**Xth International school of neutron scattering Francesco Paolo Rice** 

# Detectors for neutron scattering

M. Tardocchi tardocchi@ifp.cnr.it

Istituto di Fisica del Plasma, EURATOM-ENEA Association, Milan, Italy



#### Nomenclature

| Category   | Energy                   | Temperature       | λ      |
|------------|--------------------------|-------------------|--------|
|            | [meV]                    | [ <b>K</b> ]      | [Å]    |
| Ultra-cold | < 0.1                    | < 1               | < 30   |
| Cold       | 0.1 – 10                 | 1 – 120           | 30 – 3 |
| Thermal    | 10– <mark>25</mark> -100 | 120 – 1000        | 3 – 1  |
| Epithermal | > 500                    | > 6000            | > 0.4  |
| Fast       | >~ 10 <sup>5</sup>       | > 10 <sup>6</sup> | >0.03  |

Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci

2

### **Neutron detection**



- What does it mean detecting a neutron ?
  - Need to produce some sort of measurable quantitative (countable) electrical signal
  - It is not possible to detect directly slow neutrons (they carrry to little energy). It can be done with fast neutrons
- Neutrons are non ionizing particles. They interact via nuclear force.
- Nuclear reactions needed to convert neutrons in charged secondary particles (n,α), (n,p), (n, fission), (n,γ)
- Cross sections  $\Sigma = N \cdot \sigma$ ;  $\Sigma_{tot} = \Sigma_{scatt} + \Sigma_{rad capt} + \dots$ ; neutron flux  $\Phi$  ( $n \cdot s^{-1} \cdot cm^{-2}$ )
- Typical charged particle detectors can be used:
  - Gaseous proportional counters & ionization chambers
  - Scintillation detectors
  - Semiconductors detectors
  - (n, $\gamma$ ) used in the Neutron Resonant Capture detector

Marco Tardocchi



#### **Schematics of nuclear reactions**

 $1 - \frac{2}{4}$  Energy conservation  $M_1 + M_2 + T_1 = M_3 + M_4 + T_3 + T_4$  (1)

1 **Elastic collision** (rest) mass and  $T_{kin}$  are conserved;  $M_1=M_2$ ;  $M_3=M_4$ 

2 Anelastic collision<sup>\*</sup> mass is conserved,  $T_{kin}$  is conserved

3 Nuclear reactions mass and  $T_{kin}$  are not conserved

 $Q = (M_1 + M_2) - (M_3 + M_4)$  (2) Q-value definition

•Condensed matter scientist use the term **anelastic** to mean reaction of type 1 when  $E_n$  initial  $\neq E_n$  final (exchange of  $E = \hbar \omega$  and  $Q = \hbar q$ )

Marco Tardocchi

# Schematics of nuclear reactions Consiglio Nazionale delle Ricerche



eq1 +2  $(T_3 + T_4) - T_1 = Q$ 

 $M_1 = M_3$ ,  $M_2 = M_4$  and Q = 0 Elastic reactions

$$\begin{split} M_1 &= M_3, \ M_2 &= M_4 \ and \ Q \neq 0 & \textbf{Anelastic reactions} \\ Q &< 0 \ Endhotermic & Mass is created from kin. \ energy \\ Q &> 0 \ Esothermic & Mass is transformed in \\ kinetic \ energy \\ M_1 &\neq M_3 \ or \ M_2 &\neq M_4 \ and \ Q \neq 0 & \textbf{Nuclear reactions} \end{split}$$

Marco Tardocchi

<sup>5</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci



#### Some nuclear reactions for neutron detection

- $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.764 \text{ MeV}$
- $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 \text{ MeV}$
- $n + {}^{10}B \rightarrow {}^{7}Li^* + {}^{4}He \rightarrow {}^{7}Li + {}^{4}He + 0.48 \text{ MeV } \gamma + 2.3 \text{ MeV } (93\%)$  $\rightarrow {}^{7}Li + {}^{4}He + 2.8 \text{ MeV } (7\%)$
- $n + {}^{155}Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum  $\rightarrow$  conversion electron spectrum
- $n + {}^{157}Gd \rightarrow Gd^* \rightarrow \gamma$ -ray spectrum  $\rightarrow$  conversion electron spectrum
- $n + {}^{235}U \rightarrow fission fragments + ~160 MeV$
- $n + {}^{239}Pu \rightarrow fission fragments + ~160 MeV$

