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1 Introduction

In these lecture notes we intend to give a short introduction to the meth-
ods of computer simulation developed to study the physics of liquids [1, 2].
With the rapid evolution of the computational technology computer sim-
ulation has become, from a simple support to theoretical approaches and
experiments, a third methodology able to set up a complete phenomenology
of model systems. In statistical mechanics very few models can be exactly
solved. For many years this has been a limitation for the theoretical studies
of liquids, since the liquid state is too far from both the ideal gas and the
harmonic crystal [3]. To study liquids and different complex systems, like
amorphous solid, biological matter etc.. it is necessary to propose realistic
models that are too complex to be solved analytically without approxima-
tions. Numerical simulations can be used to perform virtual experiments
on different fluid models making possible to test their predictive abilities.
Moreover it is possible to reveal details on the behaviour of the systems that
are not easy to observe in experiments. In this way computer simulation has
given an essential contribution to the progress of the physics of liquids. In
the same period of time the experimentalists mainly with the development of
neutron scattering techniques have improved the accuracy of our knowledge
of the structure and particle dynamics of the liquid state.
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Of course one cannot forget that the systems studied in computer simu-
lation must be validated against experiments. In this respect neutron scat-
tering technique represent one of the best experimental methods to com-
pare with computer simulation. Neutron scattering on fluids is able to give
detailed information on the microscopic structure and the dynamical be-
haviour of liquids more than other techniques. We refer in particular to
systems containing hydrogens. From one side the results of neutron scatter-
ing experiments can be better interpreted with the support of simulation,
on the other side if experiments give a detailed phenomenology on the sys-
tems they can help to refine the model to use in simulations. So the mutual
interaction between neutron scattering techniques and computer simulation
methods plays a key role in the understanding the properties of molecular
substances.

We consider here two techniques of computer simulation. The first one
to be invented was the Monte Carlo (MC) method, developed during the
second world war at Los Alamos [4]. Sampling with random numbers were
implemented long time before, we recall the famous examples of the natural-
ist Buffon in the eighteenth century and the Italian mathematician Lazerini
in 1901. Fermi used random numbers to make predictions on nuclear fission
processes. Metropolis, an American physicist of Greek origin, collaborated
with von Neumann, Ulam and Fermi to improve the use of random sam-
pling for applications in statistical mechanics. The name of the method was
proposed by an uncle of Ulam, who was an experienced player of Casino
games. Metropolis after the war was able to build a computer called MA-
NIAC completely devoted to perform Monte Carlo simulations. The first
simulation on an hard disk fluid has been published in 1953 [5].

Some years later in 1957 Alder and Wainwright [6] invented a method,
called Molecular Dynamics (MD), based on the numerical solution of the
Newton equations for a large number of interacting particles. At variance
with Monte Carlo which is a stochastic method, Molecular Dynamics is de-
terministic and it is the only method able to study the dynamical behaviour
of the systems, as we will see later. The simulation of Alder and Wainwright
was done on a hard disk system. The first simulation on more a realistic
fluid is due to Rahman [7]. He studied with MD a Lennard-Jones liquid
(see below for the definition). Later in 1971 Rahman and Stillinger made
the first MD simulation of liquid water [8], already simulated with MC by
Barker and Watts [9]. For a complete account of the history of the computer
simulation methods we refer to the already cited textbooks [1, 2].
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2 Model the system of atoms for computer simu-
lation

2.1 Born-Oppenheimer approximation

We are interested in systems composed by a large number of atoms. If the
system contains N nuclei of charge Z with coordinates R = (R1, R2, ..., RN )
and M electrons with coordinates r = (r1, r2, ..., rM ) such that M = ZN its
Hamiltonian can be written as

H = KN (R) + Ke(r) + VeN (r,R) + VNN (R) + Vee(r) (1)

where K{...} are the kinetic energy operators and the V{...} are the inter-
action potential between the different particles. By assuming the Born-
Oppenheimer approximation the total wave function can be written as the
product

Ψ(r,R) ' χ(R) · φ (r, {R}) (2)

where now the coordinates R appear as fixed parameters in the electronic
problem. The approximation is based on the adiabatic decoupling of the slow
motion of the nuclei with respect to the fast dynamics of the electrons. The
problem becomes separated in two Schrödinger equations, for the electrons

[Ke(r) + VeN (r, {R}) + Vee(r)]φ (r, {R}) = Eel ({R}) φ (r, {R}) (3)

and for the nuclei

[KN (R) + VNN (R) + Eel(R)]χ(R) = Eχ(R) (4)

