SANS

Scattering (or diffraction) of X-rays, light, or neutrons at
small angles is used to examine objects that are large
compared to the wavelength () of the radiation used.
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2d Detector 4m

.|:._.h v eamnla
L= I |- =

Meutron beam Sample



Sizes of interest = “large scale structures” = 1 — 300 nm or more

*Mesoporous structures

Biological structures (membranes, vesicles, proteins in solution)
*Polymers

Colloids and surfactants (micelles and more)

*Magnetic films and nanoparticles

*\/oids and Precipitates



WHY USE NEUTRONS?

-- Neutrons interact through short-range nuclear
iInteractions. They have no charge and are very
penetrating and do not destroy samples.

-- Neutron wavelengths are comparable to atomic sizes
and interdistance spacings.

-- Neutrons interactions with hydrogen and deuterium are
widely different making the deuterium labeling method
an advantage.



Nuclei Seen by X-Rays
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X-rays interact with the electron cloud.
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Nuclei Seen by Neutrons
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Neutrons interact with the nuclei.
Negative scattering lengths in dark.

In the case of light or X-rays, the scattering
cross-section of an atom (a concept which may
be likened to the collision cross-section
encountered in the classical derivation of
chemical kinetic theory) increases in direct
proportion to the number of electrons present;
that is, it increases with increasing atomic
number, Z. However, the strength of the
neutron-nucleus interaction varies completely
irregularly with Z; not even isotopes of the same
element have the same neutron scattering cross-
section, o . The most significant isotopic
variation occurs when Z = 1. Hydrogen has a
(coherent) o ., of 1.75” 1024 cm? (or, in
physicists units, 1.75 barns) which is roughly the
same as that of manganese. On the other hand,
for deuterium o _,, = 5.6 barns, similar to the
value for carbon-12. Thus, and unlike X-rays,
not only can neutrons "see" hydrogen isotopes,

but they can differentiate between them.

For neutrons, b, depends on nucleus (1sotope, spin relative

o neutron (11 or 4 7)), etc. Even for one type of atom,

b, =(b)+0b; « random vanable



e Neutron “contrast variation” provides powerful
and often unique insights.

e Carefully designed experiments provide
information on much more than “structure”
alone.



The Neutron has Both Particle-Like and Wave-Like Properties

+ Mass: m, = 1.675 x 10?7 kg

« Charge = 0; Spin =%

« Magnetic dipole moment: u, =-1.913 uy

* Nuclear magneton: yy = eh/4rtm, = 5.051 x 1027 J T

* Velocity (v), kinetic energy (E), wavevector (k), wavelength (L),
temperature (T).

E=mVv2/2 = kgT = (hk/i2m)2/2m,; k = 2 /A = m, v/(h/2)

Energy (meV) Temp (K) Wavelength (nm)
Cold 0.1-10 1-120 04-3
Thermal 5-100 60 — 1000 0.1-04
Hot 100 - 500 1000-6000 0.04-01

A (nm) = 395.6 / v (m/s)
E (meV) = 0.02072 k2 (k in nm'")



k.

|
Incident beam

wavevector |k;|=2r/A

S 2D

scattered beam detector
wavevector |Kg|=2n/A

Small Angle Neutron Scattering (SANS)
Transmission mode

(elastic scattering) kg = k;+Qq
Q. =|Q.|=4rsinb, [ A

A diffraction pattern is obtained (not a direct image)

e Rather than use scattering angle 26, to show the
diffraction pattern we use the scattering vector Q (in
“reciprocal space”
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Constructive interference from structures in the direction of q

Diffraction length scale d = 2%

ok 6A

d 60 to 1000A
26 =0.3°to5°

Scattering is at small angles - non-zero but smaller than

classical diffraction angles



The NG3 30 m NIST-SANS Instrument
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30 m NIST-SANS Instrument Characteristics

Source:
Monochromator:
Wavelength Range:
Wavelength Resol.:
Source-to-Sample Dist.:
Sample-to-Detector Dist.:
Collimation:

Sample Size:

Q-range:

Size Regime:

Detector:

neutron guide (NG3), 6 x 6 cm?

mechanical velocity selector with variable speed and pitch
variable from 5 A to 20 A

10% to 30% for Ax/A (FWHM)

3.5 to 15m in 1.5m steps via insertion of neutron guides
1.3 to 13.2 m continuously variable for NG3

circular pinhole collimation

0.5 to 2.5 cm diameter

0.001t0 0.6 A

10 A to 6000 A

64 x 64 cm? He-3 position-sensitive area detector
proportional counter (0.5 cmZ? resolution).



