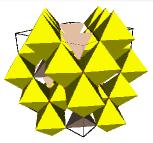
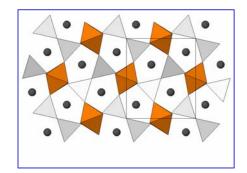
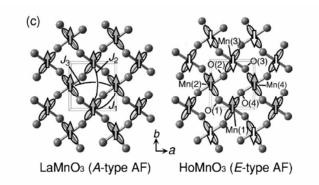


Symmetry constraints on the electrical polarization in novel multiferroic materials

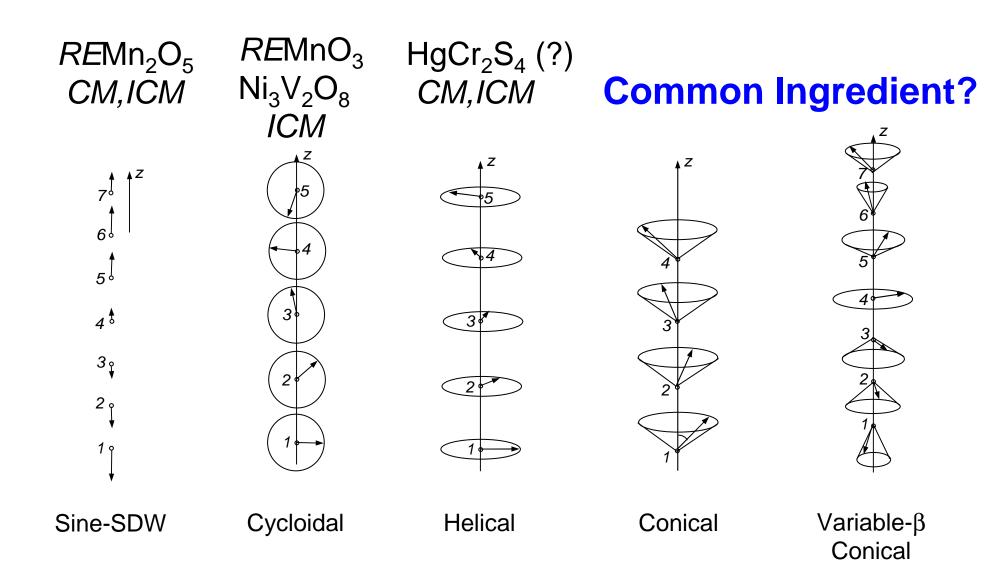

Paolo G. Radaelli^{1,2} & L.C. Chapon¹


¹ISIS Facility, Rutherford Appleton Laboratory and ²Dept of Physics & Astronomy, University College London

G.R. Blake, M. J. Gutmann (ISIS) N. Hur, S-W. Cheong (Rutgers University) J. Rodriguez-Carvajal (LLB)