It is usual to consider Eq.(3) only for the valence electrons while the role of
the core electrons is to screen the nucleus. In the hamiltonian the coulombic
potential VeN is replaced with an effective interaction between the valence
electrons and a rigid ion (method of the pseudopotential [10]). In this way
the ion dynamics is determined by the time dependent Schrödinger equation



KI(R) +

∑

l

∑

k>l

ZlZke
2

Rkl
+ Eel(R)



 χ(R, t) = ih̄

∂χ

∂t
(5)

We can define the potential in which the ions move as

UBO(R) =
∑

l

∑

k>l

ZlZke
2

Rkl
+ Eel(R) (6)
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2.2 Classical approximation

Apart some anomalous case, like helium, all the systems in the fluid phases
can be treated in the classical approximation [3]. In the range of tempera-
tures and densities of fluids the thermal De Broglie wavelength

Λ =

√
h

2mπkBT
(7)

results to be
Λ ¿ a (8)

where a is the mean distance between the particles related to the density ρ

a =
(

1
4πρ

)1/3

(9)

2.3 Effective potentials

The potential to be used in computer simulation is generally approximated
with an empirical potential. To obtain UBO in fact it would require to solve
the problem of the electrons for each move of the ions. The usual way to
proceed in computer simulation of liquids is to assume that the electrons
are able to follow the motion of the ions and remain on the BO equilibrium
surface. Then the first step is to expand the BO potential in n-body terms

UBO(R) =
∑

i

∑

j>i

u(2)(Ri, Rj) +
∑

i

∑

j

∑

k

u(3)(Ri, Rj , Rk) + ... (10)

Since a two-body potential is more easy to use and less expensive from the
point of view of computation the second step consists in assuming a pair
potential based on empirical properties. The empirical potential contains
some parameters to be fitted. A typical and well known potential is the
Lennard-Jones (LJ), which is valid for describing noble gases in the fluid
phases

u(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

(11)

where ε and σ are parameters to determine by fitting empirical properties.
We note that the 6-power law in the attractive part comes from the quan-
tum mechanical calculations of the Van der Waals dipole-dipole attraction
between atoms. We have not time to go in more details, we only recall that
empirical potentials work well usually for closed shell atoms, like rare gases
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or simple ionic liquids. For other cases like silicon atoms different methods
of simulations have been developed and we will briefly consider this point
below (see beginning of Sec.3).

Empirical potentials are used also for many molecular fluids, for instance
water. In water the hydrogen bond formation can be well reproduced by
means of site potentials. The molecule is assumed, in the simplest approach,
to be rigid with the proper geometry of H2O. To model the intermolecular
interaction the oxygen and the two hydrogens of the molecule are replaced
with point fractional charges, two positive charges for the hydrogens and
a negative one for the oxygen. In some model the charge of the oxygen is
shifted with respect to the position of the atomic oxygen. The intermolecular
interaction is composed by coulombic potentials between the point charges
and a LJ potential between oxygens.

2.4 Basic methodology

The computer simulation is usually implemented by assuming a system of
N particles in a cubic box of length L and volume Ω = L3. Since N is
typically of the order of 100÷10000, very far from the thermodynamics limit,
to avoid surface effects, periodic boundary conditions (PBC) are applied in
the three directions. In particular cases the PBC can be relaxed in some
of the directions for simulating interfacial phenomena. In principle each
particle would interact with all the particles in the box and their images
in the periodic repetition of the box. Since the calculation of the forces
is particularly time consuming one assumes the so called minimum image
convention. A particle is considered at the center of a box of size L and
interacts only with the other particles or alternatively with their images that
are in this box. In this way the maximum range of the potential of each
particles is L/2. Sometimes if the potential is short ranged it is truncated
at a cut off rc ≤ L/2. The discontinuity of the potential at the cut off
does not give problems in MC. In the case of MD instead the discontinuity
can produce a spurious contribution to the forces so it is common to use a
truncated and shifted potential: u(r) becomes u(r) − u(rc) for r ≤ rc and
zero for r > rc [1, 2]. One must take into account in comparing different
simulation studies that the results could depend on the choice of rc. Long
range corrections can be applied to thermodynamical quantities to take into
account the truncation of the potential, as we will see below.