Beam
attenutator

Velocity

- selector

Neutron Guide

2D detector

i

I

Source

Ea"‘*——-—* |
|
sample !
L Ll |t LE w L\“\
Sample \.
AptgrPturej A,y

Aperture, A,

Why such a long instrument ?

When you perform an experiment you’ll always try to
have as much intensity as possible with a good
resolution (6Q). Essentially L,~ L,



FRONT
VIEW absorbing

transmitting region

region”

NEUTRON VELOCITY SELECTOR

Neutron wavelength AL ~ 1/rpm
Wavelength range: 5-20 A (mostly & A)
Wavelength spread ~ tilt angle

NEUTRON AREA DETECTOR

dome
| electronics

chamber
membrane

detection
chamber

neutron + He-3 = proton + fritium
Detector resolution= 0.5*0.5 cm?



TOF instruments

LOQ data reduction, (e.g. for 49% d-PS/ h-PS)

jll
5{ 3-10 A
1

LOQ uses A = 2 -10 A simultaneously
- 128 x 128 pixels x ~ 100 time channels.

et

-2
b

A3 feck fern'Y

Need A dependent corrections for
(1) monitor spectrum, m
(2) detector efficiency,
- (3) sample transmission [measured]
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Small Angle Samples

Neutrons —

8-12 mm diameter beam
1mm thick ( 2mm in D,O)

Quartz glass cells
(as for UV spectroscopy, no Boron which adsorbs
neutrons, as does Cadmium)

Pressure, shear cells, cryvostat, furnace etc, fairly easv

X-Ravs —

== 1lmm beam
Thin samples

Alica window cells

Radiation damage and/or heating ?

Powerful synchrotron X-ray beams do now allow more
complex sample environment — but samples still frv!



SANS SAMPLES AND CELL HOLDERS

SANS samples can be solid, gels, solutions or powders.
Sample thicknesses are 1 mm to 2 mm.
Sample diameter can vary between 0.5 cm and 2 cm.

SANS SAMPLE HOLDER CELLS

BANJO CELL DEMOUNTAELE CELL

filling hole quartz
window

216 cm ff

/ backup o-ring
432 III";I-"

I tightening
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Incwdent
e rons

e il = NN

® = number of incident neutrons percm’ per second

¢ = total number of neutrons scatteredper second / @

do  number of neutronsscatteredper second into d{2
0.9 @ de




Scattering by a Single (fixed) Nucleus

¥
Y
k
i Scatiorod Circular
] . "
Scattenng Center
al r=0

* range of nuclear force (~ 1fm)
is << neutron wavelength so
scattering 1s “point-like”

* energy of neutron is too small
to change energy of nucleus &
neutron cannot transfer KE to a
fixed nucleus == scattering 1s
elastic

« we consider only scattering far
from nuclear resonances where
neutron absorption 1s negligible

If v is the velocity of the neutron (same before and after scattering), the number of neutrons

passing through an area dS per second after scattering is :

vdS|y,| =vdSb/r =vb* dQ

i

Since the numberof incident neutrons passing through unit areasis: ®=vy,_ . | =v

do  vb' dQ 5
= =bh S00
de}  did

dnb’

todtal =




Diffraction theory for SAS:
DO NOT PANIC if you are not good at maths ....

For a rotationally averaged or centrosvimmetric particle:

Scattered waves from pairs of points in

the sample interfere with each other.

Whole number of wavelengths
“constructive interference” = Bragg

condition.

Mathematically we sum the amplitudes and phases of the interfering waves
over all possible “pairs of points™.
( “Points” could be individual atoms, but in SANS we do not usually know

where the atoms are, so we average them out):
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do . 1
dg(q)—N
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— (Q) = (b>2 5 '2& "coherent"

+N <(b ~ <b>)2> "incoherent"



b2

do ] & .
- :—E:b-ﬁlql
dQ(q) N = 1

» We can replace the sum over atoms with integral over
the scattering length density N ‘
Zbi — Jp(r)dr
i \
» Normalizing by sample volume and introducing scattering

length density: 15 N d | )
G + .

—(q) =——(q) =—||p(¥)e™"dr

0 D=T30@=5 J_Tp( )

* Inhomogeneities in p(T) give 11se to small angle scattering

j— G . (19 . . el
. L= vV 1s the MAacroscopic Cross section



* Easier to think in terms of material properties rather than
atomic properties
* Define a “Scattering Length Density”

p(f) =b,8(F — )

o1
n

2P
_ i

P

'ET

V 1s the volume containing the n atoms



» Can we really use scattering length densities?