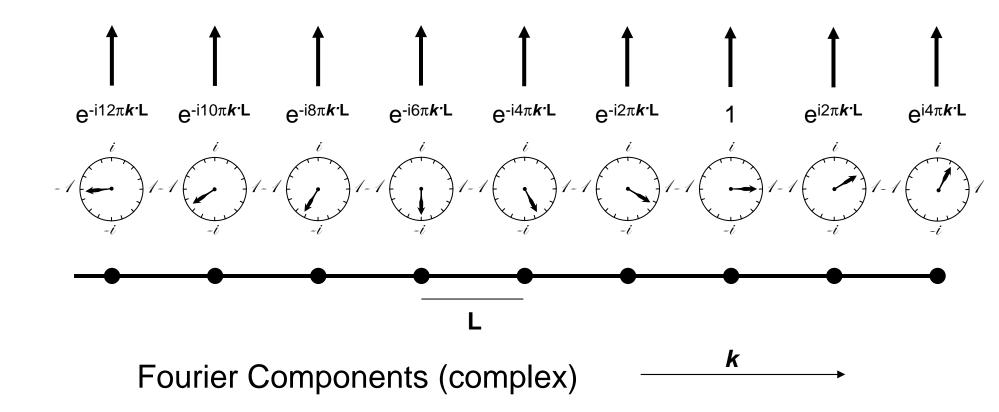


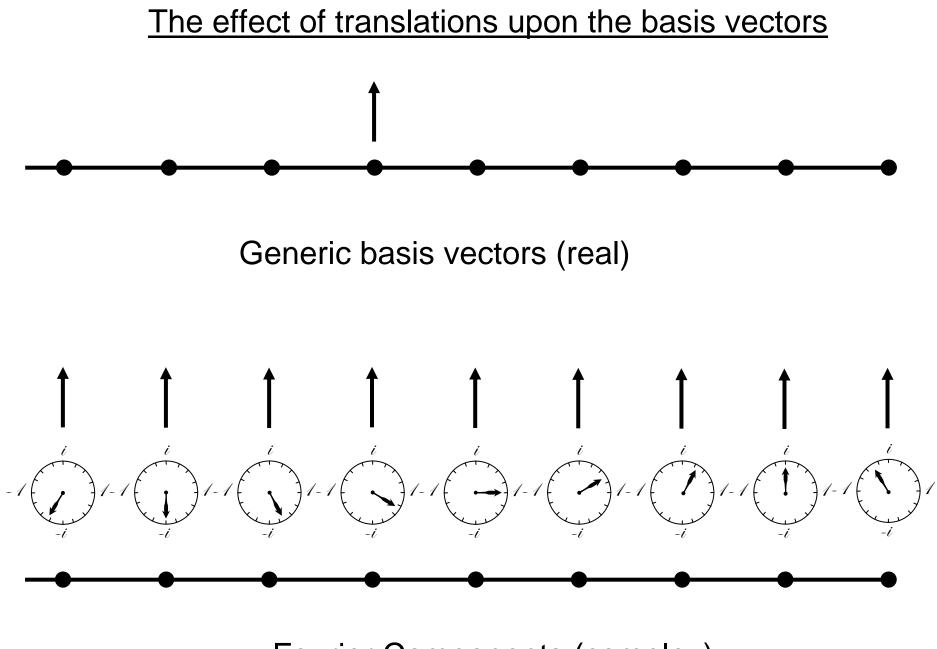
CLRC "Novel" multiferroic materials



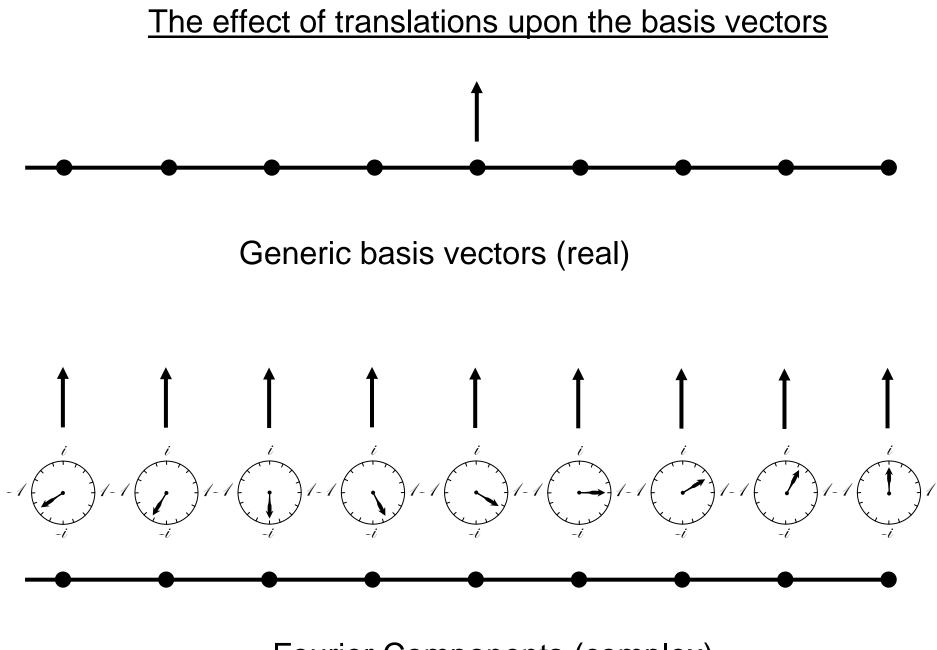
- Improper ferroelectrics. Primary order parameter is magnetic.
- "Complex" magnetic structures.
- $|\mathbf{P}|$ is much smaller than for ordinary FE.

From: Yu. A. Izyumov and R. Ozerov, "Magnetic Neutron Diffraction", Plenum Press, NY, 1970, pp. 3