If the numerical procedure and the algorithms are correct the final results
of computer simulation must be independent from the starting conditions.
It is true however that at the beginning we have to place the particles in the
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simulation box and the configuration that we can produce is off equilibrium.
By running the simulation the system finally would reach an equilibrated
point of the phase space, if we are not far from ergodic conditions. It is
convenient to start with the particles placed in a crystalline phase since
they are sufficiently far apart. If two particles are very close the repulsion
between them can produce a large positive potential energy and a very large
kinetic energy. To dissipate such large energy contribution one would need
a very long equilibration run. To avoid this problem it is better to start
with a crystalline system and melt it at high temperatures.

2.5 Long range corrections

As said above it is usual in computer simulation to truncate the potential
to avoid very long computation. We can rewrite the potential as

U = UC + ULR (12)

where
UC =

∑

i

∑

j>i

u (rij < rc) (13)

and ULR is the long range term. Now we know from the theory of liquids
that the potential energy can be obtained from the pair correlation function
g(r)

U =
∫ ∞

0
2πρr2u(r)g(r)dr (14)

If we assume that g(r) = 1 for r > rc we can write a simple formula for the
long range correction in Eq.(12)

ULR ≈
∫ ∞

rc

2πρr2u(r)dr (15)

The long range corrections can be calculated once in the simulation program.
For simple form of the potential, like LJ, the integral in Eq.(15) can be
evaluated analytically.

When the potential is long range, like a coulombic term, the simple for-
mula (15) does not give the right estimation of the long range contributions.
Neglecting the long range corrections in a problem where the particles in-
teract with a coulombic potential could produce wrong results. One must
take into account the interaction of each particle with all the particles and
periodic images. In the case of a coulombic potential we have

U =
1
2

∑
n

N∑

i=1

N∑

j=1

ZiZj

|rij + nL| (16)
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where the sum over n = (nx, ny, nz) is the sum over all the periodic images,
for n = 0 the terms i = j must be avoided. The problem becomes similar
to the calculation of the potential energy of an ionic crystal and can be
treated with a similar method, called the Ewald sum method. A complete
discussion of the application of the Ewald sums to computer simulation can
be found in the textbooks [1, 2].

3 Molecular Dynamics Methods

The first method of simulation that we consider is Molecular Dynamics
(MD). The time evolution of the atoms can be calculated on the basis of the
Newton equations

Mr̈i = −∇iU(r1, ..., rN ) (17)

The potential to introduce in Eq.(17) is usually approximated with a
two-body effective potential. In recent years methods of first principles MD
have been developed, where the classical dynamics of the atoms is coupled
to a fictitious dynamics of electrons, in this way it is possible to avoid the
assumption of an empirical potential. The electronic problem is solved dur-
ing the evolution of the atomic dynamics, on the fly, in the framework of
density functional theory [11–13]. The description of this type of computer
simulation is however behind the scopes of the present lectures.

3.1 Molecular dynamics and statistical mechanics

If we consider system composed of N particles with an Hamiltonian

H(pN , rN ) = K(pN ) + U(rN ) (18)

the positions and the momenta of the system evolve in time according to
the equations

ṙi =
∂H

∂pi
ṗi = −∂H

∂ri
(19)

From the time evolution of (pN , rN ) it is possible to derive the time average
value of an observable A(pN , rN ) defined as

Ā = lim
τ→∞

1
τ

∫ τ

0
dtA

[
pN (t), rN (t)

]
(20)

Statistical mechanics is based on the ergodic hypothesis that the time aver-
age (20) is equivalent to the ensemble average

〈A〉ensemble = Ā (21)
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In MD the Eq.(19) are solved numerically. In the numerical procedure
the time variable is discretize by introducing a finite time step ∆t, in this
way t → tk = k∆t and the average is performed on a finite time τ = n∆t

(
Ā

)
MD ' 1

n

n∑

k=1

A
[
pN (tk), rN (tk)

]
(22)

In the presence of conservative forces the Hamiltonian is a conserved quan-
tity, so the total energy E = K + U is a constant. From the point of view
of statistical mechanics the averages realized in MD are equivalent to aver-
ages in the microcanonical ensemble, since the number of particles and the
volume are fixed and the energy is constant

(
Ā

)
MD ' 〈A〉microcan (23)

In the microcanonical ensemble the temperature fluctuates. In the absence
of external forces the total momentum is conserved.