+ consider H,O ¥ = 30A°r = 2A

Zibi
T A gvavres >
J :
R
I

}é}f " =10A q<0.1A7

= 100 molecules

» We can use material properties rather than atomic properties
when doing small-angle scattering




Neutron scattering length densities

volume, e.g. one molecule —~ MOL4R — Vi
4

z I'EI-E?}. V can be any suitable _ PsurN
V

1.0gem™6.023x10% 3
atay V= =20915x10""¢m’ =29915 A3
€.g. watel 18.0152¢ mol™

HO _ (2x(-0.3739)+0.580) » 107" am

10 -1
- 29.915x10 > am’ ~ooeHeTan

_ (2%0.667+0.580) <102 em

20 015X 10 Yo~ 0:40x10%enr™

D.O P

NOTE units of length per unit volume!
x 101" em=> is the sameas x10%A7% 1A=10%cm=0.lnm
IH ("Li, 5*Ni,*Ti etc) have a negative b due to phase shift

via neutron spin interaction.



Digression - useful units!

Distancesin Angstrom, 1A =10-1"m=10%cm = 0.1 nmn

Scattering lengths are in femtomeires, 1 fm = 10-¥* m

Total and absorption cross sections in “barns”, 1 barn = 10-*4 cm?

Neutron wide angle diffraction scattering cross sections are often
“barns per molecule” or “barns per atom”™

To go from SANS type cin! to barns per molecule (both have implied “per
steradian™ for scattering probability per unit solid angle)
multiply by Vyop 45 in A2,

(dZ/d2) [cm1] x V [AY] = (dZ/aQ) [cm 1] V [10-* cm?)

=(JL/Q)’ [ 10-** cm?]
=(dZ /)" [barns]



* Contrast Matching

- reduce the number of phases “visible’

O
O

P solvent = p core
(shell visible)

becomes. ..

or

P solvent = p shell
(core visible)

* The two distinct two-phase systems can be easily understood



do

——(q) = differential cross section
dQ

» normalize by scattering volume

d_Z (4) = Ed—'S(*) = scattering per unit volume
a0 VT vdg T TEEER

» Two contributions to measured signal:

dzcnh (—') + dz“im:
0 Va0

» Incoherent scattering is not q-dependent and contributes only
to the noise level, while absorption reduces the overall signal

d _
E(Q)—

4> "Scattered Intensity"

— {(n -:::-cl p—
dQ(q) (@) (measured quantity)



Small Angle Neutron Scattering (SANS)

Macromolecular structures: polymers, micelles,complex fluids,
precipitates,porous media, fractal structures

Measure: Scattered Intensity => Macroscopic cross section
= (Scattered intensity(Q) / Incident intensity) T d

”L Ap[rlexpliQ,.rFla°r

- v

|3-D Fourier Transform of scattering contrast|?
normalized to sample scattering volume

Reciprocity in diffraction:
Fourier features at Qg => size d ~ 27/Qq
Intensity at smaller Qg (angle) => larger structures



Sample Scattering

e Contribution to detector counts

1) Scattering from sample

2) Scattering from other than sample (neutrons still go through sample)

3) Stray neutrons and electronic noise (neutrons don’t go through sample)
aperture

_ sample
Incident beam |

cell Stray neutrons
and Electronic noise f \




SANS DATA ACQUISITION

-- Choose neutron wavelength (.= 6 A) and wavelength spread (AL/2.=15%).
-- Choose source-to-sample distance L, and sample-to-detector distance L..
-- Choose counting time.
-- Measure scattering:

Empty cell scattering

Sample scattering

Blocked beam scattering
-- Measure transmission:

Cell transmission

Empty cell transmission

-- Neutron transmission is the ratio of the transmitted beam to the incident beam.



SANS DATA REDUCTION

Correct for empty cell and blocked beam scattering.

(Q) |

= [Isan1ple+cell ~ 'blocked beam]"rTsam:-IEﬂEII - [IEE'H_ |IJI|:n:kec| beam]Tcell

Rescale the SANS intensity to an absolute scale (units of cm").

Perform the radial averaging for isotropic scattering to obtain the Q-dependent
macroscopic cross section [(Q) = dZ(Q)/dQ.