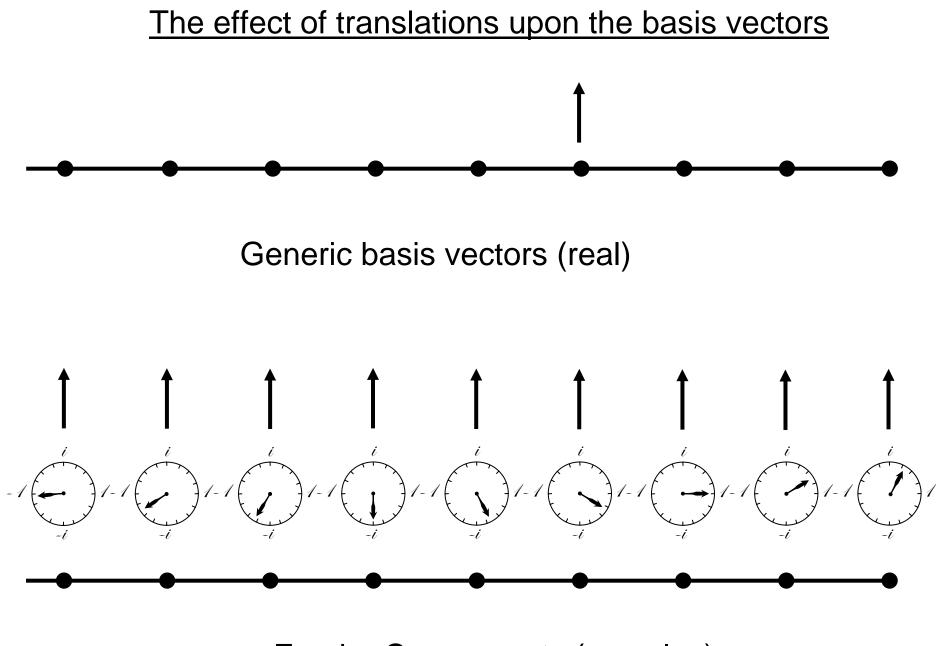

- 1. Determine the symmetry of the magnetic structure (subgroup of the *paramagnetic* SG).
- 2. Extract the rotational (proper/improper) part of the surviving symmetry operators and "unprime" if necessary.
- 3. The resulting group *S* is one of the *32 threedimensional crystallographic point groups.*


<u>Common Ingredient</u>: S must be one of the 10 *pyroelectric groups***.**

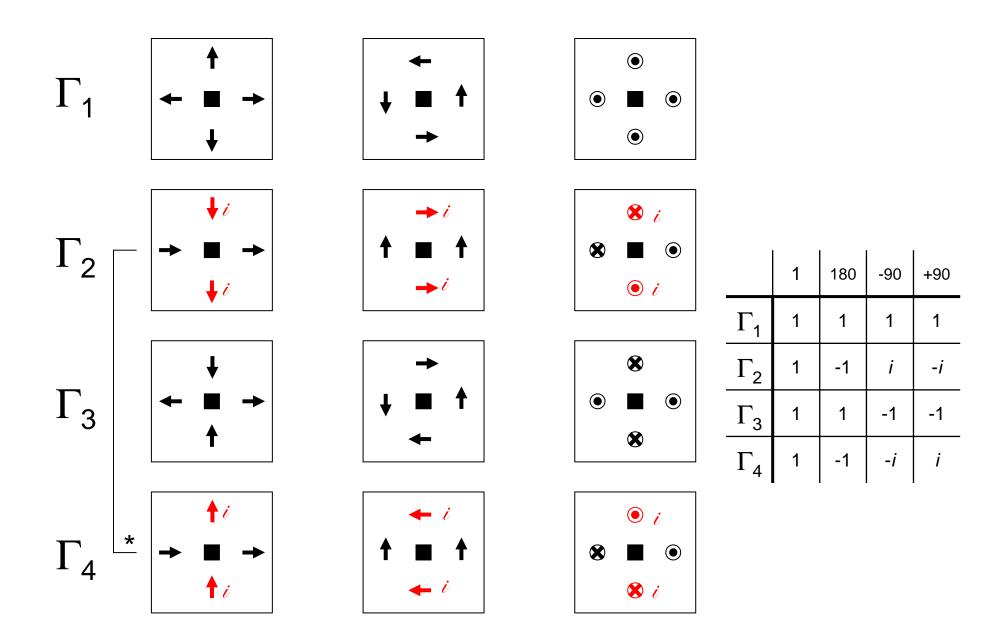
1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm

