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Tomography is a way to reconstruct images of 
object “cross“cross--sections”sections” (slices) from a set of 
beam attenuation measurements taken at many

A “Parallel Beam”“Parallel Beam”
radiation source 
“illuminates” the 
sample… 

A “Detector”Detector” measures the intensity 
of the transmitted beam…

different angles θι.



A number of measurements is collected at 
different angles θi (0 ≤ θi <π/2 or π) between 
sample and beam direction

From the obtained data it is 
possible to reconstruct the 
sample’s cross-sections that 
reveal its inner structure in 
a nonnon--destructive waydestructive way



How all this is made ?

Let’s consider a thin slice of our sample and a 
monochromaticmonochromatic radiation source 

Neglecting other effectsNeglecting other effects
(such as scattering, beam-
hardening etc.) the incident 
radiation intensity, I0, is 
tied to the transmitted 
(measured) intensity, Im, by 
the BeerBeer--Lambert lawLambert law:
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where μ(x,y) is the 
attenuationattenuation functionfunction



Let’s assume that the incident flux forms an angle, 
θ, with the reference axes

The ray passing through 
the point tt11 will be 
attenuated by the 
interaction with the 
sample and the 
measured intensity will 
be:
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From the measured values (in each detector row) we could 
calculate a signal proportional to the total attenuation of the 
radiation.
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the DiracDirac delta function

We call Parallel Projection,Parallel Projection,
taken at the angle θ, the 
quantity Pθ(t)
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that we may rewrite as:



The relation: ∫ ∫
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is called the 

“Radon TransformRadon Transform” 

of μ(x,y)
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In what follows we will 
need also its Fourier 
transform that is:



Let’s introduce F(u,v), the bidimensionalbidimensional Fourier Fourier 
transformtransform of μ(x,y),:

Assuming v=0 in the previous integral we have:
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This equation is the 
simplest form of the 
so called Fourier Slice Fourier Slice 
TheoremTheorem

Even if this equation has been obtained with θ=0 it 
should be clear that the object orientation is 
altogether arbitrary so we may state that [Kak85]:

Fourier Slice TheoremFourier Slice Theorem

“The Fourier Transform of a Parallel Projection of a 
function μ(x,y) taken at angle θ gives a slice of the 
two dimensional transform F(u,v), subtending an 
angle θ with the u-axis.”



With the Fourier slice theorem we have, in theory, a 
mean to reconstruct the μ(x,y), if we have a 
sufficient number of parallel projections at different 
θ.
In fact, Fourier transforming each projection we 
may obtain the values of the bidimensional Fourier 
transform, F(u,v) along the lines shown in the figure 
below.

By interpolating the complex 
values of the obtained F(u,v) in 
the u-v plane and by using the 
Inverse Fourier Transform we 
may obtain the searched μ(x,y):
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In practice other algorithms are employed in the 
current Tomography apparatus. One of the most 
often employed is the 

Recalling the inverse Fourier transform of μ(x,y)

We exchange the rectangular coordinate system 
(u,v) for a polar coordinate system (ρ,θ):
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““Parallel Beam Filtered Parallel Beam Filtered BackprojectionBackprojection””
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We may split the integral in a sum of two terms:

the first with θ ranging between 0 and π and the 
second with θ from π to 2π:
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that could be rewritten 
as:
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Now we have the fundamental bricks to reconstruct 
the given slice of our object:
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Compute Sθ(ρ)
from the measured 
projection, Pθ(t)

Filter Sθ(ρ) with 
the filter having 
transfer function 

|ρ|

“Backprojection” of 
Qθ(t)

Sθ (ρ) Qθ (xcosθ+ysinθ )



Many different aspects must be taken into account 
in order to apply the described algorithm in “real 
world” applications. Let’s enumerate some:

1) Signal detection (how to measure the Pθ(t) ?)

2) How to obtain the Fourier transforms needed by 
the algorithm ?

