VIII School of Neutron Scattering "Francesco Paolo Ricci"

Structures and Dynamics of Magnetic Systems

Intermultiplet transitions in Pr: Monte Carlo simulations of High Energy Inelastic Neutron Scattering experiments

R. Senesi, Università degli Studi di Roma "Tor Vergata", Dipartimento di Fisica, and Association "School of Neutron Scattering Francesco Paolo Ricci". Via della Ricerca Scientifica 1, 00133 Roma, Italy

roberto.senesi@roma2.infn.it

4-10-2006

Intermultiplet transitions of rare-earths metals and compounds extend in the eV range. High energy Inelastic Neutron Scattering measurements allow to complement and extend optical measurements into the eV range, including their wavevector dependence. A tutorial on Monte Carlo simulation codes allowing to predict the performances of eV spectrometers for intermultiplet transition experiments is presented. Typical splitting of levels in a rare-earth system due to the 4f electrons lie in the hundreds of meV to eV range.

Kinematic range:

$$\frac{\hbar^2 Q^2}{2m} = E_0 + E_1 - 2\sqrt{E_0 E_1} \cos\theta$$
(1)

where m is the neutron mass.

Kinematical restrictions to high energy - low wavevector transfers.

Inverse geometry (E_1 fixed) unlimited in energy loss.

3.0

This means final energy in the \geq 10 eV: i.e. detection and energy selection technologies for eV neutrons. VESUVIO spectrometer. 1) Resonant detector configuration

VESUVIO spectrometer.2) Very Low Angle Detector bank

Scattering angles in the range $1^\circ \leq \phi \leq 4^\circ$

Background: Intermultiplet transitions observed in metallic Pr in the range: $0 \le \hbar \omega \le 1600$ meV; $1 \le Q \le 15 \ \dot{A}^{-1}$; (A.D. Taylor et al., PRL, 61, 1309 (1988)). Transition ${}^{3}H_{4} \rightarrow {}^{1}G_{4}$ @1170 meV was not observed.

Proposed experiment using the VLAD detector on VESUVIO.

Assessment of experiment through a Monte Carlo simulation of the scattering spectra. USE of DINSMS code (J. Mayers et al. NIM-A 481, 454 (2002).

Tutorial task: simulate scattering spectra from Pr using VLAD detector bank on VESUVIO. Estimate $Q, \hbar \omega$ range accessed on each fixed-angle element.

- 1 1 Fortran source code file 1 executable
- 2 1 command file
- **3** 1 instrument parameter file
- 4 output: ascii files of time of flight intensity spectra

Notes on source code: 1) energy analyser: ²³⁸U resonant filter

Senza nome - Blocco note
File Modifica Formato Visualiza ?
FUNCTION TO GENERATE FINAL ENERGY VALUES FOR URANIUM FOIL ANALYSER AT 293K
WITH NUMBER DENSITY OF 1.456E20 ATOMS/SQ CM.
modificata 3/6/2003
FUNCTION U1GEN(XV)
PARAMETER(N=2665)
REAL E(N),X(N)
DATA (E(I),I=1,N)
\$/1027.6,1127.6,1261.0,1378.3,1504.3,1630.3,1749.0,1867.6,
\$2049.4,2231.2,2428.8,2581.5,2734.1,2886.8,2963.2,3155.5,
\$3299.7,3443.9,3588.2,3684.3,3789.4,3903.3,3988.7,4074.2,
\$4131.1,4188.1,4231.7,4257.9,4275.4,4284.1,4292.9,4299.4,
\$4306.0,4312.5,4316.9,4321.2,4325.6,4329.8,4333.8,4337.8,
\$4343.8,4349.9,4367.2,4372.8,4377.7,4382.3,4386.8,4391.5,
\$4393.0,4397.6,4402.2,4406.8,4411.4,4416.9,4426.1,4435.2,
\$4442.0,4446.6,4451.1,4455.6,4460.2,4464.4,4470.3,4476.1,
\$4482.0,4489.8,4497.2,4507.6,4514.5,4535.3,4563.0,4604.5,
\$4659.9,4715.2,4770.1,4825.1,4880.0,4934.9,4989.8,5044.7,
\$5099.6,5154.5,5197.4,5240.3,5283.2,5326.1,5369.0,5411.9,
\$5454.8,5497.6,5531.1,5564.5,5597.9,5631.4,5664.8,5698.2,
\$5731.6,5765.1,5793.5,5822.0,5850.5,5879.0,5907.4,5928.8,
\$5950.1,5971.5,5992.8,6014.0,6035.1,6056.2,6077.4,6098.5,
\$6114.3,6130.2,6146.0,6161.9,6177.8,6193.7,6209.6,6225.5,
\$6237.5,6249.4,6261.4,6273.3,6285.2,6295.1,6306.9,6318.7,
\$6330.5,6342.3,6351.1,6359.9,6368.8,6377.6,6383.5,6392.5,
\$6401.6,6410.6,6417.4,6424.2,6430.9,6437.7,6444.5,6451.3,
\$6458.1,6465.1,6469.8,6474.5,6479.2,6483.9,6488.6,6493.2,
\$6498.1,6502.9,6506.1,6509.7,6513.3,6516.2,6519.2,6522.0,
\$6524.7,6527.4,6530.1,6532.8,6535.4,6538.4,6541.4,6543.4,
\$6545.8,6548.2,6550.6,6553.0,6555.1,6557.3,6559.4,6561.6,
\$6563.7,6565.8,6567.9,6570.0,6572.1,6574.6,6576.4,6578.2,
\$6580.0,6581.8,6583.6,6585.4,6588.0,6590.4,6592.8,6595.2,
\$6597.6,6600.0,6602.8,6605.6,6608.4,6611.2,6614.9,6618.7,
\$6623.5,6630.3,6640.7,6644.7,6648.7,6652.5,6656.1,6659.5,
\$6663.3,6666.5,6669.7,6672.9,6674.0,6676.9,6680.8,6684.0,