3.2 Algorithms for the time evolution

In MD the time evolution of the system takes place along discrete time steps.
The trajectory of a particles is not the real one but in the single time step
we use a Taylor expansion

r(t + ∆t) = r(t) +
(

dr

dt

)

t
∆t +

1
2

(
d2r

dt2

)

t

∆t2 + ... (24)

where the derivatives are determined by the forces at time t. If the ex-
pansion, for instance, includes only second order terms it is equivalent to
assume a motion with constant acceleration during the time step. Of course
this approximation introduces deviations from the real trajectory at each
time step. Finally the system can be driven toward wrong directions in the
phase space. For this reason we must be very careful in implementing the
algorithms to solve the Newton equations on computers. A good algorithm
must satisfies at least the following conditions:

It must be simple and fast enough

It must give stable trajectories with enough long time step

The temporal evolution must be reversible

It must conserve energy (and momenta)
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The most used class of algorithms is called à la Verlet, since Verlet in
1967 proposed the first algorithm of this type [14]. We can write down the
approximate equations for a step forward and a step backward starting from
a time t as

r(t + ∆t) = r(t) + v(t)∆t +
1
2
a(t)∆t2

r(t−∆t) = r(t)− v(t)∆t +
1
2
a(t)∆t2

By summing both sides we get

r(t + ∆t) = −r(t−∆t) + 2r(t) + a(t)∆t2 (25)

the acceleration is obtained from the potential as

a(t)− 1
m
∇U

(
rN (t)

)
(26)

At each time step the velocity can be calculated as

v(t) =
r(t + ∆t) + r(t−∆t

2∆t
(27)

It can be shown that this simple algorithm satisfies all the conditions written
above with a time step that can be considered very long for MD, ∆t ' 10−15s
The Verlet formula has been very successful and has been used for long time,
since it requires a simple routine and a small amount of memory. The only
weak point is that the velocities are not calculated directly. Sometimes
more precise values for the velocities are required. With the development of
computers ram memory was not more a great problem and a modification
of the pure Verlet algorithm was proposed, it is called the velocity Verlet
algorithm:
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There are a number of other algorithms of this class, that we have not
time to describe here [1].

3.3 Temperature in the microcanonical ensemble

During the simulation the temperature can be obtained on the basis of the
equipartition of the energy from the kinetic energy (in D=3)

3
2
NkBT (t) =

1
2

∑

i

miv
2
i (28)

This is the instantaneous temperature. The average temperature can be
calculated from the average value of the kinetic energy

3
2
NkBT =

〈
1
2

∑

i

miv
2
i

〉
(29)

3.4 Equilibration procedure

If we want to study a system in the liquid phase it is convenient to start
with the particles in a crystal, as said above, and prepare the system at high
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Figure 1: MD:first equilibration

temperature. In this way after few steps, 1−10 picoseconds, the crystal melts
and we obtain a liquid. The initial temperature is fixed by assigning to the
particles velocities that are distributed according to the Maxwell-Boltzmann
distribution. Of course if one is interested in simulating a crystalline phase
the starting temperature has to be below the melting.

In the initial simulation run we can check the behaviour of various quan-
tities. In Fig.1 as an example it is shown an initial run for a system with a LJ
potential. Reduced units are used where the temperature is kBT/ε and the
density ρσ3 in terms of the LJ parameter in (11). The critical temperature
of this system is estimated around Tc ≈ 1.3.

It is important to note that the total energy remains constant while both
the kinetic and the potential energies relax in few time steps and oscillate
around an average value. Take in consideration that the fixed density and
the final temperature we want to reach, T = 0, 72, are in the region of the
stable liquid.

To drive the system from an initial Tin to a lower temperature T0 we
can use a velocity rescaling procedure. Every fixed number of time steps the
velocity of each particle is rescaled by a factor f =

√
T0/Tin so that

3
2
NkBT (t) =

1
2

∑

i

mi(vi/f)2 =
3
2
NkBT0 (30)
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Figure 2: Energies Figure 3: Temperature

In Fig.2-3 there are represented rescaling to intermediate temperatures
between Tin = 2.0 and T0 = 0.72. We can use intermediate temperatures
to make the procedure less drastic. We see that every time the rescaling is
done the energy is not conserved.

Finally, after we reached the final T , the system must be further equili-
brated by switching off the velocity rescaling. We can check the behaviour
of the various quantities. In particular we expect that the potential energy
and the kinetic energy (the temperature) oscillate around a constant average
value, see Fig.4

When the equilibration point is reached we can proceed to calculate
average values in the microcanonical ensemble and/or to study the structural
and dynamical properties of the liquid.

