherical Polarimetry 16
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Orientation domains and symmetry elements

I If the configurational symmetry possesses a symmetry axis
of order higher than 2:

either the moments lie parallel to this axis,
or the structure is non collinear,
or the symmetry axis is not in the magnetic space group.

I In a collinear structure,
either the moments lie parallel to any mirror planes and diad

axes.
or they are perpendicular to them
or the mirror plane or diad axis is not in the magnetic space

group.
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Depolarisation by s domains

P′1

P

M⊥1

M⊥2

P′2

P′f y

z

The two orientation domains with interaction vectors
M⊥1 and M⊥2 are related by a diad axis parallel to y

I When P is parallel to y
I P is rotated to P′1 by domain 1
I It is rotated to P′2 by domain 2.
I The final polarisation is parallel to P′f .
I The z components are depolarised

P′1

P
M⊥1

M⊥2

P′2 P′f

y

z
The two orientation domains with interaction vectors
M⊥1 and M⊥2 are related by a mirror plane perpendicu-
lar to z

I When P is parallel to z
I Pis rotated to P′1 by domain 1
I It is rotated to P′2 by domain 2.
I The final polarisation is parallel to P′f .
I The y components are depolarised.

Orientation domains can depolarise the y and z, but not the x
components
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Chiraity domains

Occur whenever the paramagnetic space group is
centro-symmetric but the magnetic structure is not.

They are related by the inversion operator.

This happens when either

1. Magnetic moments on centro-symmetrically related sites are
not parallel.

or

2. 2τ is not a reciprocal latice vector so the configurational
group is acentric.
The two chirality domains correspond to ±τ. They both give
reflections at g± τ with

M⊥τ (g+ τ) =−M⊥τ
∗(g− τ) =−M⊥−τ

∗(g+ τ)
Such structures include helices and cycloids.
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Chirality domains: Examples

The centre of symmetry is not in the magnetic group

A

B

A

B

(a) (b)

The atoms A and B at ±(xyz) have
non-parallel moments.
M⊥(k) is not parallel to M∗

⊥(k).

The moment on A in domain (a) is
parallel to B in domain (b)
M⊥(a)(k) = M∗

⊥(b)(k) = M⊥(b)(−k)

τ = ( 1
2

1
20) 2τ = (110) = g

The centre of symmetry is not in the configuration group
(a)

(b)

τ = (0.15,0,0) 2τ = (0.3,0,0) 6= g
M⊥(k) is not parallel to M∗

⊥(k).

In the (b) domain τ = (−0.15,0,0) and
the spiral turns in the opposite sense.
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Chirality domains: Polarisation

I M⊥ is not parallel to M∗
⊥ in either type of chiral structure.

I The term Jij = ℑ(M⊥iM∗
⊥j) in the polarisation matrix is

non-zero.
I Jij is of opposite sign for the two chiralities.
I If the chirality domains are unequally populated

I The intensity will depend on the x component of P due to the term
P·Jij .

I if the component of Px ‖ Jij < 1 it will be increased in the scattered
beam.

I This is not due to rotation, but is because the unfavourable polarisation
is not scattered.

I Chirality domains do not lead to depolarisation of the x
component of P.

I They lead to depolarisation in the y and z components
because the chiral component analyses the polarisation
parallel to x which is zero when P is parallel to y or z.
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Experimental strategy

SNP cannot be used in isolation to determine magnetic structure.
I The magnetic propagation vector τ must be known.
I If τ 6= 0 intensity measurements are needed to determine the

absolute magnitudes of the moments
I With the current geometry τ must be in the scattering plane.
I It is advantageous to orient the crystal so that a component of

magnetisation is perpendicular to the scattering plane.

I Analysis of rather few magnetic reflections is then usually sufficient
to determine the structure.

The usual experimental strategy is to measure the scattered
polarisation P′ with the incident polarisation P parallel to
polarisation x, y, z in turn.
This determines the polarisation matrix.