#### **Detectors for slow neutrons**

Ideal dector: High detection efficiency (cross section) Large Q values Stop reaction products Immune to bakground (often γ rays)

 $E_{\text{kinetics}}$  of the products=Q +  $E_n$ =Q Products emitted back-to-back ( $P_{\text{init}} \sim 0$ )

 $\begin{cases} E_3 + E_4 = Q \\ m_3 v_3 + m_4 v_4 = 0 \end{cases} \dots \qquad E_{3,4} = \frac{m_{4,3}}{m_3 + m_4} \cdot Q$ 

Marco Tardocchi







#### **Reactions for slow neutron detection**

- n + <sup>10</sup>B (**a.i20%**)  $\rightarrow$  <sup>7</sup>Li\* +  $\alpha \rightarrow$  <sup>7</sup>Li +  $\alpha$  + 0.48 MeV  $\gamma$  + 2.3 MeV (93%) 3840 barns  $\rightarrow$  <sup>7</sup>Li + <sup>4</sup>He + 2.8 MeV (7%)
- $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.764 \text{ MeV}$

(expensive)

5330 barns

• n + <sup>6</sup>Li (a.i. 7%)→ <sup>4</sup>He + <sup>3</sup>H + **4.79 MeV** 

(resonance at 100keV)

940 barns



chool of neutron scattering F. P. Ricci

#### **Gas Detectors**

Ionization tracks in proportional counter gas

Heavy particle (M<sub>1</sub>) range Heavy particle (M<sub>1</sub>) range Neutron capture event Light particle (M<sub>2</sub>) range

Electrons drift toward the central anode wire. When they get close, they accelerate sufficiently between collisions with gas atoms to ionize the next atom. A *Townsend avalanche* occurs in which the number of electrons (and ions) increases the number many-fold, about x10<sup>3</sup>. Separation of these charges puts a charge on the detector, which is a low-capacitance capacitor, causing a pulse in the voltage that can be amplified and registered electronically.

Neutron

# Gas Detectors – operational modes

#### **Ionization Mode**

Electrons drift to anode, producing a charge pulse with no gas multiplication. Typically employed in low-efficiency beam-monitor detectors.

10

**Proportional Mode**: electron collisions ionize gas atoms producing even more electrons.

Gas amplification increases the collected charge proportional to the initial charge produced. Gas gains of up to a few thousand are possible, above which proportionalityis lost.







le

Proportional counters (PCs) come in a variety of different forms.

#### Simple detector

#### Linear position-sensitive detector (LPSD):

The anode is resistive, read out from both ends—the chargedistributes between the ends according to the position of the neutron capture event in the tube.

Usually cylindrical.

#### 2-D position-sensitive detector (MWPC).

Many parallel resistive wires extend across a large thick area of fill gas. Each wire operates either as in LPSD or without position. information as in a simple PC.

or

Two mutually perpendicular arrays of anode wires. Each is read separately as an LPSD to give two coordinates for the neutron capture event.

MWPCs usually have a planar configuration.

Marco Tardocchi 26.09.2010 Xth International school of neutron scattering F. P. Ricci

## **Gas proportional counter**





~25,000 ions and electrons produced per neutron



Marco Tardocchi

#### **BF**<sub>3</sub> detector response function



For large BF<sub>3</sub> detectors the secondaries are completely absorbe

Istituto

Consiglio Nazionale delle Ricerche

di Fisica del Plasma

"Piero Caldirola"

In small BF<sub>3</sub> wall effect is present

Range in BF<sub>3</sub>  $\alpha$ ~1cm @1ATM

26.09.2010 Xth International school of neutron scattering F. P. Ricci

13

## **Pulse Height Discrimination**





- Can set discriminator levels to reject undesired events (fast neutrons, gammas, electronic noise).
- Pulse-height discrimination can make a large improvement in background.
- Discrimination capabilities are an important criterion in the choice of detectors (<sup>3</sup>He gas detectors are very good).

#### **Reuter-Stokes LPSD**





26.09.2010 Xth International school of neutron scattering F. P. Ricci





<sup>16</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

#### **Multi-Wire Proportional Counter**





• Array of discrete detectors.



Remove walls to get multi-wire counter.