Apart for the energy also other thermodynamical quantities can be cal-
culated. For instance the pressure can be obtained by the virial theorem

PΩ = NkBT − 1
3

〈
N∑

i=1

ri · ∇iU

〉
(31)

Discussions about the use of this formula with PBC appear periodically in
the literature, an interesting general approach to the problem can be found
in a recent paper [15].

Also the radial distribution function g(r) can be easily obtained from the
configurations. If n(2)(r) is the average number of atom pairs in the range

12



Figure 4: MD: equilibrated system

(r, r + δr) and n(id)(r) is the equivalent quantity in an ideal gas

n(id)(r) =
4πρ

3

[
(r + δr)3 − r3

]
(32)

then
g(r) = n(2)(r)/n(id)(r) (33)

3.5 MD in different ensembles

The microcanonical ensemble could not be the most convenient for com-
paring with experiments. The study of dynamical properties, like diffusion
or relaxation phenomena, must be performed in this ensemble since the
Hamiltonian dynamical behaviour of the system must be reproduced. It
is a different story for the thermodynamical properties. Experiments are
frequently performed at constant pressure and temperature in the isobaric-
isothermal ensemble. On the other hand it could be sometimes more con-
venient to keep the temperature constant and obtain quantities averaged
in the canonical ensemble. In order to perform MD in ensemble different
from the microcanonical we need to use a generalized dynamics, which is not
more determined by a real Hamiltonian and does not satisfy the conserva-
tion rules of the Newtonian dynamics. In practice the system is considered
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at contact with a reservoir. System of particles and reservoir are an isolated
composed system which is microcanonical, instead the system of particles
could exchange energy with the reservoir to keep the temperature of the
liquid constant. To maintain the pressure constant we must relax the as-
sumption of a constant box of simulation. The volume of the box becomes
a variable which is determined by the coupling with the reservoir. In all
the cases when the system evolves with a non Hamiltonian dynamics the
trajectories of the particles are not realistic. There are still conservation law
but they concern the total system composed by the liquid and the reservoir.
To give an idea in the case a constant temperature MD, as formulated by
Nosè [16], the Hamiltonian is modified by introducing a degree of freedom
of the reservoir, called s

H̃ = K + U + Ks + Us (34)

where to the kinetic K and the potential U energy of the system it is added
a potential energy Us.

Us = (f + 1)kBT ln(s) (35)

where f is the number of degree of freedom of the system and a kinetic
energy of the thermal bath

Ks =
1
2
Qṡ (36)

where Q is a thermal inertia parameter.
There are a number of algorithms to perform isothermal-isobaric MD

simulations. To treat problems of phase transformations in solids it is pos-
sible to implements MD where the simulation box can be deformed, this
methodology was invented by Parrinello and Rahman [17].

4 Monte Carlo simulation

4.1 Monte Carlo integration and importance sampling

The Monte Carlo (MC) simulation method is based on the idea of calculating
the averages of statistical mechanics with the use of numerical integration.
The calculation of area or volume by using random numbers is an old idea
but nowadays the modern name, introduced by Metropolis, is used for a
number of numerical methods based on random numbers that are applied in
different field. We consider now how MC can be used for simple integration..
Suppose we have to integrate a function f(x) between a and b

F =
∫ b

a
f(x)dx (37)
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Figure 5: Importance sampling

there are a different methods to perform the numerical integration, one of
them, not the more convenient in D=1, is based on the use of the random
numbers that a computer can produce. These random numbers are uni-
formly distributed between 0 and 1. We can extract a series of random
number 0 < Ri < 1 with i = 1, ..., n and calculate (37) as

F ≈ (b− a)
1
n

n∑

i=1

f(xi) xi = a + (b− a)Ri (38)

Like any other numerical integration method also the simple MC could be
more or less successful depending on the behaviour of the function f(x).
Suppose that the function is as in Fig.5

The important region to sample is the one where the peak is present. In
this case the use of uniformly distributed random numbers could give bad
results. It would useful to introduce a weighted distribution to maximize the
sampling in the important region. This idea, introduced by Von Neumann,
is called importance sampling. We can add in the integral a distribution
p(x) appropriate for our problem, for instance the Gaussian in Fig.5

F =
∫ b

a

f(x)
p(x)

[p(x)dx] (39)
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where p(x) is normalized ∫ b

a
p(x)dx = 1 (40)

Now the integral can be calculated as

F ≈ (b− a)
1
n

n∑

i=1

f(xi

p(xi)
(41)

where the xi are distributed according to p(x). p(x) is built from the uniform
distribution of the random numbers obtained from the computer. At a first
sight it seems that the method can work if one knows very well the behaviour
of the function f(x). This could be a difficult task when we have to deal with
functions in multidimensional space. Von Neumann proposed a method to
guess the appropriate distribution function in more general cases. It is from
these ideas of Von Neumann that Metropolis invented his algorithm.