Pij =

〈
PiPij +P′′j )

Pi

〉
domains
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Structures with τ 6= 0

I For structures with τ = 0; N(k) is zero at the positions of magnetic
reflections.

I The terms Rny, Rnz, Jny and Jnz in the polarisation tensor are all zero.

I If the configuration group is centrosymmetric Jyz is also zero so
P′′=0 and the phases can be chosen to make M⊥(k) real.

Suppose M⊥ is inclined at an angle α to z (measured clockwise about x) then :

P =

 −1 0 0
0 −cos2α −sin2α

0 −sin2α cos2α


If M⊥ is parallel to either y or z the matrix is diagonal

Q ‖ y Q‖ z

P =

 −1 0 0
0 1 0
0 0 −1

 P =

 −1 0 0
0 −1 0
0 0 1


When s domains with different values of α are present any

off-diagonal elements are reduced
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A commensurate tetragonal structure τ = 0,0, 1
2

An imaginary structure will be used to show how SNP can
distinguish between canted and collinear models.
There are 4 magnetic atoms per cell,The spins S lie in the 001 plane.

A1 at (x,x,0);
A2 at (−x,x,0)
A3 at (−x,−x,0)
A4 at (x,−x,0)
with x≈ 0.2.

Possible configurations of the plane at z= 0

1 2

34

1 2

34

(a) mm'm'

1 2

34

(b) m'mm' (c) 4'/m'mm'

[100]

[010]

The Magnetic Structure Factors M(k) for h,k, 1
2 + l reflections

Component Model (a) Model (b) Model (c)

M[100] 0 4Ss(h)c(k) 2
√

2Ss(h)c(k)
M[010] 4Ss(k)c(h) 0 2

√
2Ss(k)c(h)

Intensity (4Ss(k)c(h))2 (4Ss(h)c(k))2 8S2(s2(h)c2(k)+s2(k)c2(h))
Domain Average 8S2(s2(h)c2(k)+s2(k)c2(h))

c(h) = cos2πhx s(h) = sin2πhx c(k) = cos2πkx s(k) = sin2πkx
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Magnetic structure factors for 3 models

The Magnetic Structure Factors M(k) for h,k, 1
2 + l reflections

Component Model (a) Model (b) Model (c)

M[100] 0 4Ss(h)c(k) 2
√

2Ss(h)c(k)
M[010] 4Ss(k)c(h) 0 2

√
2Ss(k)c(h)

Intensity (4Ss(k)c(h))2 (4Ss(h)c(k))2 8S2(s2(h)c2(k)+s2(k)c2(h))
Domain Average 8S2(s2(h)c2(k)+s2(k)c2(h))

c(h) = cos2πhx s(h) = sin2πhx c(k) = cos2πkx s(k) = sin2πkx

I The average intensity scattered by the two orthorhombic
domains is exactly the same as that scattered by the
tetragonal structure.

I The tetragonal structure gives a unique M(k) for each
reflection. SNP can determine its direction.

I A mixture of orthorhombic domains will give depolarisation
when P is perpendicular to k because the structure factors
for the two domains are not parallel.
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Polarisation matrices for the model structures

In an SNP experiment to distinguish the models the crystal would
be mounted so as to have the h,0, 1

2 + l reflections in the
scattering plane: [010] parallel to polarisation z.