Marco Tardocchi







• Segment the cathode to get x-y position

Marco Tardocchi

<sup>18</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

#### **Brookhaven MWPCs**





Marco Tardocchi

<sup>19</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

## **Efficiency of Detectors**



Detectors rarely register all the incident neutrons. The ratio of the number registered to the number incident is the efficiency.

- Full expression:  $eff = 1 exp(-N \cdot sigma \cdot d)$ .
  - Approximate expression for low efficiency:

 $eff = N \cdot sigma \cdot d.$ 

• Here:

sigma = absorption cross-section (function of wavelength) N = number density of absorber

- d =thickness
- $N = 2.7 \times 10^{19} \text{ cm}^{-3} \text{ per atm}$  for a gas at 300 K.

For 1-cm thick <sup>3</sup>He at 1 atm and 1.8-Å neutrons,  $\varepsilon = 0.13$ .

For a real 3d detector geometry Monte Carlo codes are needed in order to calculated the detector efficiency,

Marco Tardocchi 26.09.2010 Xth International school of neutron scattering F. P. Ricci



Spatial resolution (how well the detector tells the location of an event) is always limited by the charged-particle range and by the range of neutrons in the fill gas, which depend on the pressure and composition of the fill gas.

And by the geometry:

Simple PCs:  $\delta z \sim$  diameter; 6 mm - 50 m*m*. LPSDs:  $\delta z \sim$  diameter,  $\delta y \sim$  diameter ; 6 mm - 50 mm. MWPC:  $\delta z$  and  $\delta y \sim$  wire spacing; 1 mm - 10 mm.



#### **Fission Counters**

Ionization chamber coated in its inner surface with fissile deposit. One of the two fission fragment can be detected. Very large Q value (180-200MeV)



With large thickness of fissile material deposition  $(UO_2)$  the fission fragments may lose a significant fraction of their energy in the material itself thus releasing less energy into the detector

Figure 14.7 Energy spectra of fission fragments emerging from flat UO<sub>2</sub> deposits of two different thicknesses. A 2π detector is assumed which responds to fragments emitted in all directions from one surface of the deposit. (From Kahn et al.<sup>36</sup>) Marco Tardocchi 26.09.2010 Xth International school of neutron scattering F. P. Ricci



#### **The fission reaction**

FIGURE 1: Three nuclear reations: one using naturally fissile U255 and two which breed fissile materials from U238 and Th288.



Marco Tardocchi

1

26.09.2010 Xth International school of neutron scattering F. P. Ricci





Marco Tardocchi

24

## **Scintillation Detectors**





Marco Tardocchi

### Some Common Scintillators for Neutron Consiglio Nazionale delle Ricerche

Intrinsic scintillators contain small concentrations of ions ("wave shifters") that shift the wavelength of the originally emitted light to the longer wavelength region easily sensed by photomultipliers.

ZnS(Ag) is the brightest scintillator known, an intrinsic scintillator that is mixed heterogeneously with converter material, usually Li<sup>6</sup>F in the "Stedman" recipe, to form scintillating composites. These are only semitransparent. But it is somewhat slow, decaying with ~ 10 µsec halftime.

GS-20 (glass,Ce<sup>3+</sup>) is mixed with a high concentration of Li<sub>2</sub>O in the melt to form a material transparent to light.

Li<sub>6</sub>Gd(BO<sub>3</sub>)<sub>3</sub> (Ce<sup>3+</sup>) (including <sup>158</sup>Gd and <sup>160</sup>Gd, <sup>6</sup>Li ,and <sup>11</sup>B), and <sup>6</sup>LiF(Eu) are intrinsic scintillators that contain high proportions of converter material and are typically transparent.

An efficient gamma ray detector with little sensitivity to neutrons, used in conjunction with neutron capture gamma-ray converters, is YAP (yttrium aluminum perovskite,  $YAI_2O_3(Ce^{3+})$ ).

