
MEASUREMENT OF ATOMIC MOMENTUM DISTRIBUTIONS 

BY HIGH ENERGY NEUTRON SCATTERING 

J Mayers (ISIS) 
 

Lectures 1 and 2. How n(p) is measured 

 
The Impulse Approximation. Why high energy neutron scattering  

measures the momentum distribution  n(p) of atoms. 

 

The VESUVIO instrument. 

Time of flight measurements.  

Differencing methods to determine neutron energy and momentum transfers 

Data correction; background, multiple scattering 

Fitting data to obtain sample composition, atomic kinetic energies 

and momentum distributions. 

 

Lectures 1 and 2. Why n(p) is measured 

 
What we can we learn from measurements of n(p) 

(i) Lecture 3  n(p) in the presence of Bose-Einstein condensation. 

(ii)Lecture 4 Examples of measurements on protons. 
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The “Impulse Approximation” states that at sufficiently high incident  
neutron energy. 
(1) The neutron scatters from single atoms. 
(2)  Kinetic energy and momentum are conserved in the collision. 
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The Impulse Approximation 
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Why is scattering from a single atom? 

If q >> 1/Δr interference effects between  
 
different atoms average to zero. 

Incoherent approximation is good for q such that; 
Liquids  S(q) ~1 q >~10Å-1 

Crystalline solids – q such that Debye Waller factor ~0.  

. . . . . . ±Δr 
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Why is the incoherent S(q,ω) related to n(p)? 
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E = Initial energy of particle 

 

ω= energy transfer 

Ef = Final energy of particle 

 

q  = wave vector transfer 

Single particle 

In a potential 
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)exp()( rkr  ff iC

IA assumes final state of the struck atoms is a plane wave.  
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Infinite Square well 

 rrrqr diA ff )().exp()(* 

http://en.wikipedia.org/wiki/File:Particle_in_a_box.svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Particle_in_a_box.svg
http://upload.wikimedia.org/wikipedia/commons/4/47/Particle_in_a_box_wavefunctions_2.svg
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T=0 

ER=q2/(2MED) 
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T=TD 

ER=q2/(2MED) 
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Can be shown that (V. F. Sears Phys. Rev. B. 30, 44 (1984). 
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Thus FSE give further information on binding potential 
(but difficult to measure) 

All deviations from IA are known as Final State Effects 

in the literature. 
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Increasing q,ω 

Density of States 
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FSE in Pyrolytic Graphite 
A L Fielding,, J Mayers and D N Timms Europhys Lett 44 255  (1998) 

Mean width of n(p) V2



17 

q=40.8 Å-1 

q=91.2 Å-1 

FSE in ZrH2 
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Measurements of momentum distributions of atoms 

Need q >> rms p 

For protons rms value of p is 3-5 Å-1  

q > 50 Å-1,  ω > ~20 eV required  

Only possible at pulsed sources such as ISIS UK, SNS USA  

 

Short pulses ~1μsec at eV energies allow accurate measurement of energy 

and momentum transfers at eV energies. 



Lecture 2 

• How measurements are performed 
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The VESUVIO Inverse Geometry Instrument 
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VESUVIO INSTRUMENT 



Foil out  

Difference 

Foil in  

E M Schoonveld, J. Mayers et al  
Rev. Sci. Inst. 77 95103 (2006) 

Foil cycling method 
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Cout=I0 A 

C=Cout-Cin= I0 [ 1-A2] 

Foil out 

Cin=I0 (1-A)A 

Foil in 
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Filter Difference Method 

Cts = Foil out – foil in 

6Li 

detector  

gold foil “in” 
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Blue = intrinsic width of lead peak 
 
Black = measurement using Filter difference method 
 
Red = foil cycling method 
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Foil cycling 
Filter difference 



YAP detectors give 

 

Smaller resolution width 

 

Better resolution peak shape 

 

100 times less counts on filter in and filter out measurements 

Thus less detector saturation at short times 

 

Similar count rates in the differenced spectra 

 

 

Larger differences between foil in and foil out measurements 

therefore more stability over time. 
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Energy Transfer (eV)
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Comparison of chopper and resonance filter  
spectrometers  at eV energies 
C Stock, R A Cowley, J W Taylor and S. M. Bennington  

Phys Rev B  81, 024303  (2010) 
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Θ =62.5º 

Θ =~160º 
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YAP 

detector  

Primary

Gold foil 

Secondary 

gold foil “in” 

Secondary 

gold foil "“out” 

new 

Gamma background 

Pb 

old 
Pb 
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YAP 

detector  

Primary

Gold foil 

Secondary 

gold foil “in” 