The magnetic interaction vectors for (h,0, 1
2 + l) reflections are:

Component Model (a) Model (b) Model (c)
M⊥y 0 2F′ sinα

√
2F′ sinα

M⊥z 2F 0
√

2F

Intensity |M⊥|2 4F2 4F′2 sin2
α 2(F2 +F′2 sin2

α)

F = Ssin2πhx F′ = Scos2πhx

α is the angle between [001] and the normal to (h,0, 1
2 + l)

The corresponding polarisation matrices are:

Model (a) Model (b)

Pij =

 −1 0 0
0 −1 0
0 0 1

 Pij =

 −1 0 0
0 1 0
0 0 −1
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Distinction between the model structures

From all these results

The mean from equal volumes of domains (a) and (b) is

Pij =

 −1 0 0
0 −(F′2−F2 sin2

α)/I 0
0 0 (F′2−F2 sin2

α)/I


Model (c)

Pij =

 −1 0 0
0 −(F′2−F2 sin2

α)/I (2FF′ sinα)/I
0 (2FF′ sinα)/I (F′2−F2 sin2

α)/I


Only the off-diagonal terms differ.

They would be measured in the SNP experiment.
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Outline: Experiments with SNP

Structures with non-zero propagation vector
Commensurate structures
Incommensurate structures
SNP with sinusoidally modulated structures
The incommensurate structure of CuO
Magnetic structure of UPtGe

Magnetic structures with zero propagation vector
Nuclear magnetic interaction terms
The magnetic structure of U14Au51

Magneto-electric and Multi-Ferroic materials
Simple magneto-electrics: Cr2O3

Determination of precise magnetic structure factors using SNP
Magnetic structure factors from rotation of polarisation
Experimental considerations
Determination of the Cr3+ form factor in Cr2O3
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The commensurate structure of CuO

The low temperature magnetic structure of cupric oxide provides
a simple example.

I Below 213 K cupric oxide, CuO, (space group
C2/c) is antiferromagnetic with τ = 1

2 ,0,− 1
2 .

I Magnetic reflections h0l± τ with h+ l odd are
absent.

I So the spins on copper atoms related by the n
glide-plane perpendicular to [010] are parallel.

I The reflection intensities suggest that the
spin-direction is [010]

SNP measurements confirm this structure
Polarisation matrices were measured for the 1

2 ,0, 1̄
2

1̄
2 ,0, 1

2
3
2 ,0, 3̄

2 and 3
2 ,0, 1̄

2 reflections.

c

a

b

Within experimental error, they were all diagonal with Pxx=Pyy=-1, Pzz=1

This proves that the structure is collinear with spins parallel to
polarisation z= [010].
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Incommensurate structures

SNP has been used rather successfully in determining the details of
incommensurate structures such as helices, cycloids and spin-density
waves.

It also often allows these types of structures to be distinguished

To study incommensurate structures some thought must be given to the
crystal orientation.

I The propagation vector must lie in the scattering plane,

I A component of moment should be perpendicular to the scattering
plane, because

I If both components of the moment lie in the scattering plane,
then M⊥ is parallel to polarisation y for all the accessible
reflections.

I When τ 6= 0, it is only the direction and not the magnitude of
M⊥ which is measured by SNP, so measuring different
reflections in the zone gives no additional information.

I If the orientation is chosen so that a component of moment is
parallel to polarisation z then the full potential of SNP can be
realised.
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Sinusoidally modulated structures

The magnetic moment distribution in a sinusoidally modulated
structure with lattice vectors l and propagation vector τ can be
written as

M(r + l) = p̂Mp(r)cosl · τ + q̂Mq(r)sinl · τ
where p̂ and q̂ are perpendicular unit vectors.

I When either Mp(r) or Mq(r) is zero the equation describes a
spin-density wave.

I When τ lies in the plane of p̂ and q̂ it describes a cycloid.

I When both are perpendicular to τ it describes a right helix.

The magnetic scattering from such a modulated structure is given
by

M⊥(k) = (p⊥Mp(k)− ıq⊥Mq(k))δ (g+ τ −k)
+ (p⊥Mp(k)+ ıq⊥Mq(k))δ (g− τ −k)

where p⊥ and q⊥ are the components of p̂ and q̂ perpendicular to k.
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The structure factors for sinusoidally modulated
structures

In the equation for the interaction vector

Mp,q(k) =
∫

unit cell
Mp,q(r)exp−(k.r)dr3

are the unit cell structure factors for the two perpendicular
magnetic moment distributions.