General Two-Phase System

* Incompressible phases of scattering length density p, and p,

V=V, +V,



* break the total volume mto two sub-volumes

d> . 1 i | :

—(4) = 94T 4+ |p,e’7dE,

10 (9D v lel 1 1{
d—z(Q) =3P [ 97dT +p,4 [e'17dF — [ 97 dE
dq v, v v,

* So at non-zero q-"v’ﬁlllﬁ‘ﬁi

dx | ¢ er o
= e dr

10 — (@)= ﬁ' pz) ‘i \ 1
Material Properties

k-J

Spatial Arrangement

. . of Material
Radiation Properties ‘



Babinet’s Principle

Two structures give the same scattering
dx _ 2
10 (@) =< (P —p2)

*incoherent scattering may be different



Scattering Invariant

H N
[ Em H I L 10 % black
H " m 90 % white
I . 1in each square
ig =

* Scattered intensity for each would certainly be different

25

de
= (@ d
0, ﬂq dg(q) q

* For an mncompressible, two-phase system:

Q, =2 Ap* ¢ (1-¢)

* Domains can be 1 any arrangement




Dilute particles — subtract uniform solvent & sum over one particle:

P(Q)=N| [.(p(r)=ps)(p(rs) - ps)ep (=10, — ry)}dVd7,
= NV (Ap ) F*(0) Note NV = ¢ volume fraction

Randomly oriented or centrosymmetric particle, ONLY gives information on
average radial density distribution p(r) or g(r) :

B 2 sm(QOr)
F(Q) = [4m pOI=5,

[ This is a Fourier transform: small () is for large », high () for small » ]



SANS from Dilute (1.e. Independent) Particles

"Dilute” means:

* no correlation between posttions or orientations of particles
"Particle” means:

* any discrete submucron scale material mmhomogentiety
Simple (uniform) Particles

- macromolecules, e.g., proteins, polymer chains

- single phase precipitates in metal alloys

- vouds, pores, microcracks, etc.
- simple colloids, e g, latex




Scattering from Dilute, Homogeneous Particles

Vv P o Matrix
p scattering density

ﬁ\ homogeneous particle

with scattering density, Pp

e

— dE ]_ — 1-6} -
Qo T = e dF

2




for 1dentical particles

2

dx(Q) N i L e

- — ) V.
do) V(/"’p ) Ve ly
Contrast Factor Particle Shape

/

F,(Q)

2

Form Factor



SANS From Randomly Oriented Particles

- Guinier Approximation for Low-Q Scattering
average over orientations

2\
45 _1|fy y0r g

2Q_! IIP(r]F’(F’) ) dF dF

sin(Q|f = 1))
QlF -1

~1- Q- )+

.
.
2

dE{Q 1
[Ip{r}m] {1—%@3113;4-']..

/o

ome
[,(Q)= Ip[ﬂ}e % when QR; =1, Guinier law



Guinier Appoximation: 1(Q) = I(O)e_ERéQE
Guinier Plot ln[l(Q)] _ 11’1[1(0)] B QZRé /3

'\ 1(0)
/

\.\‘i_ slope = - RGE/S

Ln I(Q) l .. Q R {1
- max G =




Guinier Radius, Rg
- rms distance from "center of scattering density"

1) Spherical Particles




3) Ellipsoids (major axes 2a, 2b, 2c)

2b 2a
of 1

2("“.5* Ré:;(az+bz+cz)

el

4) Gaussian chain

R’ _ lf 2 _ average square of
6 the end-to-end
distance

5 e



From Scattering Extrapolated to Q=0

1(0) 42() _ = 1 (J-p(r)dr]

dQQ 'V
dz(0) N ¢ V? for N uniform particles
E B \_f(pp - p”) P in volume, V, each with

sid Py and volume, Vp



in terms of;

c(particle concentration) [mg/ml] = N pr
\Y%
M, (particle molecular weight) = pr NA
d2(0) cM,, (p )2 N , = Avogadro's number
7 T Tw — Do
d P NA ’ O = mass density



Form Factors for Some Simple Particle Shapes:

1) Spheres

(F(Q,R)) = <\}p Je"ﬁ'f dr >

v I'sin(QR) — QR cos(QR) I
F . R — 9 3
FQRF)=9 7 Oy |

1(Q)=NV*(Ap)’ P(O)+ BKG
'[:Q) ( ;‘3} '[:Q)_I_ P(Q):FE(QJ*) —]1 as Q—}[}



(Form Factor) ? for Monodispersed Spheres

1000

100

<F(QR)| *>
=

0.1

LI N B B B | 1 | r||1|r;

Guinier region

-

I

I

I
QR =<1 I
g I

I

slope = -4

0.01
0.1



Cylinder (rod or disc)
10 =N@p) V[ F (©)sin(dy

- sim(£QLcosy) 2J,(ORsiny)
+QL cosy ORsmy

F(Q)

Randomly oriented rods full length L, radius R, V=nR’L

J,(x) = “first order Bessel function of the first kind”
is NOTsame as j,(x) on next slide!

As x>0, JJ@X)x—='2 & sinx)x =1 so P(Q—0)=1

Integrate numerically over y = angle between Q and rod axis.