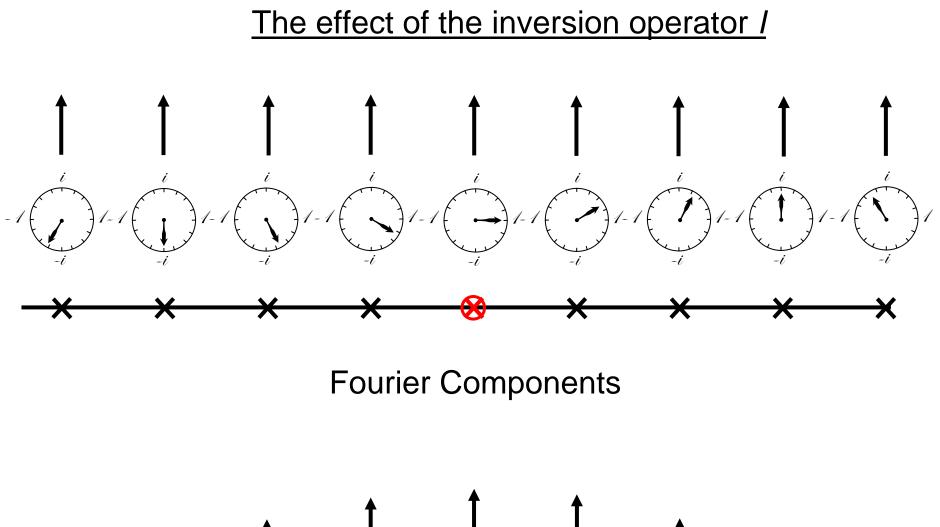


Propagation Vector

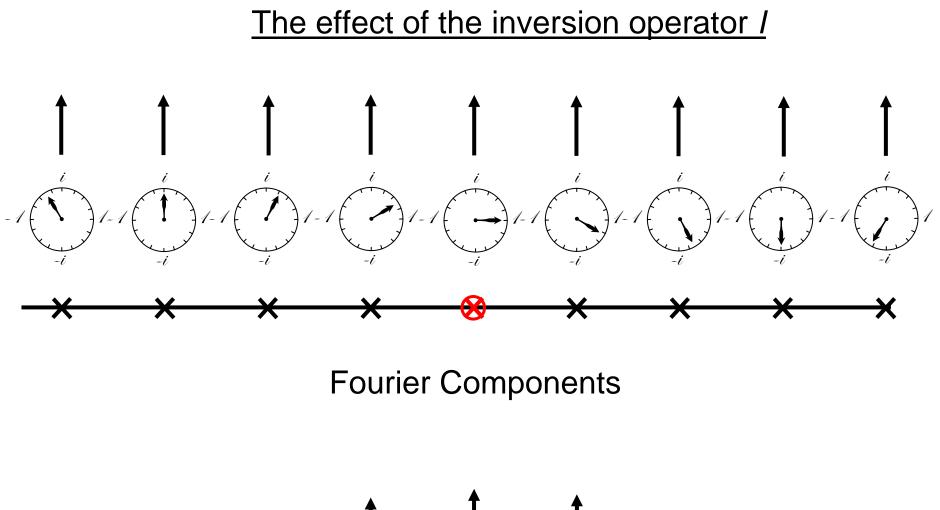


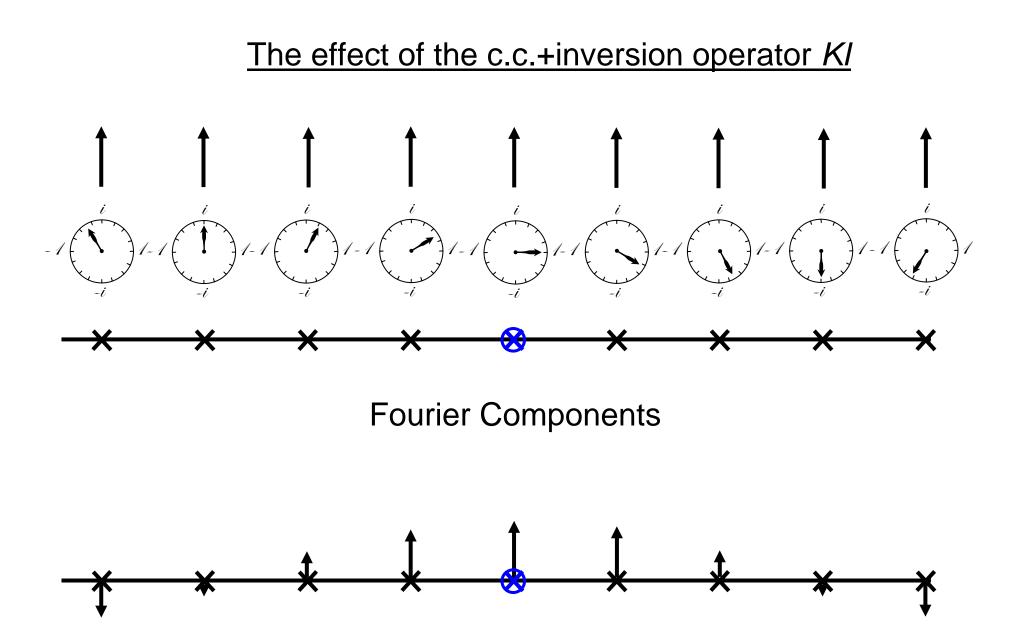
Fourier Components (complex)




Fourier Components (complex)

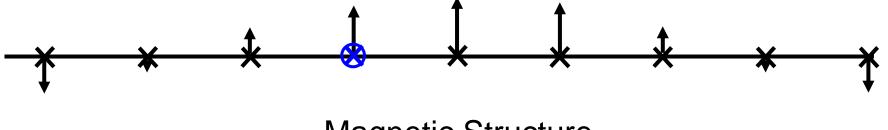
Fourier Components (complex)