I A structure with propagation vector τ gives reflections at
both g+ τ and g− τ.

I For structures for which Mp,q(k) are real, ie the magnetisation
distributions themselves are centrosymmetric
M⊥τ (k) = M∗

⊥−τ (k)
I The term which creates polarisation along x:

Jij = 2ℜ(Mp(k)Mq
∗(k))p⊥i ×q⊥j

is finite if neither p⊥i , q⊥j or either structure factor Mp,q(k) is
zero.
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SNP with sinusoidally modulated structures

An example will show how SNP measurements determine the
structure when Mp,q(k) are real.

The crystal will be aligned with τ in the scattering plane. Suppose for
simplicity that p̂ is perpendicular to the scattering plane so that q̂ lies in it.

For reflections in the scattering plane; p⊥ ‖ z is constant, whilst q⊥ ‖ y
varies from 0 when q̂ ‖ k to a maximum when q̂ ⊥ k.

The polarisation matrices which would be obtained are:

Pij =

 −1 0 0
B A 0
B 0 −A

 for k ‖ q̂ with A = Mp(k)2−Mq(k)2

Mp(k)2+Mq(k)2

and B = 2Mp(k)Mq(k)
Mp(k)2+Mq(k)2

Pij =

 −1 0 0
0 −1 0
0 0 1

 for k ⊥ q̂

Pij =

 −1 0 0
−B A 0
−B 0 −A

 for k ‖ q̂ for the other chirality
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SNP with sinusoidally modulated structures

I Pxx =−1 in all three cases; in fact this is true for any structure with
τ 6= 0.

I For P⊥ k there is no y component of M⊥(k) and so the behaviour
is the same as for a collinear structure with M⊥(k) ‖ z.

I For P ‖ k; Pyy =−Pzz= A gives the ellipticity of the helix.

A =
Mp(k)2−Mq(k)2

Mp(k)2 +Mq(k)2 is zero if the envelope is circular.

I The off-diagonal terms Pxy, Pxz depend on

B =
2Mp(k)Mq(k)

Mp(k)2 +Mq(k)2 which changes sign for the opposite chirality

The intensity scattered by the domain for which B is positive will be
greater than that for which B is negative.

I if the two chirality domains are equally populated the components
Pxy = Pxz will average to zero giving a diagonal polarisation matrix.
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The incommensurate structure of CuO

At its Néel temperature, 230 K, CuO orders magnetically with an
incommensurate structure τ= 0.506, 0, -0.483 which remains
constant on further cooling down to a lock-in transition at 213 K.

I The systematically absent magnetic reflections follow the
same rules as in the low temperature phase

I This suggests that the coupling between moments in the two
phases is nearly the same.

I Integrated intensity measurements were not able to
distinguish clearly between different possible models for the
modulation.
Forsyth J B, Brown P J and Wanklyn B M,(1988) J. Phys. C 21 2917.

I SNP measurements of a few h0l± τ reflections were able to
resolve the problem.
Brown P J et al.,(1991) J. Phys. Condens. Matter 3 4281.
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The incommensurate structure of CuO: SNP

The h0l reciprocal lattice layer

a*

c*

c
000

200

200

202

202

002

000−τ

002+τ

I The scattering vectors for the
002+ τ and 000− τ reflections are
nearly perpendicular.

I The polarisation matrix for 002+ τ

was similar to those measured in
the commensurate phase
(diagonal with Pzz positive).

I Therefore for 002+ τ, M⊥ is
parallel to [010].

I The matrix obtained for 000− τ

was very different.
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The incommensurate structure of CuO: SNP

Pij (000− τ) =

 −1.00(2) 0.00(2) −0.04(2)
−0.08(2) −0.07(2) 0.00(2)
−0.08(2) 0.00(2) 0.06(2)



I The full polarisation is only transmitted for
the x direction.