Secondary 

gold foil "“out” old 

new 

ZrH2 

ZrH2 
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Need detectors on rings 
 
Rotate secondary foils keeping the foil scattering angle constant 
 
Should almost eliminate gamma background effects 
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Nearest

Furthest

corrections  

 

for gamma 

 

Background 

 

Pb 
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corrections  

 

for gamma 

 

Background 

 

ZrH2 
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p2n(p)  without a background correction 

 
            with a background correction 

ZrH2 
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Multiple Scattering 

Total scattering 

 

Multiple scattering 

J. Mayers, A.L. Fielding and R. Senesi, Nucl. Inst. Methods A 481, 454 (2002)  
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Back scattering ZrH2  

A=0.048. A=0.092,  
A=0.179, A=0.256.  
 

Forward scattering ZrH2  

Multiple Scattering 
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Forward 
scattering 

Back 
scattering 
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Correction for Gamma Background and Multiple Scattering 

30 second input from user 

 

Correction procedure runs in ~10 minutes 

Automated procedure.  Requires; 

 

Sample+can transmission  

 

Atomic Masses in sample + container 

 

Correction determined by measured data 
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Uncorrected 

Corrected 



Data Analysis 

Impulse Approximation implies kinetic energy and momentum  
are conserved in the collision between a neutron and a single atom. 
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Y scaling  
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Any scan in q,ω space which crosses the line ω=q2/(2M)  

gives the same information in isotropic samples 

Detectors at all angles give the same information for isotropic samples 
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Strictly valid only if 
(1) Atom is bound by harmonic forces 
(2) Local potential is isotropic  

Spectroscopy shows that both assumptions are well satisfied in ZrH2 
 
Spectroscopy implies that wH  is  4.16 ± 0.02 Å-1 
 
VESUVIO measurements give  
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wtd mean width=   4.141140      +-  7.7802450E-03 
 mean width    =   4.134780      st dev=  9.9052470E-03 
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WH 

3356 Sep 2008 4.15 

3912 Nov 2008 4.13 

4062 Dec 2008 4.11 

4188 May 2009 4.16 

4642 Nov 2009 4.15 

5026 Jul 2010 4.13 

Expected ratio for ZrH1.98  is   1.98 x 81.67/6.56 =24.65  
 
Mean value measured is  21.5 ± 0.2 

Intensity shortfall in H peak of  12.7 ± 0.8% 

AH/AZr 

21.8 

21.3 

21.9 

20.8 

21.5 

21.5 

ZrH2  Calibrations 



Momentum Distribution of proton 
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Sum of 48 

detectors at 

forward angles 
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Sep 2008 
Dec 2008 
May 2009 
Nov 2009 

Measured p2n(p) for ZrH2 



Lecture 3.  

 

What can we learn from a measurement 

 

of the momentum distribution n(p). 

 

 

Bose-Einstein condensation  
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Bose-Einstein Condensation 
T>TB 0<T<TB T~0 

D. S. Durfee and W. Ketterle Optics Express 2, 299-313 (1998). 

ħ/L 
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Kinetic energy of helium atoms.  

J. Mayers, F. Albergamo, D. Timms  

Physica B 276 (2000) 811 
 

T.R. Sosnick, W.M Snow 

P.E. Sokol  

Phys Rev B 41 11185 (1989) 

3.5K 0.35K 

BEC in Liquid He4 

f =0.07 ±0.01 



55 

Interference between  

separately prepared condensates  

of ultra-cold atoms 

Quantised vortices in 4He and  

ultra-cold trapped gases 

http://cua.mit.edu/ketterle_group/ 

Macroscopic Quantum Effects 
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Superfluid helium becomes 

more ordered as the temperature 

Increases. Why? 
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Line width of excitations 

in superfluid helium is  

zero as T → 0. Why? 
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Basis of Lectures 

J. Mayers   J. Low. Temp. Phys     109 135   (1997) 

                                                                 109 153   (1997) 

 

J. Mayers    Phys. Rev. Lett.          80, 750   (1998) 

                                                                  84 314     (2000) 

            92 135302   (2004) 

 

J. Mayers,   Phys. Rev.B                 64 224521,     (2001) 

                                                                  74 014516,     (2006) 

 

J Mayers Phys Rev A          78 33618  (2008) 
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Quantum mechanical expression for n(p) in ground state 

What are implications of presence of  

peak of width ħ/L for properties of Ψ? 
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2
),( sr is pdf for N coordinates r,s 