(Form Factor) ? for Rods of
and diameter,d =4 nm

Form Factors for Some Simple Particle Shapes:

2) Long Rods:

0.1

0.01

0.001

<F(Q.a,L)*>

0.0001

10°°

10°°

Guinier region

I
|
I
I
I
|
I
2n

L

10" "
0.01




<|F.Q.t,D)|*>

Form Factors for Some Simple Shapes:

3) Thin Disks

— D —>
(Form F.ar;tn::nr}2 for Thin Disks of Diameter, D = 80 nm,
and Thickness, t =4 nm

7

0.1 Guinier region

— slope = -2

Q) ~ (1 expirn2q  Cth)

g

0.01

0.001

0.0001

[
=

.10'3 | ] 1 J.I.JIJ.II 1 1 JJJIJ.I.I.
0.01 0.1 1 10 100



Ellipsoid
ellipsoid radii R, R, and XR 7 _ AW 3
V =L XR

X>1 prolate ( ~rugby ball),
X<1 oblate (~ pumpkin), X=1 sphere.

I(0)= N(L\.p)jﬁ’zjjﬂ F’ @) sin(y)dy

3(sin(u)—u cos(u))
3

F(u) = A@) = U= QR(SHI2 }’—l-ff2 cos’ }’:)1!2

i i

Note F(u)is same as F(QR) for sphere!
Change of variable to L =cos(y) makes computation simpler:

10) = N(ap) V> [ F(u)du u=0R((1-u*)+x2u?)"”

Can be hard to distinguish X<1 and X>1, and also polydisperse spheres -
absolute intensities, shape at high Q, and S(Q) may help.



Gaussian coil (ideal polymer)

1(0) =1, 2(y = 1+exp(~-))/ ¥ |

y=(0OR, )2

R = radius of gyration, the rms (root mean square) radius —same as in Guinier

plot.

For dilute polymer, as usual I, = JNVE ( Ap )2



L S A S LT TR (R R M R A R G O
DILUTE PARTICLE o[ B "
SHAPE o R=31A
- Rod -
g _ Gaussian Coil -
I Disc .
P(Q) ; -
o
o

o RN T T T TR 1
n/ a.us/ 0.1 015 D.2 0.2

Polydisperse sphere

Sphere

R.= 31A (i.e. are same at small Q)

Rod R=10A, L=104.5A

Disc R=43.6, L=10

Gaussian coil R = 31

Monodisperse sphere R = 40 has R_ = 40 x V(3/5) = 31 A, has resolution smearing.

Polydisperse (Schultz) R__= 404, o/R . = 0.15, is steeper at small Q



DILUTE PARTICLE SHAPE log-linear plot

— - 1 1 1 I | 1 | 1 I 1 | 1 1
- R =31 ;l
B Rod T
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o ? Disc E
oL /S o T i
P(Q) o F 5
H?G i :‘ :: e —
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i Y/
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Absolute intensity of non-dilute samples & polymers

For dilute and concentrated (solid or melt) polvmers and other particles:

I, =9(1-0) (4p)* ==

dd‘\f

(|) = volume fraction

V = particle volume
(Ap)? = scattering length density difference
¢ = concentration ( g.cm ),

M = molecular weight ( g.mol1),
N, =Avogadro’s number,
d = bulk density ( g.cm-).

NOTE at 50%vol, f (1-f) halves the usual intensity.
Polvmer equations - often “disguised” with
(polymerisation index) * (monomer molecular weight,
segment length etc.)
For micelles M gives the aggregation number.



POROD’S LAW -surface to volume ratio from high Q limit

Well defined, sharp interface

2 (Ap)’S
Q4

If a plot of Q4I(Q) will has a plateau value v [units A4 cm-!] then

1(Q) >

107y
2 (Ap)’

2 3 :
S(em™ [em™) = Ap in cm?

A good “incoherent” background subtraction is vital !

Can try FIT to Q-4 and additional flat background.

[ Other “power laws” may (or may nof) relate to “fractal” materi als or
rough surfaces, thins sheets, thin rods etc. ]



White marbles from Carrara (Italy)
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I(q) o« P(qa r,Ds)- S(qa r,D,R)

Ds-6

P(q,r,Ds) = (1 + \fqzrzl

1-D
2

S(q,r,D,R)=1+ DI(D—1) (1 + lzj sin[(D — l)arctan(qR)]

qr’ qR



1(q)

O experimental data

— high g mass fractal

low q mass fractal

— fit

D =23

10 L
10°

10™

10°
q (A%

107




Scattering Cross Section
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SANS data (circles) for particles (surfactant micelles) in solution in D,0, with
increasing concentration (ignore the dashed lines, will see this again later when we

explain the fits)

Data for 0.9, 1.8, 7 and 29 %% vol.
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warter

Does not look like Bragg scatter from a crystal, except for peak at the highest
concentration — “Bragg peak”™ from a very disordered array of micelles !