I The small values of the off-diagonal
components indicate chirality domains.

I The small values of Pyy and Pzz show that
for this reflection A≈ 0 so M⊥p and M⊥q are
nearly equal.

b

a

c

These results are only consistent with a helical structure in which
the spins rotate in a plane containing the [010] axis and the
normal to 002+ τ.
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Magnetic structure of UPtGe

The orthorhombic intermetallic compound UPtGe is reported to
order magnetically at 51 K to a cycloidal structure with
propagation vector τ = 0,0.554,0 and the U spins rotating in the
b-c plane. Robinson R et al.,(1993) Phys. Rev. B 47 6138.

The plausibility of such a structure was queried because of the
huge magnetic anisotropy found for U in other UTX compounds.

c

b

a

000

200

020

220
τ τ

τ My

M⊥y

α

200+τ

200+τ

220−τ

220−τ

000+τ

M⊥y

The proposed structure has been verified
by measuring the polarisation matrices for
magnetic reflections in the hk0 plane
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Magnetic structure of UPtGe: SNP

Pij (000+ τ) =

 −0.98 0.00 0.00
0.00 −0.99 0.00
0.00 0.00 1.00


shows M⊥ ‖ z

M⊥z

Pij (200+ τ) =

 0.50 0.00 0.00
1.02 0.00 0.00
1.02 0.02 0.04


gives P′ ‖ x for all P

M⊥z

M⊥y

With P‖ x the scattered intensity was very small and Pxx poorly determined

Pij (220− τ) =

 −0.98 0.05 −0.05
−0.98 −0.10 −0.02
−0.98 0.01 0.17


P′ ‖ −x with smallPzz

M⊥y

M⊥z
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Magnetic structure of UPtGe: SNP

These results are characteristic of a nearly single domain cycloid
structure in which the populated domain has τ ‖ −x.
D. Mannix et al.,(2000) Phys. Rev. B 62 3810.

The ellipticity of the envelope

ε =
M[010]

M[001]
=

major axis
minor axis

and the orientation of the major axis of the cycloid were obtained
by fitting

Pyy(k) =−Pzz(k) =±ε2sin2
φk −1

ε2sin2
φk +1

where φk is the angle between the major axis and k

for a set of magnetic reflections;
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Magnetic structures with zero propagation
vector

When the magnetic propagation vector is zero magnetic and
nuclear scattering can occur in the same reflections.

The terms

Jni = 2ℑ(N(k)M⊥i
∗(k)) and Rni = 2ℜ(N(k)M⊥i

∗(k))
in the polarisation matrix can be non-zero.

I Finite Rni results in a polarisation dependent cross-section.
The scattered beam is polarised parallel to M⊥.

I This occurs when the phase angle between M⊥(k) and
N(k) 6= (2n+1)π

2 .
I It is the term used to polarise neutrons and to determine

magnetic structure factors from flipping ratios.
I Finite Jni leads to rotation of the scattered polarisation

towards the direction perpendicular to both M⊥ and P.
I It is finite when the phase angle between M⊥(k) and

N(k) 6= nπ.
I It is the only term which can lead to depolarisation with P ‖ x
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U14Au51:The crystal structure

U14Au51 has the hexagonal Gd14Ag51 structure with space group
P6/m.
The uranium atoms
occupy three different
crystallographic sites

U1 6(k) (x1,y1,
1
2)

U2 6(j) (x2,y2,0)
U3 2(e) (0,0,z3) U Au

Susceptibility, specific heat and resistivity indicate an
antiferromagnetic phase transition at 22 K.
Powder diffraction suggested a structure with moments ‖ [001].
No moment on U3 because of close U3-U3 distance.
Dommann A et al.,(1990) J. Less-Comm. Metals 160 171.