Marco Tardocchi 26.09.2010 Xth International school of neutron scattering F. P. Ricci

# Some Common Scintillators for Neutron Consiglio Nazionale delle Ricerche

| Material                                             | Density of<br><sup>6</sup> Li atoms<br>(cm <sup>-3)</sup> | Scintillation<br>efficiency | Photon<br>wavelength<br>(nm) | Photons<br>per neutron  |
|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|------------------------------|-------------------------|
| Li glass (Ce)                                        | 1.75x10 <sup>22</sup>                                     | 0.45 %                      | 395 nm                       | ~7,000                  |
| Lil (Eu)                                             | 1.83x10 <sup>22</sup>                                     | 2.8 %                       | 470                          | ~51,000                 |
| ZnS (Ag) - LiF                                       | 1.18x10 <sup>22</sup>                                     | 9.2 %                       | 450                          | ~160,000                |
| Li <sub>6</sub> Gd(BO <sub>3</sub> ) <sub>3</sub> (C | e), 3.3x10 <sup>22</sup>                                  |                             | ~ 400                        | ~40,000                 |
| YAP                                                  |                                                           |                             | 350                          | ~18,000<br>per MeV gamr |

Marco Tardocchi

#### **GEM Detector Module (at ISIS)**







Marco Tardocchi



#### Hamamatsu Multicathode Photomultiplier

Compact photomultipliers are essential components of scintillation area detectors. The figure shows a recently developed multicathode photomultiplier, Hamamatsu model 8500.



#### 256 ch Focusing Type

#### 64 ch Focusing Type

Marco Tardocchi

## Istituto di Fisica del Plasma **Principle of Crossed-Fiber** "Piero Caldirola" Consiglio Nazionale delle Ricerche **Position-Sensitive Scintillation Detector** Outputs to multi-anode photomultiplier tube 1-mm-square wavelength--shifting fibers Outputs to coincidence-encoded Scintillator screen single-anode photomultiplier tubes

30

Marco Tardocchi

## **16-element WAND Prototype Schematic and Results**





<sup>31</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci



#### **Crossed-Fiber Scintillation**

#### **Detector Design Parameters (ORNL I&C)**

- Size: 25-cm x 25-cm.
- Thickness: 2-mm.
- Number of fibers: 48 for each axis.
- Multi-anode photomultiplier tube: Phillips XP1704.
- Coincidence tube: Hamamastu 1924.
- Resolution: < 5 mm.</li>
- Shaping time: 300 nsec.
- Counting-rate capability: ~ 1 MHz.
- Time-of-flight resolution: 1 μsec.

## **SNS 2-D Scintillation Detector Module**



## Shows scintillator plate with all fibers installed and connected to multi-anode photomultiplier mount.

Marco Tardocchi

<sup>33</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

Istituto

Consiglio Nazionale delle Ricerche

di Fisica del Plasma

"Piero Caldirola"

#### **Neutron Scattering from Germanium Crystal Using** Consiglio Nazionale delle Ricerche **Crossed-Fiber Detector**

- Normalized scattering from 1-cm-high germanium crystal.
- E<sub>n</sub> ~ 0.056 eV.
- Detector 50 cm from crystal.



Istituto

di Fisica del Plasma

"Piero Caldirola"

Marco Tardocchi

#### **Neutron Detector Screen Design**



The scintillator screen for this 2-D detector consists of a mixture of <sup>6</sup>LiF and silver-activated ZnS powder in an optical grade epoxy binder. Neutrons incident on the screen react with the <sup>6</sup>Li to produce a triton and an alpha particle. These charged particles passing through the ZnS(Ag) cause it to emit light at a wavelength of approximately 450 nm. The 450nm photons are absorbed in the wavelength-shifting fibers where they convert to 520-nm photons, some of which travel toward the ends of the fibers guided by critical internal reflection. The optimum mass ratio of <sup>6</sup>LiF:ZnS(Ag) is about 1:3.

The screen is made by mixing the powders with uncured epoxy and pouring the mix into a mold. The powder settles to the bottom of the mold before the binder cures. The clear epoxy above the settled powder mix is machined away. The mixture of 40 mg/cm<sup>2</sup> of <sup>6</sup>LiF and 120 mg/cm<sup>2</sup> of ZnS(Ag) used in this screen provides a measured neutron conversion efficiency of over 90% for 1.8 Å neutrons.

Marco Tardocchi

#### **Spatial Resolution of Area Scintillation Detectors**



The spatial resolution accomplishable in SDs is typically better than in gas detectors. The range of neutrons is less. The range of ionizing particles is less in solid materials than in gases.

However, the localization of the light source (an optical process) imposes the limit on position resolution. This in turn depends statistically on the number of photons produced in the scintillator (more is better, of course).