Space Group $P4=C_{4}^{1}$ $k=(0,0,\mu)$

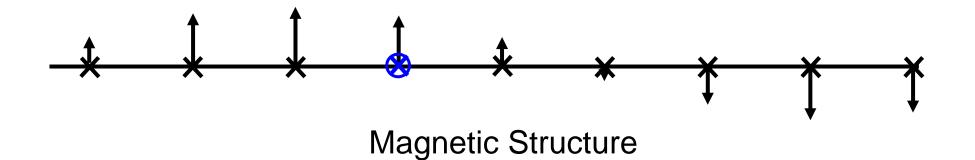


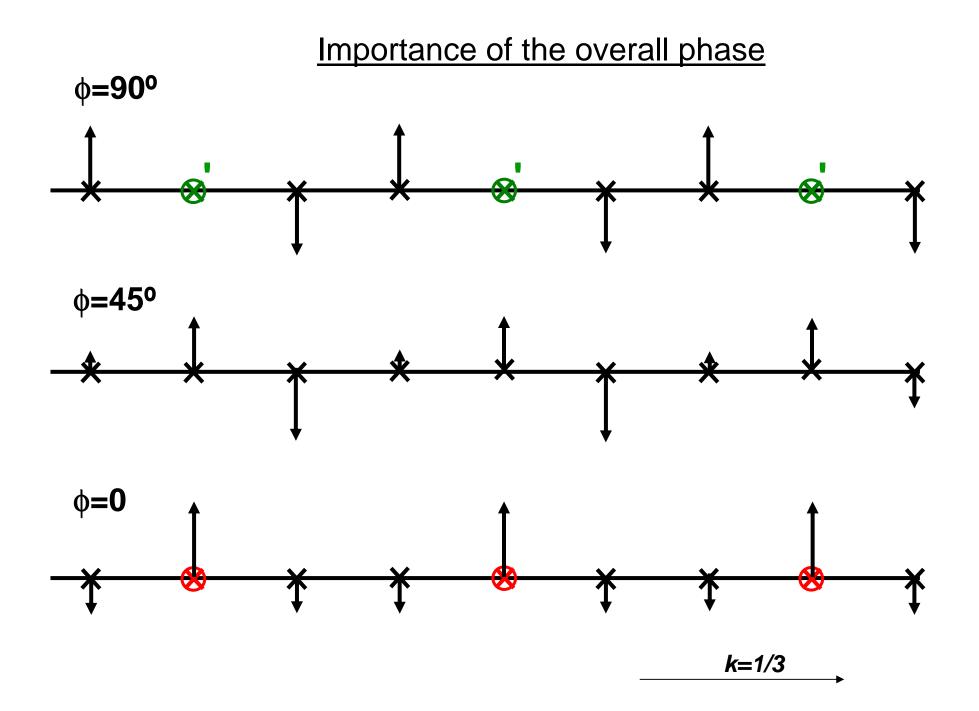
Magnetic Structure

Magnetic Structure


Magnetic Structure

- "Conventional" *irreps* discard a set of operators (e.g., the inversion / for k inside the Brillouin zone) that can still be symmetry operators for the *magnetic structure* (as opposed to its Fourier components).
- 2. Full symmetry properties of emerge only by combining normal SG operators with the complex conjugation operator *K* (e.g., *KI*).
- 3. Operators of the form *Kg* act as anti-linear, antiunitary operators (cfr. Wigner). Their "corepresentation" theory has been extensively developed.




Fourier Components

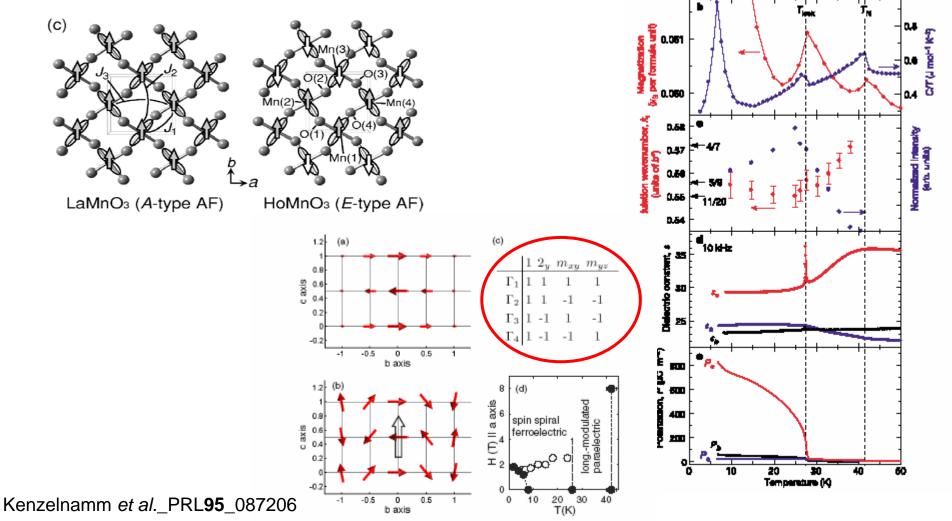
Magnetic Structure

Fourier Components

letters to nature

Magnetic control of ferroelectric polarization

T. Kimura¹*, T. Golo¹, H. Shintani¹, K. Ishizaka¹, T. Arima² & Y. Tokura¹

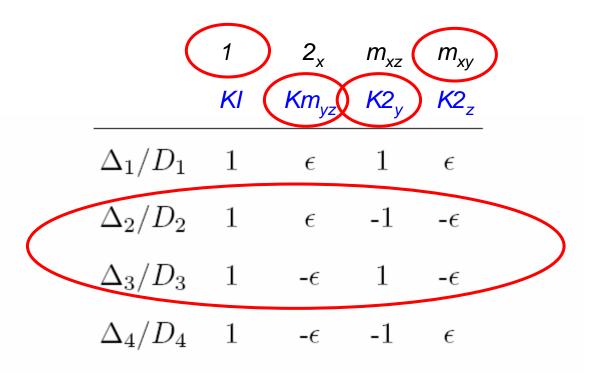

¹Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
²Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573, Japan

*Present address: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

sinusoidal antiferromagnetic ordering. The modulated magnetic structure is accompanied by a magnetoelastically induced lattice modulation, and with the emergence of a spontaneous polarization. In the magnetic ferroelectric TbMnO₃, we found gigantic magnetoelectric and magnetocapacitance effects, which can be attributed to switching of the electric polarization induced by magnetic fields. Frustrated spin systems therefore provide a new area to search for magnetoelectric media.