SANS fits give size, shape (aggregation number) and charge on the micelle. Particle
radius ~19 A, axial ratio X ~ 1.7
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D.J.Barlow, M.J.Lawrence, T.Zuberi, 5. Zuberi & R.K Heenan, Langmuir 16(2000)10398-10403.



Example: interacting spheres:

3 _“.{[Q _ 10% R=40 A radius spheres, in
] *core™ contrast,
S(Q)=100 : (polydispersity ¢/R;,,,= 0.15,
=N |  Ap=6x101%am-).

plus another 16%o in invisible 15 A
coating gives hard sphere
S(Q)of26% vol & R=554A
S(Q)— 1 at high Q

o % 0 w15 b2
ap
At higher volume fractions we start to see interference from waves scattered by

adjacent particles (it was there all along, but at smaller QQ, inside the beam stop!).
I{Q=0) is now decreased!

To first approximation we multiply P(Q) by an “inter-particle structure factor™
S(Q) which depends on “long range” interparticle interactions. 5(Q) comes from a
Fourier transform of interparticle o(r ) & hence interaction potential for colloids or
Braggd=1IrQ__, in “liquid crystal”.

% = 1(0) = NV*(Ap)* P(0)S(Q) + BKG



o0

(S(q)) =S(q) =1+4mn, [ (1) — 1]

0

sinqr ,
qr

rodr

Note:

— S(q) 1s proportional to the number density of particles
— S(q) depends on g(r). the pair correlation function



> 11pg(1‘) 1s a “local” density
of particles

» Spatial arrangement set
by interparticle
interactions and indirect
interactions

g(r)

r/d



» The form of the interparticle potential has a great effect on
the low q value of S(q)

- T T T T I T T T T I T
B Attractive Sguare Well

«—— Coulomb Repulsion

5 10 13 20
g*diameter

» The low q limit 1s proportional to the osmotic
compressibility
on

S(q=0)=kT| =
(q=0) p

= Attractive mteractions = more compressible
= Repulsive mteractions = less compressible



Q=00

- o I
E 1L -—5=:'—
F__! 140 SSSSSSSISSSSSSammasSIoy
= F P(g), scaled 3
— 10t | -
z ; |
& 10t [
£ ' b S

10 ,

]':'-'l : 1 1 1 L1 1l

-I

107
q(A™)
» The form of the interparticle potential has a great effect on the low q

value of S(q)
» Example of charged spheres:
* development of “interaction peak™
» change in low-q slope and I{0)
» Must fit model to data
* know P(q)
» 7calculate S(q)?



» Ornstein Zernicke Equation:
h(r) = g(r) — 1 = c(r) + nfc(|f — | Jh(x)dx

» ¢(r) = direct correlation function
* Integral = all indirect mteractions

»~ A second relation 1s necessary to relate c(r) and g(r)

» Percus-Yevick Closure - an approximation

e(r)=g(r)|L - P

= correct closure gives correct results
* 1n general a difficult problem

e

S

(S@) = S(@) = 1+ 4mn | [2) = 1P
J 1
0

SINqQr -
r-dr




POLYDISPERSITY

Sum SANS over size distribution - Gaussian, lognormal, uniform, etc. “Schultz
distribution™ is similar to log-normal but I(Q) is analytic. Generally SANSis
only sensitive to mean R, _ and “polysdispersity” o(R)/R, where g(R) is the
standard deviation.

Schultz distribution:

oG]z
.-“'-,(F)—{ R } r{z—ljexp]__ Ry, |

bar
Ha i s "aciad
_|;-:I;I:'ll\lll'lI .III *, ¥
II I| I| I“: L] '-I %
ﬂ- 1 s { | i I'- L
_ Faar % b i
- 2 | I 1 R T T
R (E+1 - g 1o { BRE
bar s I TR
oE L NN
44 I| .I % 4 "||-I ! |III 4
! Ly N
i 1 ! 1
I \‘.2 as I| II| '._ Il'-l Eid “,
Rbnr | 1 i NN N, o
E = —1 ...'.' '-___ ., __'_..____ '..____
= e —— AT
N 3 20 e =
i

NOTE: at largeg the Schultz is very skewed and has significant numbers of

small particles. Gamma functionI'(n) = (n-1)! Care is needed in numerical
calcs as Z may be large.