36


### **Semiconductors detectors**



Marco Tardocchi

<sup>37</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

#### Coating with Neutron Absorber-Surface-<sup>di Fisica del Plasma</sup> "Piero Caldirola" Consiglio Nazionale delle Ricerche

Istituto



 Layer (<sup>6</sup>Li or <sup>10</sup>B) must be thin (a few microns) for charged particles to reach the detector.

Detection efficiency is low.

Most of the deposited energy doesn't reach detector.

- Poor pulse-height discrimination Marco Tardocchi 26.09.2010 Xth International school of neutron scattering F. P. Ricci

## **Semiconductor Detectors**



- ~1.5  $\times 10^{6}$  holes and electrons produced per neutron
- (large number comapre to scintilator and gas detectors)
- The detector acts as a capacitor. The ionization partially discharges the capacitor and can be detected directly without further amplification.
  - However, standard device semiconductors do not contain enough neutron-absorbing nuclei to give reasonable neutron detection efficiency. Options:

i) *Put neutron absorber on surface of semiconductor? These exist and are called* surface barrier detectors.

*ii)* Develop, for example, boron phosphide semiconductor devices? This is a challenge for future development.

### **Epithermal neutrons from spallation sources**

a del Plasma Caldirola" Ielle Ricerche

1-414-4-





## The Time of flight technique



Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci

## Time of flight neutron spectroscop di Fisica del Plasma "Piero Caldirola"

Istituto

## in inverted geometry



Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci

## Total Cross Section of Tantalum siglio Nazionale delle Ricerche

Tantalum is essentially monoisotopic <sup>181</sup>Ta and is used as a neutron converter sensitive to energies near 4.28 eV.



Istituto

Marco Tardocchi

<sup>43</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

## Neutron detection techniques for epithermal neutrons







TOF spectra for FD (neutron detector) and RD ( $\gamma$  detector) Consiglio Nazionale delle Ricerche



Pb sample U foil

Marco Tardocchi

<sup>45</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci



#### Two step process

- i) Neutron absorption and conversion trough  $(n,\gamma)$  reaction
- ii) **Detection** of the emitted prompt gammas

#### RD properties

- -The absorbing resonance fixes the final neutron energy
- -Neutron conversion controls mainly the energy resolution ( $\Delta E/E$ )
- -Ability to detect gammas controls the *signal to background ratio* (S/B)

#### Advantages over Li-glass detectors

- •no principle need for background subtraction
- •no 1/v decrease of the detection efficiency:
  - i) detection efficiency not dependent on the neutron energy
  - ii) high efficiency for epithermal neutrons (10-100 eV) Marco Tardocchi 26.09.2010 Xth International school of neutron scattering F. P. Ricci



### Choice of the resonant element siglio Nazionale delle

#### Neutron absorbing resonance

$$\sigma(E) = \frac{\sigma_0}{1 + 4(E - E_0)^2 / \Gamma^2}$$

(Breit Wigner)

- **E**<sub>0</sub> neutron resonance energy
- $\sigma_0$  peak cross section (at E=E<sub>0</sub>)

 $\Gamma$  (FWHM) intrinsic resonance width

#### Criteria for resonant elements

- Resonance energy:  $E_0=10-100 \text{ eV}$
- Isolated resonance (to avoid overlapping with other resonances) •High cross section (high conversion efficiency)  $\Rightarrow \sigma_0 = 10^4 - 10^5 \text{ b}$

Marco Tardocchi



Narrow resonance (low ΔE/E)
⇒ Γ~ 100 meV
⇒ Δ~ 100 meV (Thermal Doppler broadening)

•Foil thickness

Compromise between neutron absorption probability,  $P(E_n)$ , and  $\Delta E/E$ 

$$P(E_n) = 1 - exp(-N_d \cdot \sigma) \qquad N_d = \rho \cdot t$$

 $\Rightarrow N_d \cdot \sigma_0 = 1$ 

•High yield of low energy gammas (10-300 keV)  $\Rightarrow$  choice of suitable detector

<u>Other desiderable features:</u> high isotopic abundance, exist as metallic or oxide, low gamma self-absorption