The room-temperature crystal structure of TbMnO $_3$ investigated here is the orthorhombically ϵ

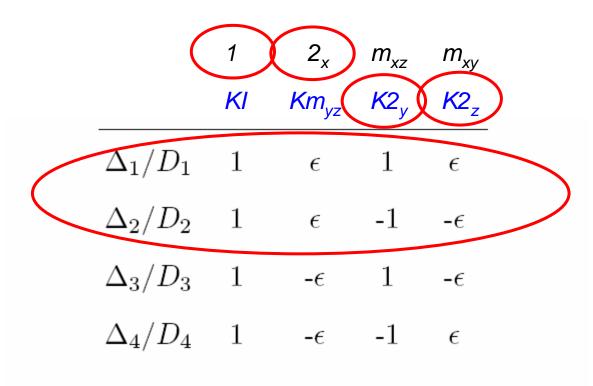
group Phum Fig 1a) We'ne



.

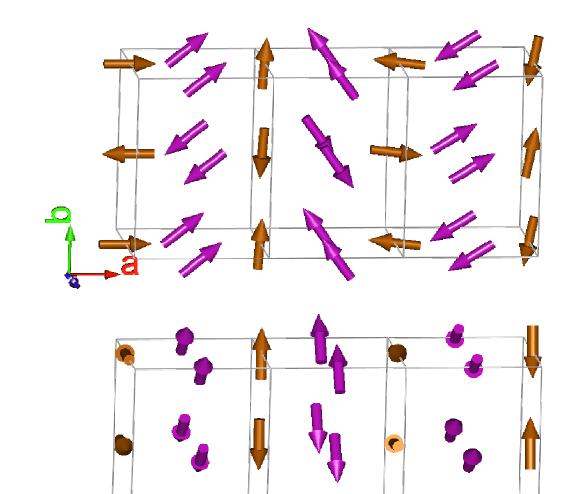
*REMnO*₃ - *Pnma*, $k = (\mu, 0, 0)$

Cycloidals: $D_i + iD_i$

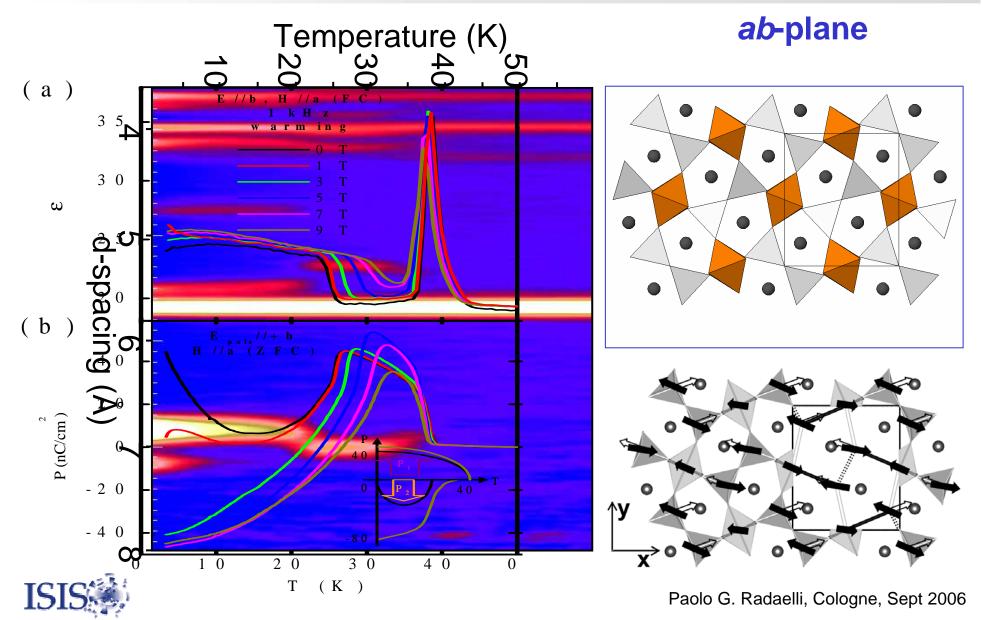

 $m2m \rightarrow P // y$

*REMnO*₃ - *Pnma*, $k = (\mu, 0, 0)$

Cycloidals: D_i+*i*D_i


 $222 \rightarrow \mathbf{P} = 0$

REMnO₃ - Pnma, $k = (\mu, 0, 0)$

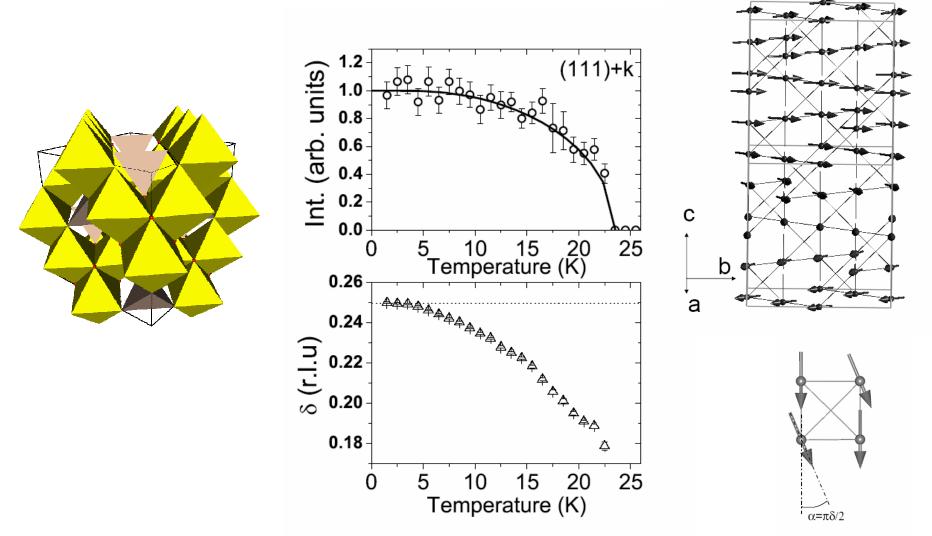


$$m_x(D_3)+im_y(D_2)$$

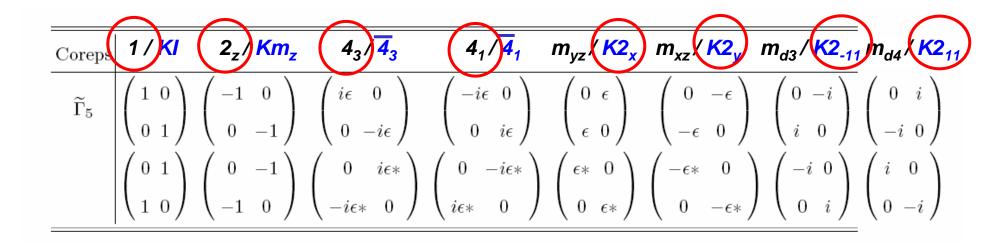
 $m_z(D_3)$ + $im_y(D_2)$

REMn₂O₅ - Pbam, $k = (1/2, 0, \mu)$

$$m2m \rightarrow P // y$$


Coreps1
$$2_z$$
 m_{yz} m_{xz} KI $K2_x$ $K2_y$ Km_z D_1 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$\begin{split} \psi_x(Mn^{4+}) \ &= \ \gamma^*(m1_x + m1'_x) = \gamma^*\left[m1_x, m1'_x\right] \cdot \begin{bmatrix} 1\\ 1 \end{bmatrix} \\ \psi_x(Mn^{3+}) \ &= \ (m1_x + m1'_x) = [m1_x, m1'_x] \cdot \begin{bmatrix} 1\\ 1 \end{bmatrix} \end{split}$$


 $HgCr_2S_4$

 $H_{q}Cr_{2}S_{4} - Fd3m, k = (0,0,\mu)$