4.2 Integrals in statistical mechanics

Consider now the Boltzmann distribution in the canonical ensemble, if α =
(r1, ..., rN ; p1, ..., pN ) is a point in the phase space of our system its proba-
bility is given by

ρ [H(α)] =
e−H(α)/kBT

QN (T )
(42)

where H(α) = K(p) + U(r) and the partition function QN is

QN =
∑
α

e−H(α)/kBT (43)

In classical statistical mechanics if we want to average quantities which do
not depend on the momenta we can directly integrate (42) on the momenta.
Now the points in the phase space are given by the configurations α =
(r1, ..., rN ) and we can use the probability

ρ [U(α)] =
e−U(α)/kBT

Z(T )
(44)

where
Z =

∫
dΩe−U(α)/kBT (45)

The average value of an observable A(α) is obtained from

〈A〉 =
∫

dαA(α)ρ [U(α)] (46)

Is it possible to calculate the integral (46) with a numerical integration ?
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4.3 Importance sampling in statistical mechanics

If we want to perform the integral (46) with the important sampling MC
technique we have to introduce a distribution function

〈A〉 =
∫

dαA(α)ρ [U(α)] =
∫

dαA(α)ρ [U(α)]
p (α)
p (α)

(47)

that can be integrated numerically as

〈A〉 ≈ 1
n

n∑

k=1

A(αk)ρ [U(αk)]
1

p (αk)
(48)

Thought the integral (46) is multidimensional and the function cannot
be plotted down we can guess on the basis of statistical mechanics that the
most important region of integration has to be close to the average value
< A >. This is also the region more sampled by the Boltzmann distribution.
So it is reasonable to assume that

p (α) = ρ [U(α)] (49)

With this choice Eq.(48) becomes a very simple formula

〈A〉 ≈ 1
n

n∑

k=1

A(αk) (50)

Of course we can calculate the average values in the form (50) only if the
sequence of configurations {αk} is generated according to the Boltzmann dis-
tribution (49). The problem now is: how to generate the right configuration
sequence ?

4.4 Markov processes

Our system can stay at each time t in one of the states {α1, ..., αk, ...}. There
is a probability pk(t) that the system is in the state αk at time t, of course
this probability satisfies

pk ≥ 0
∑

k

pk = 1 (51)

We want to look at the way in which the system evolves in time. We define
the conditional probability that the system could be in a state αn at the
time tn if it was at tn−1 in αn−1, at tn−2 in αn−2 ...at t1 in α1

W (αn | αn−1, ..., α1) (52)
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In principle the evolution is determined from what happened before. But
we can restrict to Markov processes where

W (αn | αn−1, ..., α1) = W (αn | αn−1)·W (αn−1 | αn−2)·...W (α2 | α1) (53)

In a Markov process the evolution is determined only from what happened
at the preceding time step. So at each time step the system loses memory
of its previous evolution.

We can define the stochastic matrix whose elements are

Wij = W (αj | αi) (54)

It satisfies the properties

Wij ≥ 0 (55)∑

j

Wij = 1 (56)

The last condition is due to the fact that the system starting from a state
αi must arrives in one of the state αj .

With the use of the stochastic matrix we can determine how evolves in
time the probability pk defined above. It is easy to see that the probability
at a time t + ∆t can be derived from the one at time t with the equation

pk(t + ∆t) = pk(t)−∆t
∑

j

pkWkj + ∆t
∑

j

pjWjk (57)

In the continuous limit this becomes the so called master equation

dpk

dt
= −

∑

j

pkWkj +
∑

j

pjWjk (58)

An equilibrium distribution, as the Boltzmann distribution in statistical
mechanics, must satisfies

dpk

dt
= 0 (59)

4.5 Ergodicity and detailed balance

With the stochastic matrix W̃ we can generate from an initial probability
distribution a series of them. The probability distribution is given by the
row vector p = (p1, ..., pk, ...) If we start from p(0) we can generate

p(0) · W̃ = p(1) (60)
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This is equivalent to the equation
∑

j

p
(0)
j Wji = p

(1)
i (61)

then by applying again W̃ we can have

p(1) · W̃ = p(0) · W̃ 2 = p(2) (62)

more generally
p(0) · W̃n = p(n) (63)

Now we want to find a distribution p such that

p · W̃ = p (64)

A distribution which satisfies (64) is an equilibrium distribution since it is
invariant over transformation. The property of Eq.(64) can be obtained
only if the stochastic matrix W̃ has one non degenerate eigenvector with an
unitary eigenvalue.