Marco Tardocchi

### **Best Isotopes**



|                                 | i.a. | density    | E <sub>0</sub> | $\sigma_0$ | Γ     | Δ (T=295 K) | Δ (T=75 K) |  |
|---------------------------------|------|------------|----------------|------------|-------|-------------|------------|--|
|                                 | (%)  | $(g/cm^3)$ | (eV)           | (barn)     | (meV) | (meV)       | (meV)      |  |
| <sup>139</sup> La <sub>57</sub> | 99.9 | 6.1        | 72.2           | 5969       | 96.0  | 231         | 125        |  |
| <sup>150</sup> Sm <sub>62</sub> | 7.4  | 7.4        | 20.7           | 56207      | 109.0 | 119         | 66         |  |
| $^{238}U_{92}$                  | 99.3 | 18.9       | 6.7            | 23564      | 25.0  | 54          | 31         |  |
|                                 | "    | "          | 20.9           | 37966      | 34.0  | 96          | 55         |  |
|                                 | "    | "          | 36.7           | 42228      | 57.0  | 127         | 73         |  |
|                                 | "    | "          | 66.0           | 20134      | 48.0  | 170         | 98         |  |

**Gamma yield** (absolute) exists for thermal neutron capture, but incomplete database for resonant neutron capture

| Mai <b>l59 Sm</b> locchi                | 12 %<br>654609.2010 | 49<br>Xth <b>Born</b> ational sch | hool of <b>h34tree v</b> cattering F. | P. Ricci |
|-----------------------------------------|---------------------|-----------------------------------|---------------------------------------|----------|
| 15 /(                                   | 10.0/               |                                   | 60 keV                                |          |
| 13 %                                    | 288 keV             | 9 %                               | 48 keV                                |          |
| <sup>139</sup> La <sub>57</sub><br>32.% | 218 keV             | 9 % 238U                          | J <sub>92</sub> 12 keV                |          |



#### Suitable isotopes for eV neutron energy selection

|    | % isot. | Ζ  | А   | densita' | N         | Eris  | σ0     | $\sigma$ eff a 295K | λn    | d*5*5*λ n | $\sigma$ eff a 75K |
|----|---------|----|-----|----------|-----------|-------|--------|---------------------|-------|-----------|--------------------|
|    |         |    |     | g/cm^3   | atom/cm^3 | eV    | barn   | barn                | μm    | g         | barn               |
| In | 4,3     | 49 | 113 | 7,3      | 3,9E+22   | 14,6  | 9965   | 3837                | 66,9  | 1,223     | 5791               |
| La | 99,9    | 57 | 139 | 6,1      | 2,7E+22   | 72,2  | 5969   | 1762                | 213,2 | 3,275     | 2769               |
| Sm | 7,4     | 62 | 150 | 7,4      | 3,0E+22   | 20,7  | 56207  | 29108               | 11,6  | 0,214     | 39486              |
| Gd | 20,6    | 64 | 156 | 7,9      | 3,0E+22   | 33,2  | 11078  | 4854                | 67,5  | 1,334     | 6811               |
| Dy | 2,3     | 66 | 160 | 8,5      | 3,2E+22   | 10,5  | 19229  | 12179               | 25,5  | 0,545     | 15214              |
|    | 2,3     | 66 | 160 | 8,5      | 3,2E+22   | 20,5  | 16165  | 9188                | 33,9  | 0,723     | 11923              |
| Er | 27,1    | 68 | 168 | 8,5      | 3,1E+22   | 79,7  | 11203  | 4096                | 79,8  | 1,703     | 5993               |
|    | 14,9    | 68 | 170 | 8,5      | 3,0E+22   | 95,0  | 26393  | 23711               | 13,9  | 0,298     | 25396              |
| Hf | 0,2     | 72 | 174 | 13,3     | 4,6E+22   | 70,0  |        |                     |       |           |                    |
|    | 5,2     | 72 | 176 | 13,3     | 4,5E+22   | 48,0  | 36842  | 21132               | 10,4  | 0,346     | 26852              |
|    | 5,2     | 72 | 176 | 13,3     | 4,5E+22   | 68,0  |        |                     |       |           |                    |
|    | 27,1    | 72 | 178 | 13,3     | 4,5E+22   | 7,8   | 153848 | 107369              | 2,1   | 0,069     | 127948             |
|    | 35,2    | 72 | 180 | 13,3     | 4,4E+22   | 72,6  | 16838  | 6136                | 36,7  | 1,218     | 8657               |
| W  | 26,3    | 74 | 182 | 19,3     | 6,4E+22   | 4,2   | 18828  | 10209               | 15,3  | 0,740     | 12354              |
|    | 26,3    | 74 | 182 | 19,3     | 6,4E+22   | 21,1  | 46877  | 24395               | 6,4   | 0,310     | 29749              |
|    | 26,3    | 74 | 182 | 19,3     | 6,4E+22   | 115,0 |        |                     |       |           |                    |
| Os | 1,6     | 76 | 187 | 22,6     | 7,3E+22   | 12,7  | 16672  | 9563                | 14,4  | 0,812     | 11063              |
|    | 26,4    | 76 | 190 | 22,6     | 7,2E+22   | 91,6  | 6777   | 2121                | 65,9  | 3,719     | 2625               |
| U  | 100,0   | 92 | 238 | 18,9     | 4,8E+22   | 6,7   | 23564  | 7570                | 27,6  | 1,305     | 11250              |
| U  | 100,0   | 92 | 238 | 18,9     | 4,8E+22   | 20,9  | 37966  | 9864                | 21,2  | 1,002     | 15119              |
| U  | 100,0   | 92 | 238 | 18,9     | 4,8E+22   | 36,7  | 42228  | 13363               | 15,6  | 0,739     | 19913              |
| U  | 100,0   | 92 | 238 | 18,9     | 4,8E+22   | 66,0  | 20134  | 4357                | 48,0  | 2,268     | 6813               |

