

Clustering and percolation in supercritical aqueous fluids

Maria Antonietta Ricci

www.fis.uniroma3.it/liquidsgroup

Figure 4. Comparison of the experimental self-diffusion coefficients of water with previous work below 0 °C: (open symbols) as in Figure 3; (●) 0 °C, (▲) -5 °C, (♦) -10 °C, (■) -15 °C, (♥) -21 °C, Prielmeier et al., 1988.

τ=0.0000000001 s (1 millesimo di miliardesimo di secondo) Hbond energy: E_H=5Kcal/mole=10kT Covalent bond energy: E_c=200kT

H. E. Stanley, J. Phys. A: Math. Gen. 12,L329 (1979).

H. E. Stanley, and J. Teixeira, J. Chem. Phys. 73, 3404(1980).

Water at ambient conditions can be described as a percolating HB network

Line of percolation in supercritical water

Lívia Pártay and Pál Jedlovszky^{a)}

Questions:

- Is it possible to test this idea against an experiment?
- What can we learn from this kind of data analysis?

Mails it possible to test this idea against an experiment?

Is it possible to test this idea against an experiment?

$$F(Q) = \sum_{\alpha} \sum_{\beta \ge \alpha} w_{\alpha\beta}(S_{\alpha\beta}(Q) - 1)$$

$$w_{\alpha\beta} = c_{\alpha}c_{\beta}b_{\alpha}b_{\beta}(2-\delta_{\alpha\beta})$$

$$(S_{\alpha\beta}(Q) - 1) = 4\pi\rho \int_0^\infty r^2 (g_{\alpha\beta}(r) - 1) \frac{\sin(Qr)}{Qr} dr$$

Is it possible to test this idea against an experiment?

TABLE II. Parameter of the reference potential used to start the EPSR routin. The intramolecular bonds used were $l_{C-O}=1.161$ Å, $l_{O-O}=2.32$ Å, $l_{O_w}-H_w=0.976$ Å, and $H_w-H_w=1.54$ Å (Refs. 28 and 29).

	ϵ (kJ/mol)	σ (Å)	q(e)
O _w	0.65	3.166	-0.847 6
H_w	0	0	0.423 8
С	0.241	2.785	0.664 5
0	0.689 85	3.064	-0.332 25

Definitions:

Two molecules are H-bonded if the OH distance is below the I minimum of g_{OH} .

A group of molecules forms a cluster if each pair of molecules is bonded to at least one other molecule in the cluster.

Pure supercritical water

Supercritical water- CO₂ mixtures

TABLE I. Thermodynamic parameters of the investigated water-CO₂ mixtures and pure water states.

CO_2 concentration (%)	$T(\mathbf{K})$	P (bar)	$ ho({ m at./\AA^3})$	
0.92	673	1300	0.0458	
9.2	673	1300	0.049	
0	673	1500	0.0753	
0	673	500	0.0552	

Excess volume

pressure (MPa)

 Pure supercritical water
 gas- like vs liquid-like behavior
 signature of HB
 II peak of g₀₀ at ~ 5.6Å

- Pure supercritical water
- Triangular symmetry at state A^{exp}
- tetrahedral symmetry at liquid-like states
- Iowering the contrast the symmetry becomes sferical
- II shell has the same symmetry as I shell

 Pure supercritical water
 Iiquid-like states are above the percolation threshold

Pure supercritical water- I take home message

- a percolation line separates 2 structurally different supercritical fluids:
- 🛯 gas-like, with triangular I shell
- liquid-like with tetrahedral I shell
- n_{HB} decreases from ~ 2 to ~ 0.8 upon crossing PL
- 3D HB clusters or branched chains at liquid-like states
- 2D HB sheets or oligomers at gas-like states
- Question for the theoreticians:
 - PL and Fisher-Widom line can be identified?

Supercritical water- CO₂ mixtures

water

Supercritical water- CO₂ mixtures
 both states are liquid-like
 more defined peaks compared to pure

Supercritical water- CO₂ mixtures

Î_{H-bond}

cluster dimension

Supercritical water- CO₂ mixtures

the absence of percolation is not a trivial effect of the excess volume

Supercritical water- CO₂ mixtures

both minimum approach distance and average Ow -Ow distance are shorter than Ow-O distances.

Supercritical water-CO₂ mixtures - II take home message

- Iiquid-like states
- better definition of shells compared to pure water
- **Matrix** <n_{HB} lower than 1.55 \rightarrow no percolation
- this is not a trivial effect of the excess volume
- the excess volume is localized around the CO₂ molecules
- clusters are fragmented.

Fabio Bruni	Roma Tre
Marco Bernabei	Roma Tre - UPV San Sebastian (ES)
Alan Soper	ISIS Facility (UK)

Thanks to:

ISIS Facility

CNR

MIUR

www.fis.uniroma3.it/liquidsgroup

FIG. 3:

