IX-th school of neutron scattering "Francesco Paolo Ricci" Application of neutrons to structural determination in soft matter

Neutron production and basic instrument components

Marco Zoppi Consiglio Nazionale delle Ricerche

Summary:

Neutron production

Modern neutron sources

Instrument components

Neutron production

Natural radiative sources

Fission reactors

Particle accelerator driven sources

The Radium-Beryllium source

5

The Antimony-Beryllium source

Modern neutron sources

Nuclear fusion sources

Fission reactor sources

Particle accelerator driven sources

Neutron production by fission

Bullet:

- slow neutron
- Target:
 - ◆ ²³⁵U
- Nuclear reaction product
 - ◆ ²³⁶U (unstable)
- **Fission products:**
 - · 2 light nuclei
 - · 2-3 fast neutrons

slow neutron

fission of the excited nucleus

chain reaction triggered by moderated neutrons

Energy spectrum of a reactor

fission neutrons: (E > 500 KeV)

epithermal neutrons: (200 meV<E<500 KeV)

thermal neutrons: (E < 200 meV)

Resulting spectrum:

$$\Phi(E)dE = \Phi_{fast} \exp\{-E\}\sinh(2E)^{1/2}dE$$

$$\Phi(E)dE = \Phi_{epith} dE/E$$

$$\Phi(E)dE = \Phi_{therm} \frac{E}{k_B T} \exp\left\{-\frac{E}{k_B T}\right\} dE$$

11

Reactor spectrum: observed

Example -1: ILL reactor(58 MW)

4.3 x 10¹⁸ neutrons / s (from fission)

A view of the reactor pool

Blue light: Cerenkov radiation

ILL: instruments map

Example -2: FRM II reactor (20 MW)

1.5 10¹⁸ neutrons / s (from fission)

Portable neutron source

Source dimensions:
diameter: 35 - 130 mm
length: 450 - 1000 mm

- neutron output: 10⁸ 10¹⁰ n/s
- pulse width: 1 100 ms
- pulse frequency: 1 100 Hz
- life time: 100 500 hours

Particle-accelerators driven sources (2)

2-Bremsstrahlung from electron-beam (LISONE@Frascati)

electronic gun

LINAC 136 MeV (~40 m) _{235U target} neutrons

 $e^- \rightarrow \gamma_{bremsstrahlung} \rightarrow (\gamma, n) \rightarrow (\gamma, fission)$

Advantages:

•Full control on frequency & pulse width Disadvantages:

•High γ-ray background

Spallation neutron sources (to spall = to splinter, break away)

Target: Tungsten

- Highly excited nuclear state
- Relaxation:
 - Radiative decay
 - Evaporation of light nuclides
- 15-30 neutrons / event

High energy protons

Proton accelerator sources

- Linear accelerators (LAMPF, Los Alamos)
 - High current
 - High duty-cycle (high frequency / long pulses)
- Cyclotron (TRIUMF, Canada; SINQ, Swisse)
 continuous operation
 - Synchrotron (ISIS, UK; IPNS & SNS, USA; KENS, Japan)
 - Low Current
 - Relatively short pulse
 - Modest duty-cycle (Typical frequency ~50 Hz)

Example: ISIS pulsed neutron source (1: accelerator)

Extraction & stripping H+

Synchrotron

accumulation

acceleration (800 MeV)

Injector

Linear accelerator (80 -100 MeV)

H⁻ Ion source

The (old) pulsed neutron source ISIS

Neutron source intensity: historical data

Reactors – pulsed sources a comparison

Reactors	Pulsed sources	
More thermal neutrons	More epythermal neutrons	
fission neutrons: easily shielded	fast neutrons: time selection	
Metods of analysis: flexible	Method of analysis: time of flight	
Natural operation: "continuous"	Natural operation: "pulsed"	
Average flux increase: difficult	Peak flux increase: possible	
Resolving power: problem tunable	Shorter pulse \Rightarrow higher resolution	
Resolution function: Gaussian	Resolution function: asymmetrical	
Mature and optimized techniques	New techniques: development possible	

The (new) pulsed neutron source

2nd Target Station Presently, under development 1st neutrons on August 2008 !!!

ISIS-TS2

ISIS-2: the new neutron source

ISIS-2: the new neutron source

The SNS pulsed neutron source (Oak Ridge, USA)

The J-park spallation neutron source (Japan)

The European Spallation Source (ESS)

Feasibility study (1994-2004)

Two consortia now active:

- Sweden-Denmark Consortium (Lund)
- Spain-Hungary Consortium (Bilbao)

Instrument Components

Neutron guides and collimators
Mechanical velocity-selectors
Crystal monochromators
Passive filters
Detectors

Neutron collimators and guides

Pipe collimatorSoller collimatorComplex collimator

Reflection e refractionNeutron guidesCurved guides

Soller collimator

Complex collimators

Honeycomb collimator

Cylindrical collimator

Neutron guides

Element	ρ (nm ⁻³)	b (10 ⁻¹² cm)	θ _c / deg (@ 10A)
Ni ⁵⁸	91.29	1.44	1.17
C (diam.)	176.19	.665	1.11
Ве	123.62	.779	1.00
Ni	91.29	1.03	0.99
Fe	84.76	.954	0.92
C (graf.)	113.31	.665	0.89
Cu	84.92	.772	0.83
ΑΙ	60.26	.345	0.46

Curved guides

Mechanical velocity selectors

Helical gap selector
Fermi chopper
straight channel
curved channel
disk chopper

Helical gap velocity selector

- ω = angular velocity
- φ = dephasing angle
- s = channel dimension
- R= radial dimension
- L = length

ωL

φ

v = neutron velocity

transit condition

Resolution:

$$\frac{\Delta v}{v} = \frac{2s}{R\phi}$$

40

Fermi Chopper

PHYSICAL REVIEW

VOLUME 72, NUMBER 3

AÙGUST 1, 1947

A Thermal Neutron Velocity Selector and Its Application to the Measurement of the Cross Section of Boron

E. FERMI, J. MARSHALL, AND L. MARSHALL Argonne National Laboratory,* University of Chicago, Chicago,** Illinois (Received April 25, 1947)

A mechanical velocity selector for the study of monochromatic neutrons in the range of energies below 0.3 ev is described.

The instrument has been applied to the measurement of the cross section of boron, which is found to be 703×10^{-24} cm² for neutrons of 2200 meters per second velocity.

US patent N. 2524379Date: March 10, 1950

Fermi chopper : straight slit

Fermi chopper (curved slit)

Disk chopper

transparent material

neutron beam

absorbing material

typical use: soppression of "frame-overlap" effect on pulsed neutron sources

Crystal monochromators

Ideal crystal chacteristics

- Large σ_{coh}
- Small σ_{abs}
- Suitable interplane distance (d)
- Easy to grow
- Small mean square displ. <u²>_{DW}
- Suitable mosaic

neutron detectors

- Neutrons:
 - weak interaction with matter
 - \Rightarrow linear response theory
 - However ...
 - Detection is difficult
 - * primary ionization: negligible
 - * secondary ionization: from nuclear reactions

nuclear reactions suitable for neutron detection

$$n+{}^{3}He \rightarrow {}^{3}H+p+770 \text{ keV}$$

³He gas detectors

 $n+{}^{10}B \rightarrow {}^{7}Li^* + \alpha + 2.3 MeV$

BF₃ gas detectors

$$n+{}^{6}Li \rightarrow {}^{3}H+\alpha + 4.79 MeV$$

Scintillation detectors

$$n + {}^{235}U \rightarrow fission + 195 MeV$$

Fissione detectors