2
)(rS is conditional pdf for r given N-1 coordinates s 

 1)(
2

rrS d

ΨS(r) is “conditional wave function” 

  rsrs dP
2

),()( is pdf for N-1 coordinates s 
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ħ/L 

What are implications of presence of  

peak of width ħ/L for properties of ψS? 
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Δp Δx ~ħ 

ψS(r) must be delocalised over length scales ~L 



Delocalized, 

 BEC 
Localized, No BEC 
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Feynman - Penrose - Onsager Model 

Ψ(r1,r2, rN) = 0  if |rn-rm| < a    a=hard core diameter of He atom 

 

Ψ(r1,r2, rN) = C   otherwise 
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f ~ 8% 

O. Penrose and L. Onsager  

Phys Rev 104 576 (1956)  

J. Mayers PRL 84 314, (2000) 

                 PRB64 224521,(2001) 

24  

atoms 

192 

atoms 

Periodic boundary conditions. 

Line is Gaussian with same  mean 

and standard deviation as 

simulation.   rrS d)(
Has same value for all 

possible s to within terms 

~1/√N 
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Macroscopic Single Particle Quantum Behaviour (MSPQB) 
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η(r) is macroscopic function. Hence MSPQB.  

 

Quantised vortices, NCRI, macroscopic density oscillations. 
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Gross-Pitaevski 

Equation 
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Schrödinger Equation (Phys Rev A 78 33618 2008) 
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Depends only upon 

 

(a) ψS(r) is delocalized function of r – must be so if BEC is present 

 

(b) ψS(r) has random structure over macroscopic length scales 

 – liquids and gases. 

 

NOT TRUE IN ABSENCE OF BEC, WHEN ψS(r) IS LOCALIZED 

Summary  T=0 

 

BEC implies ψS(r) is delocalized function of r  

non-zero over macroscopic length scales 

 

Delocalization implies integrals of functionals of ψS(r) over volumes 

containing NΩ atoms are the same for all s to within ~1/√N Ω 

 

Hence BEC implies MSPQB 
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Finite T 

At T=0 only ground state is occupied. 

  

Unique wave function Ψ0(r1,r2…rN) 

At Finite T many occupied N particle states 

 

Measured properties are average over occupied states 
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Delocalisation implies MSPQB 

ψS(r) for occupied states cannot be delocalized at T=TB 

Consider one such “typical” occupied state with wave function Ψ(r,s) 

But typical occupied state is delocalized as T→0 

 

MSPQB does not occur for T=TB 

 

Typical occupied state Ψ(r,s) must change  from localised  

to delocalised function as T is reduced below TB.  



75 

Delocalized  Localized 

),( rsD ),( rsL

),()(),()(),( rsrsrs LD TT  

α(T) =1 at T=0 α(T) =0 at T=TB 
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Two fluid behaviour 
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Flow of delocalised component is quantised 

 

No such requirement for flow of localised component 

Localised component is superfluid 

 

Delocalized component is normal fluid 



),()(),()(),( rsrsrs LD TT  

NTT LD /1~)()()()()(
22

 rrr 

)()(
2

TT S  )()(
2

TT N 

Superfluid fraction  Normal fluid fraction 



More generally true that 

 

in any integral of  Ψ(r1,r2…rN) over (r1,r2…rN) 

 

overlap between  ΨD and ΨL is ~1/√N 

E=ED +EL 

 

n(p)=nD(p)+nL (p) 

 

S(q,ω)=SD(q,ω)+SL(q,ω) 

 

S(q)=SD(q)+SL(q) 
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)()()( rrr LNDS EEE  

)()()( rrr LNDS PPP  

J. Mayers Phys. Rev. Lett.   

92 135302  (2004) 

)0(

)(



 T

      

      



85 

)0()()( fTTf s

)0(

)(

f

Tf

                      Superfluid fraction 
J. S. Brooks and R. J. Donnelly, J Phys. Chem. 

Ref. Data  6 51 (1977). 

 

Normalised condensate fraction 

o o  T. R. Sosnick,W.M.Snow and P.E. 

Sokol Europhys Lett 9 707 (1989). 

x x    H. R. Glyde, R.T. Azuah and W.G. 

Stirling  Phys. Rev. B  62 14337 (2000).  

J. Mayers Phys. Rev. Lett.   

92 135302  (2004) 

),(),( 0 rsrs D
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More spaces give smaller pair correlations 

)()()( 0 qqq LNS SSS  

As T increases, superfluid fraction increases, pair correlations reduce 



)()()( 0 qqq LNS SSS  

1)(

1)(
)(






qS

qS
T

B

T






SB-1 

ST -1 

)]0(1)[(1)(   TT S



α(T) 

V.F. Sears and E.C. Svensson,  

Phys. Rev. Lett. 43 2009 (1979).  
J. Mayers Phys. Rev. Lett.   