Single crystal intensity measurements were not compatible with this
structure.
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U14Au51: Spherical polarisation analysis results

hkl i\j x y z

x −0.86 0 0
200 y 0 −0.83 0

z 0 0 0.98
x −0.28 0 0

201 y 0 −0.62 0.38
z 0 0.37 0.73
x −0.54 −0.08 −0.07

101 y −0.08 0.98 −0.12
z 0.01 −0.05 −0.55

I The Pxx terms are negative
and |Pxx|< 1.
The magnetic scattering is in
quadrature with and greater
than the nuclear scattering
(Jni 6= 0).

I For 200Pij is diagonal and
Pzz≈ 1
M⊥(200) ‖ polarisation z
[010]:- No significant moment
‖ [001].

I For 201 there are off-diagonal terms Pyz≈ Pzy.
Since k has a component on polarisation z, this is consistent with all
moments in the (001) plane

I The depolarisation for Px is greater than for either Py or Pz.
There are no orientation domains so the magnetic structure
probably retains full symmetry
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U14Au51: The layer motif

These constraints determine the motif in both the U1 and U2
layers

φ

Only the magnetic moments and the values of φ in the U1 and U2
layers, remain to be determined
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U14Au51: Angles within the layers

For the 101 reflection Pyy≈ 1

M⊥(101) is nearly parallel to y: M⊥z small and M⊥y large

it is the sum of contributions from the U1 and U2 layers.

The y and z compon-
ents of M⊥(101) can
be computed separ-
ately as a function of
φ .

0 40 80 120 160 200 240 280 320 360

0 40 80 120 160 200 240 280 320 360

φU2

φU1

Μ⊥y

Μ⊥z

Μ⊥y

Μ⊥z

There is only a small range in which a pair of φ ’s exist for which the M⊥z

for U1 and U2 cancel whilst their M⊥y reinforce one another.
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U14Au51: The Magnetic structure

These initial values provided an adequate starting point for a
least squares refinement of the structure using both SNP and
integrated intensity data.

U1 µ = 2.28(6) µB
φ = 88(2)◦

U2 µ = 1.48(8)µB
φ = 139(2)◦

Brown P J et al.,(1997) J. Phys. Condens. Matter 9 4729.
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Magneto-electric and Multi-Ferroic materials

I Multi-ferroic is the name give to materials which possess
more than one polar property. They are nowadays exciting a
lot of interest as possible electronic components.

I Polarimetry is particularly useful to study such materials
when one of the polar properties is magnetic: a
ferromagnetic moment, and the other structural, for instance
ferro-electric polarisation or peizo-electric displacement.

I The ability of SNP to determine the relative phases of
nuclear and magnetic scattering allows the precise
relationship between the structural and magnetic
polarisations to be determined.

I Magneto-electric materials are closely related to magnetic
multi-ferroics; in both the presence of a ferromagnetic
polarisation implies a magnetic structure with zero
propagation vector, or at least a component of the structure
which propagates with τ = 0.
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The magneto-electric effect

I The property of magneto-electricity in centro-symmetric
crystals is restricted to those having
antiferromagnetic structures with zero propagation vector
the centre of symmetry must invert the spins.

I In this case the Jni are finite giving rise to off-diagonal terms
Pxz =−Pzx and Pxy =−Pyx in the polarisation matrix.

I The magnitudes and even the signs of magnetoelectric (ME)
susceptibilities are specimen dependent.
but

I their temperature dependencies are unique to each material.
I The variability is due to the existence of 180◦domains which

have opposite ME effects.
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The magneto-electric effect: rotation of the
polarisation

The measured and intrinsic ME susceptibilities are related by

χobs= ηχ0 with η =
v1−v2

v1 +v2

v1 and v2 are the volumes of crystal belonging to each of the the two
180◦ domains.