 $\psi = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $422 \rightarrow \mathbf{P} = 0$

Magnetic Symmetry - Shubnikov Groups Paolo G. Radaelli

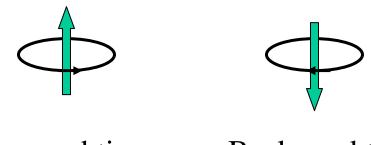
Objectives of this module

- To learn the relevance of time reversal for magnetic structures.
- To learn how PG and SG operators act on spins.
- To learn how magnetic groups can be constructed from subgroups of index 2.
- To learn how to find those on the International Tables for PG and SG.
- To learn about magnetic lattices.
- To be able to construct invariant spin arrangements for magnetic SG, with specific examples.
- To learn the relation between Shubnikov groups and representations.

<u>Reference</u>: W. Opechowski and R. Guccione, "Magnetic Symmetry", in *Magnetism*, Vol II part A, ed. By G.T. Rado and H. Suhl. Academic Press (New York and London), 1965, pp 105-165.

Notation-1

Element of Space group {*F*}: $F=(R|\tau(R)+t)$, where *R* is a proper or improper rotation, **t** is a primitive translation and $\tau(R)$ is a non-primitive translation.


{*R*} is the *point group* associated with {*F*}. If {(*R*|0)} is a subgroup of {*F*}, then {*F*} is called *symmorphic*.