92 135302  (2004) 

α(0) 



Lattice model 

 

Fcc, bcc, sc all give same dependence on T as that observed 

 

Only true if N/V and diameter d  of He atoms is correct 

 

Change in d by 10% is enough to destroy agreement 

J. Mayers PRL 84 314, (2000) 

                 PRB64 224521,(2001) 

Seems unlikely that this is a coincidence 
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)()(),(
2

EEAS f

f

f   qq

  srsrrqsrq ddiNA ff ),().exp(),()( *

),()(),()(),( 0 rsrsrs LTT  

Identical particles 

),(),(),( 0  qqq LNS SSS 

Only S0 contributes to sharp peaks 
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Anderson and Stirling 

J. Phys Cond Matt (1994) 
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New prediction 

)()()( 0 rrr LNS  

)(0 r Has density oscillations identical to gnd state 

)(rL Has no density oscillations 

Measure density oscillations close to gnd state 

 

Measure superfluid fraction wD before release of traps 

 

Simple prediction of visibility of density oscillations 



Summary  

 
Most important physical properties of BE condensed 

systems can be understood quantitatively purely  

from the form of n(p) 

 

Non classical rotational inertia – persistent flow 

 

Quantised vortices 

 

Interference fringes between overlapping condensates 

 

Two fluid behaviour 

 

Anomalous behaviour of S(q) 

 

Anomalous behaviour of S(q,ω) 

 

Amomalous behaviour of density 



Lecture 4.  

 

What can we learn from a measurement 

 

of the momentum distribution n(p). 

 

 

Quantum fluids and solids  

Protons 
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Measurement of flow without viscosity in solid helium 

E. Kim and M. H. W. Chan 

Science 305 2004 
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can 

He4 

Focussed data  
Fitted widths on  

Individual detectors 
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liquid 

O single crystal high purity He4  

X polycrystal high purity He4 

□ 10ppm He3 polycrystal  

solid 

Focussed data after subtraction of 

can. Dotted line is resolution function 
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  T (K)           (101)               (002)                     (100)  

 

 0.115         2.759 (7)                                   3.1055 (300)        

  

 0.400         2.759 (7)                                   3.1055 (300)     

  

 0.150         2.758 (7)                                   3.1056 (300)     

  

 0.070         2.758 (7)                                   3.1055 (300)    

 

 0.075         2.758 (2)          2.934 (4)           3.131 (2)   

 

 0.075         2.757 (3)          2.940(3)            3.128 (2)  

Measured hcp lattice spacings 
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• No change in KE, no change in vacancy 
concentration through SS transition. 

• Implies SS transition quite different to SF 
transition in liquid. 

• Probably not BEC of atoms 

• What is cause?? 
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3He mean kinetic energy, EK  as a function of the molar volume:  

experimental values (solid circles),  

diffusion Monte- Carlo  values (open circles). 

self-consistent phonon method (dashed line). 
 

R. Senesi, C. Andreani, D. Colognesi, A. Cunsolo, M. Nardone,  

Phys. Rev. Lett. 86 4584 (2001) 

Kinetic Energy of He3 
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n(p) is the “diffraction pattern” of the wave function  

2

).exp()()(  rrprp din 

Measurements of protons 

101 
n(p) in Å-1 Position in Å 



If n(p) is known ψ(r) can be reconstructed in a model independent way  

In principle ψ(r) contains all the information which can be known about the 

microscopic physical behaviour of protons on very short time scales. 
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Potential can also be reconstructed  
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VESUVIO Measurements on 

Liquid H2 

J Mayers (PRL 71 1553 (1993) 
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2

).exp()()(  rdrpirpn



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Puzzle 

QM predicts R=bond length not ½ bond length 

Fit to data gives 

R=0.36  σ=5.70 

Spectroscopy gives 

R=0.37  σ=5.58 

R should be 0.74! 
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Red data H2 1991 

Black YAP 2008 
J(y) 

p2n(p) 
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R=0.37 

R=0.74 
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Heavy  

Atoms 

Single crystals 

H 
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Reconstruction of Momentum Distribution  
from Neutron Compton Profile 
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Spherical Harmonic 
Hermite polynomial 
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Laguerre  polynomial

an,l,m is Fitting coefficient
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Nafion 
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In press PRL (2010) 



Measurements of n(p)  give unique information 

 

on the quantum behaviour of protons in a wide 

 

range of systems of fundamental importance 