Contrast variation - introduction

For core plus shell spherical particle

e.g. Spherical Shell R; =40 A (R,-R;) =15 A (with 15% polydispersity)

1y @ y d 4 P 0.

She#interference

o am 0.1 X7 T nas R E:

I1(0)= N{(p, — PV, F(O.R) +(py — p)VoF(O.Ry)

3(sin( Q) —Or cos(Qr))
(29

F(O,r)= I{Q=0) not so simple now !

At “contrast match” p, = p,, then we see “hollow shell” with oscillation in 1(Q)

which is very sensitive to the details of the structure.



Practical computations

TSHELL
Please note — the way that equations are sld P <« » P
presented in scientific papers may not be the
best way to use them in a computer P2
program. | :
There are many ways to re -arrange the I : .
equations, e.g. the core/shell sphere on the
previous slide can become: RCDRE R
167° N 5
1(0) === (P, = P (Q-Regze )+ (95— ) F(Q-Res + T )}

O
f(O.r)= (sin(Qr) — Or cos(Or))

Where there are N particles per unit volume (usually per cm?).
Note that we may need to include a factor 104 to convert Q(A1)S to cm .



CONTRAST VARIATION -CORE/SHELL PARTICLES

eg. Corepl=6x10" am?, mean R,=40A, $=1%, o/R,, =15%
R, - R, =15 A shell p, =3x10! cm-2

sld 4 p=0 Drop
. “drop” contrast sees whole particle
= ( here some effect of the shell )
: p, =0
| :
R, R,
dd p  p=6 | R d 4 g6 o.= 6
Core '
p=3 — =3 o . .
| : “core” -solvent ! ! Shell” —Th'ent
' . “matches” shell . ; “matches” core
R R ' BB
E E
sl ¢ p=6
p =4.134 “interference” — rarely seen, but be aware! Solvent
.3 between “core” & “shell” matches the average sld
Match of the whole particle.
! ! ~ Small Q, long dist. SANS -~ zero,
R R "~ High Q, short distances some scatter!

E



Ca
=
=

tvpical
background 1'?
levels ? o
— 90 0.C3 d.1 .15 0.2
Q8™

NOTE I(Q) from “shell contrast™ scales non-linearly with particle size and laver
thickness - trial calculations are useful to plan experiments.



Determining the Contrast Match Point

N -
1Q=0)=""(p, -p,)°V,

500

400

0)]

SQRTINQ

100 =

300

200 —

& raw counts
& corrected for backaround

2.0 2.5 30 3.5 4.0 4.5 5.0

SLD(10™ A ™)

#*Need “dilute” particles and “low™ Q

* Make several measurements at
different solvent SLDs

* Keep the same concentration

* Extrapolate data to I{Q=0)

* Plot sqrt(IQ=0) vs. SLD

* Don’t forget to correct for the
incoherent background contribution

* For composite particles, I(Q=0)
will never reach zero - but 1t will be
a minimum at the average particle
contrast



scCQO, is a very poor solvent for most high MW polymers,
with the possible exception of fluoropolymers, silicones, and
poly(ether-carbonate)

(T. Sarbu, T.Styranec and E.J. Beckman, Nature, vol. 405, 11 May 2000)

It is then possible to design copolymers with a CO,-phobic
and a CO,-philic portion that behave as surfactants, giving
micellar-like aggregates in certain conditions



_<H2C

PVAC-b-PTAN

E)n <CH2_CH_ym

t—o C=—o0

CHs O

CH,CH>CgF17
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dz(q)/dQ (cm’)
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* Model

d2(Q)/dQ = N,[dX(Q)/dQ]rctNagg[dZ(Q)/dC2] agq

/ \

Random coils + Aggregates

/ \

2 Np[(QRg)* + exp[-(QRg)’]-11/(QRg)*  + Nagq P(Q) S(Q)
P. Debye (1944)

Core+shell PY hard spheres
. + N
(polydisperse)
spheres ECF



dZ(Q)/dQ (cm™)

10 ¢

&
-

(-
LI L |

O

Structure Factor

p=358 bar
p=213 bar

0.00 0.01 0.02 0.03 0.04

QA%

0.05 0.06



P (1-uom) p CS Agg. Z

172 0925 0.821 100 29.5(1) 17.0(1)
179 0.925 0.830 1.0(1) 29.3(3) 17.0(1)
186 0925 0.838 1.1(1) 29.2(5) 17.4(1)
199 0.900 0.849 1.1(1) 28.0(3) 19.5(3)
213 0.900 0.858 1.1(1) 24.8(5) 18.4(5)
227 0.875 0.868 1.1(2) 21.7(2) 18.0(2)
241  0.875 0.879 1.1(3) 19.4(2) 17.0(2)
255 0.850 0.889 1.1(1) 18.6(2) 17.0(2)
268 0.750 0.900 1.6(2) 14.8(3) 17.0(2)
282 0.65 0.909 1.8(2) 12.0(2) 10.0(2)
295 transition zone, 0.91 g/cm?®