We do not enter into the mathematical treatment, we only recall here
that the most important condition for W̃ is that it must be irreducible, i. e.
∀i, j must exist a finite m such that (Wm)ij > 0. It means that all the phase
space is reachable. From each point in the phase space the system can move
to another point without limitations. This is an alternative formulation of
the ergodic condition. Under this condition the Perron-Frobenius theorem
states that the stochastic matrix has one unitary eigenvalue and the corre-
sponding eigenvector is the limiting distribution of the Markov chain. In
this way the p is independent of the starting point.

A sufficient, not necessary, condition for the matrix to be irreducible is
that

pkWkj = pjWjk (65)

From the mathematical point of view it is easy to see that from Eq.(65) we
can write, by considering Eq.(56)

∑

k

pkWkj =
∑

k

pjWjk = pj (66)

The condition (65) is called the microscopic reversibility or detailed balance
condition. It is also easy to see that if we look at the master equation (58)
we get an equilibrium probability distribution, since Eq.(59) is satisfied.
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4.6 Metropolis method

We want that our probability distribution is given by

pk = e−βU(αk)/Z (67)

where β = 1/kBT . To satisfy the detailed balance, Eq.(65), it must be true
that

pk

pj
=

Wjk

Wkj
= e−β[U(αk)−U(αj)] (68)

Consider that the system goes from the state αj to the state αk, if we define

∆Ujk = U(αk)− U(αj) (69)

from Eq.(68) we get the condition

Wjk

Wkj
= e−β∆Ujk (70)

Now the Metropolis method is based on the following assumption

Wjk =





e−β∆Ujk if ∆Ujk > 0

1 if ∆Ujk < 0
(71)

It is easy to see that the transition probability Wjk from j to k given by
Eq.(71) satisfies Eq.(70).

• if ∆Ujk > 0 then ∆Ukj < 0 ⇒ Wjk = e−β∆Ujk and Wkj=1

• if ∆Ujk < 0 then ∆Ukj > 0 ⇒ Wjk = 1 and Wkj = eβ∆Ujk

in both cases Eq.(70) is fulfilled.
The Eq.(71) for the transition probability can be implemented on the

computer with the Metropolis algorithm. The system we consider is a fluid
composed of N atoms in a volume Ω at temperature T .
Metropolis Algorithm

• calculate the initial potential energy U1

• choose randomly an atom

• move the atom to a new random position

• calculate the new pot. energy U2 and ∆U = U2 − U1
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• calculate F = exp(−β∆U)

• extract a random number 0 < R < 1

• compare F with R

if F > R then accept the new configuration 2

else the system remains in the old configuration 1

• start again the procedure with a new atom

There is a simple physical interpretation of this algorithm that can be
inferred with the help of Fig.6.

If U2 < U1 → F > 1 ⇒ the move is accepted as expected since the system
goes in a state at lower energy.

If U2 > U1 the move is not rejected since the temperature is finite and
there fluctuations of the energy.

If the fluctuation is too large respect to kBT the move has an high
probability of being rejected. In this case |∆U | >> kBT and F
becomes very small so there is an high probability that F < R.

On the contrary if |∆U | ≤ kBT there is an high probability that
F > R.

Figure 6: Function for the accepting rule in MC
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4.7 Averaging on Monte Carlo steps

To study a fluid of many atoms with MC simulation we can use the proce-
dures described in Sec. 2. As in MD we can start from a lattice at high
temperature and after the melting equilibrate the system to a lower T . We
move the atoms according to the Metropolis algorithm. if the number of
atoms is large, as usual with the modern computers, we can try to move
each atoms starting from the number 1 to the number N , the so called
typewriter way of proceed. In details we can apply the algorithm in this
way

• FOR i = 1, N

• extract Rx, Ry, Rz

• shift the atom position:

x′ = x + ∆(2Rx − 1)
y′ = y + ∆(2Ry − 1) (72)
z′ = z + ∆(2Rz − 1)

• apply the Metropolis criterion to accept or reject the move

The parameter ∆ in (73) is the maximum allowed shift. It is easy to see
that if ∆ is very small almost all the moves will be accepted, while if ∆ is
too large almost all the moves will be rejected. ∆ is usually adjusted to give
an acceptance ratio of 50%.