Marco Tardocchi

<sup>50</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci



#### Energy and relative intensities of $\gamma$ -rays



Marco Tardocchi

<sup>51</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci



## Suitable $\gamma$ detectors for the RDS

#### **Scintillators**

- 1) NaI(Tl): good efficiency and energy resolution for MeV gamam ray. High sensitivity to neutron backgorund (need of shielding).
- 2) YAP: good efficieny and moderate energy resolution. Low sensitivity to neutron backgoround

#### **Solid Sate**

- 1) HpGe: excellente energy resoltuion, adequate efficienct . Radiation damange. Need to operate at cold temperature (77k)
- Silicum: good for x-ray and low energy γ ray. Requires some cooling. Radiation damage
- **3)** CdZnTe (CZT): Good efficiency and high energy resolution. Operate at room temperare. small areas.

Marco Tardocchi

**YAP detector** 







Istituto

## **Fast neutrons detection**

- ·Spherical dosimeters
- •Scintillators
- <sup>3</sup>He proportional counters
- •Proton Recoil Telescope
- •Activation threshold targets
- •Bonner Sphere
- •TFBC
- •Diamond detectors

Marco Tardocchi

### Fast neutron flux on VESUVIO (at ISIS)





Measured with activation targets

**Enormous energy range 1-800 MeV!** 

Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci



Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci

## **Principle of operation**





From the measured activity on the sensor after a period of irradiation the neutron flux at the selected energy range is found Extending measurements above 20 MeV



## Modified Bonner Spheres by including metal inserts to allow for n(x,n) reactions to occur



marco taraoceni

20.09.2010 An International school of neutron scattering T. T. Ricci

#### **Response Functions of Bonner Spheres**

Marco Tardocchi





The very broad response function means that complicated deconvolution codes are needed to infer the incoming neutron spectrum from the mesaurement,

26.09.2010 Xth<sup>59</sup>International school of neutron scattering F. P. Ricci

#### **Thin Film Breakdown Counter**



Schematic of a TFBC and the principle of its operation: an incident fission fragment produces an electrical breakdown in the  $SiO_2$  layer. Micro-photographs of electrical breakdowns in MOS-capacitor made in reflect light



Marco Tardocchi

Si (0.3 mm) -



Neutron Energy [MeV]



**Neutron ToF spectra** 

Marco Tardocchi

<sup>62</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci

#### Diamond detector grown by Chemical Vapor <sup>Istituto</sup> di Fisica del Plasma "Piero Caldirola" Consiglio Nazionale delle Ricerche









<sup>20.07.2010</sup> Am miernanonai school of neurion scattering 1.1. Nicci



#### **TOF SPECTRA FROM DIAMOND**

letituto







# END

Marco Tardocchi

<sup>69</sup> 26.09.2010 Xth International school of neutron scattering F. P. Ricci