310 transition zone, 0.92 g/cm?®

357 0.917 Random coil, Rg43.5A



» Basic Equations

e Model-independent methods
Guinier, Porod, Invariant

e Non-Linear Model Fitting
Particles, Polymers, Materials

» Global Fitting

e Anisotropic Scattering

* Transforms

e Ab initio modeling

Easy

More mvolved



Non-Linear Model Fitting

One of the most commonly used methods
- a “forward” calculation
- many structures and interactions to choose from

4 -"‘T--"-:'ﬂ'_f"-.-:I:—l_r

10 G
-~ - ' disk
e 10° il
U —

eylinder E 4 * propose a structural model

= 107 * calculate I(Q)

g% * adjust structural parameters

oom - /%o ® “gq © ¢ erepeat until done

. Q@A™
sphere



Non-Linear Model Fitting

< 107 4
£ 1
] .
—t 1
=, 10
=
2
T 10
4=
=
D 10°
e
1]
4
H - —
B 10 3| e Sphere Data
¥ 1 |— Unsmeared Model
'R 3 — Smeared Model
I. ; 1 l ) II H ! T -I_ l LI I
4 5 674 2 3 4 T &78
0.01 i 0.1
Q(cm )
Point | parameters_sf coef_sf smear_coef_sf
) scale 0.05 0,05
1 Radius (A) 55 55
2| contrast (A-2) 2e-06 2e-06
3 bkgd (em-1) 0 0

* Non-linear least squares
fitting to experimental data

 Use all the information you
can to reduce the number of
free model parameters
-SLD’s

-Concentrations

-Lengths

* A “good” fit does not
necessarily guarantee a
perfect representation of the
structure 1n the sample



Global Fitting

Contrast variation SANS + USANS data
- same particles, different solvent - same sample (same cell)

- R, pp. ¢ are the same - all parameters are the same
- Peory» Dackground are different - smearing, scaling different
& 5.0 =1.94 3

® 50 = 250
@ 50=300
. ® SLD-3.50
iy ® 50400 1000 -
A ® S5LD=450 = i
k5 SLD - 5.06 g 1
?‘% E 'IEll:."—E
E il IE 'n__
& I'—l |I l:ﬂ 1 I;g,_,‘:“ -;L 1 [ @ Ferrafluid_USANS_cor_

— Fit_Farmofiusd_LISAMNS_cor_i
® Fasralluid _SaNS_abs_i
— Fit_Feroflud_SAMNS_abs_|

RN "ooor :;:_I on - ! o
Q(A™) ' Q™

T oo




Contrast Variation

Contrast Matching

reduce the number of phases “visible™

p solvent = p core o

K

p solvent = p shell

(shell visible)

(core visible)

* The two distinct two - phase systems can be easily understood



Anisotropic Scattering

Elongated particles aligned by shear
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Transforms - p(r)

Distance Distribution Function: p(r)

average over orientations P(T) iS t]lﬂ pIDbﬂbllltY ﬂlﬂt 2
L(Q) = (j H(E)e®” df} _ 45_[ 2 T{.-;.”“é?”dr randupﬂy chosen points are
at a distance r apart

- rcorrelation function

et

F | If I(Q) is measured over a wide enough

| | iiiilé Q-range. then one can compute p(r) as the
; \ mverse transform:

pr) = 2111 [ 10)©r)sin(Qr)dO

For a sphere:
p(r) = 12x%(2-3x+ ,!r'*} x=r/D

*See: D. Svergun, O. Glatter



Ab 1mitio methods
* Calculate I(Q) for complex structures

- Biological molecules made up of subunits
- non-standard geometric shapes

{fff”"’_;_ _ T“““E 1@ =310 +233 EIQ)F,EQ}HHE?H"]
\ H\\ RS %\J{ _,_-—-->\ i=1 i= ) if

—
oL
«.
o

g * {11l volume with spheres on a gnid
* need distance between every pair
* can be computationally intensive
\ * can optimize shape

e

- packages available (D. Svergun)

‘ **Need “dilute” particles and “burly” computer



Interesting Links:

http://www.isis.rl.ac.uk/LargeScale/LOQ/log.htm

http://www.ncnr.nist.gov/resources/simulator.html