The cycle on the N atoms is called a Monte Carlo step (MCS) and it is
assumed as a conventional unit for the time evolution of the system. It has
to be noted that when the system does not go in the new configuration it is
considered as it makes a transition to the old state. The thermodynamical
and the structural quantities can be calculated on averaging on the MCS.
We can the use, for example, Eq. 31 for the pressure and Eq. 33 for the
radial distribution function. Of course the averages are done now in the
canonical ensemble.

4.8 MC sampling in different ensembles

In MC simulation is easy to perform averages in ensembles different from
the canonical one. For instance if we want to study the system in the NPT

22



(isothermal-isobaric) ensemble, we can add to the algorithm another type
of move. It consists in changing the volume at constant pressure

Ω′ = Ω + ∆Ω(2R− 1) (73)

The Metropolis criterion can be applied now by considering not the potential
energy but the difference of the enthalpy after and before the change of
volume

∆H = U
(
Ω′

)− U (Ω) + p
(
Ω′ − Ω

)
(74)

where p is the pressure that we want to apply to the system.
The system can be also studied in the grand-canonical ensemble. In this

case Ω and T are kept fixed and we have to fix also a chemical potential µ.
Then we need moves able to add or remove particles from the system. This
can be done by adding to the Metropolis algorithm a move of the following
type

• choose randomly: remove or add a particle

• for removing: choose randomly a particle and try to remove it

• for adding: choose randomly a position in the box and try to insert
the new particle

In the acceptance criterion one has to consider that the quantity to look
before and after the removing/adding a particle is the potential

U − µN (75)

We have not time to give the details of the MC algorithm in these en-
semble and refer the reader to textbooks.

5 Final considerations

As said at the beginning these lecture notes are intended to give only a short
introduction to the vast field of computer simulation, so we did not consider
in details some important points.

We had not time for example to consider the methods used to simulate
fluids composed of molecules. Molecular systems consist of particles which
interact via intra and inter atomic forces. In practice one considers that the
intramolecular forces are much stronger than the intermolecular ones and
that the vibrational motions are very fast compared with the usual time
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step of simulation. So it is common to take the system as composed by
rigid molecules with fixed geometry. The motion becomes a combination of
the translational and rotational dynamics. In MD there are two types of
algorithms that are commonly used.

In the method of quaternions the center of mass moves according to the
algorithms previously described. The rotation of the atoms of the molecule
around the center of mass is realized by considering the equations of motions
for the Euler angles between an axis system fixed in space and one fixed
with respect to the body. Instead of the Euler angles it has been found
more convenient to use generalized coordinates, called quaternions, related
to the Euler angles and more easy to handle numerically [1, 2].

A second method is based on the use of dynamics constraints. Each
atom of the molecule moves according to the algorithms of the translational
motion, but constraints are added to the hamiltonian through Lagrangian
multipliers in order to preserve the geometry of the molecule [1, 2, 18].

In MC simulation rotational moves of rigid molecules must be added to
the translational ones.

Like in experiments also in MC and MD the quantities evaluated are
affected by errors. They are mainly due to the fact that averaging in statis-
tical mechanics is expected to be done on independent configurations. This
not rigorously true even in MC because we realize an approximate Markov
chain. Moreover the averages are performed on a finite time. Depending on
the type of problem and the region of the thermodynamical space we con-
sider, the errors could be more or less relevant. Another source of errors in
MC could be related to the random number generators. The routines usu-
ally found in modern computers are sometimes still not reliable for very long
runs. However accurate methods for determining the errors in equilibrated
averages have been developed and are implemented in normal computer
simulations.

MC and MD methods can be complementary. MD is the only method
to obtain a complete description of the dynamical properties. With enough
computer effort it is possible to calculate the time correlation functions
and the relaxation to equilibrium also in metastable states like undercooled
liquid. MD can be used to study problems of non equilibrium dynamics when
the system is under the effect of a perturbation and transport coefficients
can be calculated.

MC is sometimes preferred in the study of phase transitions since it is
more easy to implement simulations in ensemble like gran canonical where
interface effects at coexistence can be avoided. It has to take into account
however that the study of phase transitions, in particular of critical phe-
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nomena, would require a rigorous estimation of finite size effects, because
criticality is determined by the divergence of the correlation length. In fi-
nite size systems the correlation length cannot overcome the value of the
boxlength. In such cases the use of PBC is not enough to recover the lack
of thermodynamical limit.
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