## **Spherical dosimeters**



Figure 15.5 A spherical neutron dosimeter based on a <sup>3</sup>He neutron detector. (From Leake.<sup>14</sup>)



Figure 15.2 The energy dependence of the relative detection efficiencies of Brinner sphere neutron detectors of various diameters up to 12 inches. (From Johnson et al.<sup>2</sup>)

Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci



## <sup>6</sup>Li-glass scintillators



The use of coincidence produces a lowering in the efficiency with increasing neutron energy  $(E_n \ge Q$ -value of the reaction)

Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci



## **Some characteristics**

|                                   | NE902   | NE905   | NE908   | NE912   |
|-----------------------------------|---------|---------|---------|---------|
| <b>D</b> (gr/cm <sup>3</sup> )    | 2.6     | 2.48    | 2.674   | 2.55    |
| n                                 | 1.58    | 1.55    | 1.57    | 1.55    |
| T <sub>fusione</sub> (°C)         | 1200    | 1200    | 1200    | 1200    |
| $\lambda_{\sf max}$ (nm)          | 395     | 395     | 395     | 397     |
| Light emission<br>(rel.antracene) | 22-34%  | 20-30%  | 20%     | 25%     |
| Decay time (ns)                   | 75      | 100     | 75      | 75      |
| Arr. <sup>6</sup> Li              | 95%     | 95%     | 95%     | 95%     |
| Activity $\alpha$ (/min)          | 100-200 | 100-200 | 100-200 | 10      |
| ΔE/E                              | 13-22 % | 15-28 % | 20-30 % | 20-30 % |

Marco Tardocchi

Xth International school of neutron scattering F. P. Ricci 26.09.2010

72


# <sup>3</sup>He proportional counters



Figure 15.11 Differential energy spectrum of charged particles expected from fast neutrons incident on a  ${}^{3}$ He detector.

Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci



### **Proton Recoil Telescope**



Marco Tardocchi

26.09.2010 Xth International school of neutron scattering F. P. Ricci



# **Activation threshold technique**



A target of a proper material is irradiated with a neutron beam and after an irradiation time  $\Delta t$  is removed from the beam and the induced activity is measured

26.09.2010 Xth International school of neutron scattering F. P. Ricci



### Some examples

| Material | Reaction                                  | Ab.ls.(%) | H.L      | Εγ    | Treshold (MeV) |
|----------|-------------------------------------------|-----------|----------|-------|----------------|
| F        | <sup>19</sup> F(n,2n) <sup>18</sup> F     | 100       | 109.7min | 0.511 | 11.6           |
| Mg       | <sup>24</sup> Mg(n,p) <sup>24</sup> Na    | 78.7      | 15.0 h   | 1.368 | 6.0            |
| AI       | <sup>27</sup> Al(n,α) <sup>24</sup> Na    | 100       | 15.0 h   | 1.368 | 4.9            |
| Fe       | <sup>56</sup> Fe(n,p) <sup>56</sup> Mn    | 91.7      | 2.56 h   | 0.84  | 4.9            |
| Со       | <sup>59</sup> Co(n,α) <sup>56</sup> Mn    | 100       | 2.56 h   | 0.84  | 5.2            |
| Ni       | <sup>58</sup> Ni(n,2n) <sup>57</sup> Ni   | 67.9      | 36.0 h   | 1.37  | 13.0           |
| Cu       | <sup>65</sup> Cu(n,2n) <sup>64</sup> Cu   | 69.1      | 9.8 min  | 0.511 | 11.9           |
| Zn       | <sup>64</sup> Zn(n,p) <sup>64</sup> Cu    | 48.8      | 12.7 h   | 0.511 | 2.0            |
| In       | <sup>115</sup> In(n,n') <sup>126</sup> In | 95.7      | 4.5 h    | 0.335 | 0.5            |
| I        | <sup>127</sup> I(n,2n) <sup>126</sup> I   | 100       | 13.0 d   | 0.667 | 9.3            |

Marco Tardocchi

Xth International school of neutron scattering F. P. Ricci 26.09.2010

76

# **Micro-Strip Gas Counter**





#### **Electrodes** printed lithographically, producing small features. Implies

- High spatial resolution.
- High field gradients.
- Charge localization.
- Fast recovery.



Marco Tardocchi

Xth International school of neutron scattering F. P. Ricci 26.09.2010