η can be determined using SNP

If the moments are parallel to polarisation z

Pij =

 β ηξ 0
−ηξ β 0

0 0 1

 with
β = (1− γ2)/(1+ γ2)
ξ = 2qzγ/(1+ γ2)
γ = M⊥(k)/N(k)

qz is +1 if M(k) is parallel to z and −1 if it is antiparallel.
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The magneto-electric effect: 180◦ domain
populations

I Measurement of the polarisation matrix allows both η and γ

to be determined.
I The effects of electric and magnetic fields on the domain

population can be studied.
I When η 6= 0 the absolute directions of rotation of the neutron

spins determine the magnetic configuration of the more
populous domain.

I The results shed light on the fundamental mechanisms
leading to the ME effect.
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The magneto-electric effect: Cr2O3

I Cr2O3 is perhaps the best known ME material.
I The Cr3+ ions are octahedrally coordinated by oxygen. with

pairs of octahedra, sharing a common face.
I The double octahedra are linked by sharing free vertices.

Electric and magnetic fields, applied
parallel to one another and to the c-
axis while cooling through the Néel
transition, stabilise the domain in
which the moments point towards the
shared face.

E H
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Magnetic structure factors from polarisation
rotation

When the magnetic and nuclear scattering are in quadrature the
terms Pxi Pix (i = y,z) depend just on the ratio γ between the
magnetic and nuclear structure factors and on the imbalance η in
the populations of the two 180◦ domains.

This property can be exploited to obtain precise values for the
magnetic structure factors and hence for the antiferromagnetic
form factor.

The polarisation matrix allows two independent estimates of γ to
be made.

For M⊥ ‖ z:

(a) Pxz =−Pzx = ηξ =
ηqzγ

1+ γ2 (b) Pxx = Pzz= β =
1− γ2

1+ γ2

(a) Is only useful if there is an imbalance η in the population of 180◦

domains.
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Experimental considerations

The precision with which γ can be determined depends on the
statistical error in the determination of Pij .

In this case, since the cross-section is not polarisation
dependent, the recorded counting rate, summed over the two
polarisation states, is constant and independent of either the
incident or the scattered polarisation direction.

I The polarisation measured by the analyser is given by:

P = (I+− I−)/(I+ + I−)
where I+ and I− are the counting rates in the two detector
channels.

I The variance in the measurement of a component of
polarisation due to counting statistics is

VP =
(1−P2)2

4

(
1

N+ +
1

N−

)
where N+ and N− are the counts recorded in each channel.
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Variance in measurement of P′

I The variance is minimised by dividing the measuring time
available in the ratio t+/t− = (1−P)/(1+P).

I With this division, for a total N neutrons counted, the
variance is VP = (1−P2)/N

I The variances in the
values of γ derived from
the equations for ξ (a)
and β (b) are:

(a) Vγ =
(1+ γ2)4

16γ2 VP

(b) Vγ =
(1+ γ2)4

4η2(1− γ2)2 VP

If η is small or γ is close to unity
use (a)
For very small or very large γ use
(b) so long as η is not small.
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The Cr3+ form factor in Cr2O3

I The polarisations scattered by h0l reflections from Cr2O3 were
studied.

I Measurements were made with the crystal in several states with
different domain populations produced by field cooling.

I Values for the Cr3+ form factor for each reflection were derived form
the experimental γ ’s.

I For most reflections an
extremely good precision was
obtained.

I Exceptions are:
2,0, 2̄ for which N is very small
so that γ >> 1.
and 1,0, 1̄0 for which the the Cr
geometric structure factor is
small so the reflection is
insensitive to the form factor.  0.00  0.25  0.50  0.75
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The magnetisation distribution in Cr2O3

The data can be used to make a maximum entropy
reconstruction of the antiferromagnetic magnetisation distribution
projected down [010].
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The coefficients of the
reconstruction are differ-
ences between the ob-
served structure factors
and those calculated for
an antiferromagnetic ar-
rangement of Cr3+ ions
with t2g symmetry in the
Cr2O3 structure

The difference density has a a gradient of magnetisation at the
Cr3+ positions.

This may be the signature of the ME property.
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