Notes on source code: 2) γ detectors for tagging in time the radiative resonant absorption in ²³⁸U filter. 3) Partial differential cross section: nuclear+magnetic scattering.

$$\frac{d^2\sigma}{d\Omega dE_1} = \frac{k_1}{k_0} \sigma_n S_n(\mathbf{Q},\omega) + \frac{k_1}{k_0} r_0^2 G(\mathbf{Q};\mu,\nu) \,\delta(\hbar\omega + E_\mu - E_\nu) \quad (2)$$

🖡 Senza nome - Blocco note	
File Modifica Formato Visualizza ?	
*mod 26-6-06 added magnetic XS form Praseodimium	
FUNCTION PDCS(E0,E1,TH,NM,M,B,SIG)	
REAL M(NM),SIG(NM),B(NM),K0,K1,J	
REAL j1,j2,j3,jj	
real acca3,acca4,acca6,x2medio,x	
* write(6,*) ' pdcs. e0=',e0,' e1=',e1,' th=',th	
RT2PI=SQRT(2.0*ACOS(-1.0))	
K0=SQRT(E0/2.0717)	
K1=SQRT(E1/2.0717)	
Q=SQRT(K0**2+K1**2-2.0*K0*K1*COS(TH))	
W=E0-E1	
w0M1=417.	
gdip=0.0016+0.0984*exp(-Q/2.009)	
anodip= $-0.00933/(1+exp((Q-3.85)/0.63))+0.00933$	
peak1=EXP(-(w-261.)**2/(20.**2))/(20.*RT2PI)	
peak2=EXP(-(w-578.)**2/(20.**2))/(20.*RT2PI)	
peak3=EXP(-(w-747.)**2/(20.**2))/(20.*RT2PI)	
peak4=EXP(-(w-809.)**2/(20.**2))/(20.*RT2PI)	
peak5=EXP(-(w-1170)**2/(20**2))/(20*RT2PI)	
sgwmag=gdip*peak1+gnodip*(peak2+peak3+peak4+peak5)	
* n.b. w0M1 e' per M=1 amu	
PDCS=0.0	
* 4 18036=hbar^2 in meV*amu*A^2	
SQW=M(1)*J/(4 18036*Q)	
PDCS=PDCS+B(I)**2*(K1/K0)*SQW	
PDCS=PDCS+0.29*sgwmag	

Notes on instrument parameter file:

🖡 ip0000 - Blocco note	BX
File Modifica Formato Visualizza ?	
	<u></u>
Format: det. number, angle, t0, L0, L1	
1 2.00 -5.5599999E-02 11.05500 2.01395000	
2 3.00 -6.9100000E-02 11.05500 2.013	
3 4.00 -2.3499999E-02 11.05500 2.013	
4 5.00 -0.1553000 11.05500 2.013	
5 -40.80000 -0.1629000 11.05500 0.6845000	
	100

🖡 pr.com - Blocco note
File Modifica Formato Visualizza ?
1.1 First and last detectors
First and last detectors
0.2.2.1 LDt0 in microsos DL0 in om
0.5 2.1 ! DIU IN MICTOSEC, DLU IN CM.
50 400 0.25 ! Winimum and maximum tol+ channel width (micro-sec)
1.5 2.0 ! Radius of umbra and penumbra in c.m.
3.5 3.5 1.0 ! Height, width and depth of detector in cm.
1 ! Sample geometry. 1=siab,2=cylinder
U ! Sample angle
10.0 10.0 0.2 ! R and Height of cylinder of thickness, ht,width of slab.
1 INUMBER OF GINEFERT ATOMIC MASSES.
140. 10. 20. 1. 1 Mass, xsect, s.d. of J(y), no atoms PD
6 0 c I Number of evente
1. Maximum order of coattoring
tutorial pr

Example of a time of flight spectrum: Pr-simulation $\phi=2^{\circ},3^{\circ},4^{\circ},5^{\circ}$; ²³⁸U energy analyzer

Example of an $S(\phi, \omega)$ spectrum:

- Simulate tof spectra
- Transform into $S(\phi, \omega)$
- Adjust simulation parameters
- Estimate Q-dependence