3) How to filter the Sθ(ρ) ?

4) How to perform the Backprojection step ?



Signal detectionSignal detection

The common way to detect the intensity of the 
transmitted neutron flux is to transform the 
transmitted neutrons in an optically detectable 
signal whose intensity is proportional to the 
incoming neutron flux.

There are many ways 
to obtain such a 
result.

A commonly used 
setup is shown on the 
right



Fourier transformsFourier transforms

Since the detectors give discrete images the 
common practice is to use FFT algorithms to 
calculate the required transforms.

So we need to pay attention to the correct 
sampling of the images in order to avoid ”aliasing” 
artifacts.

If the maximum spatial frequency present in the 
sample is Ω, then we have to sample the 
projections at spatial intervals ΔX such that 

Ω
≤Δ

2
1X



Neutron sources are not, usually, point-like sources; 
in fact they have a finite aperture (usually the 
dimension of the first diaphragm after the target).

This implies that the maximum spatial resolution is 
limited.

[ ]m
L
Dd l=

We may define the Geometrical Geometrical UnsharpnessUnsharpness as the 
diameter of the image produced by the projection 
of an object single point into the scintillator screen.



SSθθ((ρρ)) FilteringFiltering
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To calculate Qθ(t) we have to multiply SSθθ((ρρ)) by ||ρρ||.

This corresponds to a filtering operation that causes 
an enhancement of the higher frequency 
contributions present in SSθθ((ρρ))..
Often these contributions are mainly due to noise. . 

Furthermore the ||ρρ|| filter is not Band Limited causing 
problems when Discrete Fourier Transform is 
employed



Better results are obtained if different filters other 
than |ρ| are used.

Below we show the band limited version of some 
used filters.
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BackprojectionBackprojection

void

ParBackProj_LI(int N, float teta, float* Q, float * Image) {

float t, w;

int m;

for(int x=0; x<N; x++) {

for(int y=0; y<N; y++)  {

t = cos(teta)*x + sin(teta)*y;

m = int(t);

w = t - m;

Image[i*J+j] += (1-w)*Q[m] + w*Q[m+1];

}

} 

}

The most obvious way to perform the 
backprojection step is the “pixel driven” one.

For each pixel of 
the reconstructing 
image we look for 
the available 
nearest Qθ values.

This procedure 
must be repeated 
for each θ with

0≤θ<π



The complexity of the algorithm is O(N3) and 
dominates the total complexity of the Filtered 
Backprojection method.

Fast backprojection methods exist that reduce the 
complexity to O(N2 log N) but their study is beyond 
the scope of this lecture.



INES INSTALLATIONINES INSTALLATION

The neutron beam is
collimated to give a square
cross-section, of ~ 38mm 
size, at the INES sample
position.

Primary Flight Path
L = 22.8 m

Water moderator
size D ~ 10 cm



L. Bartoli, F. Aliotta, F. Grazzi, G. Salvato, C.S. Vasi, M. Zoppi
Nucl. Inst. and Meth. A (2008)
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Stepper Motor
1.8° o 0.9°/ Step

•L = 23.60 m

•D ~ 10 cm

L / D ~ 236

•l ~ 10 cm (Mean) sample-scintillator 

distance

L
Dd l=

INES INSTALLATIONINES INSTALLATION

Geometrical Unsharpness:

0.30 < d < 0.55 [mm]



••Camera Camera CCD notnot cooledcooled
The Imaging Source DMK 21BF04
640x480 - 8 bit

••OpticsOptics 8 mm, f: 1.4
Pentax C2514M(KP)

••ScintillatorScintillator ZnS / 6LiF on Al 
substrate (λ emission~520nm)

INES INSTALLATIONINES INSTALLATION



First Results at  INESFirst Results at  INES



In this talk we have only “scratched the surface” of 
the complex and very fascinating argument of 
neutron tomography.

Many very important aspects were left out but I hope 
at least to have stimulated your curiosity. 