Given a position r on the lattice, the subgroup $\{F(r)\}$ for which $(R|\tau(R)+t) r = t'+r$ is called *site space group*, and its point group $\{R(r)\}$.

We shall call $\{A\}=\{E, E'\}$ the 2-elements group of the *time identity* (E) and *time inversion* (E'). Because crystal structures are static, $\{F\}\otimes\{A\}$ is also a symmetry group of the crystal.

Notation-2

However, if we add spins (i.e., magnetic moments) to some of the atoms, time reversal will *switch* the direction of the spins. So $\{F\} \otimes \{A\}$ cannot be a symmetry group of the magnetic structure, and the magnetic symmetry group, $\{M\}$, *must* be a subgroup of $\{F\} \otimes \{A\}$. In particular, (*I*|E') cannot belong to it.

Forward time

Backward time

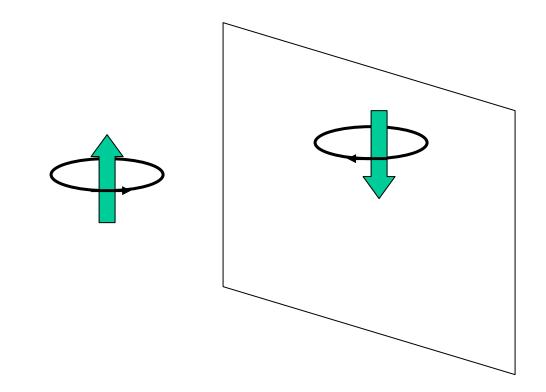
Purpose of the study of magnetic symmetry is to generate systematically *all* the magnetic groups associated with a particular space group of the crystal structure.

Caveat

Magnetic space groups, also known as *Shubnikov* groups, are perhaps the most elegant description of magnetic structures. However, in the presence of magnetic ordering, the crystallographic space group is often *not known* a priori, because the symmetry subtly is lowered by magnetic ordering itself. One has therefore to lower the symmetry in a systematic way, which is the purpose of representation theory. The study of Shubnikov groups with therefore serve as an introduction to the more general methods to be described in the remainder of the workshop.

'Coloured' groups

We have just seen that the magnetic space group $\{M\}$ must be a subgroup of $\{F\} \otimes \{A\}$, and cannot contain (I|E'). However, it can contain elements of the form (F|E'), which will be called *primed* (F'). If *it does not*, it is called a *trivial* (or *colourless*) group. Trivial groups *can* describe magnetic structures. Groups of the type $\{F\} \otimes \{A\}$ are called *gray* or *paramagnetic* groups. All non-trivial subgroups of $\{F\} \otimes \{A\}$ are called *black and white* groups.


The original concepts and terminology were developed by Heesch (1930) and later by Belov and by Zamorzaev (~1955, including a complete list of the magnetic SG). The original aim was purely mathematical or crystallographic (study of coloured patterns on lattices, with *A* being colour inversion). The application to magnetism is due to Landau & Lifshitz (1958). These concept can be extended to *multicoloured* SG, which are also of some interest for magnetism. Aleksei Vasil'evich Shubnikov was the founder and first director of IC-RAS.

Colour vs. Spin

The analogy between colour and spin can be made by replacing the meaning of E' from *time reversal* to *colour change*. However, colour and spin differ fundamentally in the way the regular *space group* operators act upon them. Colours are *scalars*, whereas spins are *axial vectors*.

It is important to remember that **an axial vector is left invariant by centering**. Therefore, *proper* rotations act on spins in the same way as on normal (*polar*) vectors, whereas for *mirror operations and centering* there is an additional *spin flip*.

On top of this, *priming* any operator will entail and additional *spin flip*.

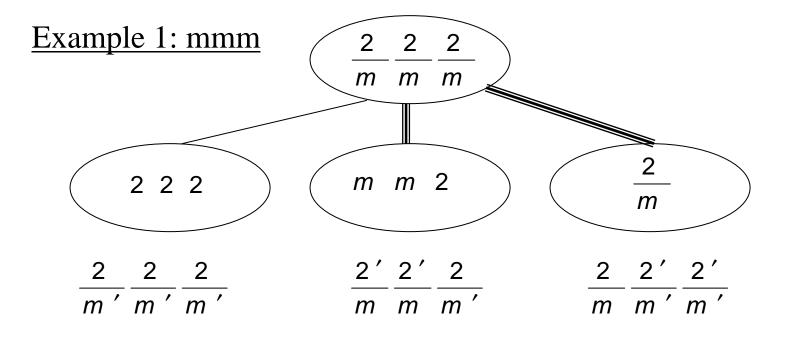
	m _x	$2_{z}, 3_{z}, 4_{z}, 6_{z}$	1	1
Unprimed	Flip s _y s _z	Rotate s_x, s_y	No effect	No effect
Primed	Flip s _x	Rotate s_x , s_y Flip s_x , s_y , s_z	Flip s _x , s _y , s _z	Does not occur

Constructive theorem

We will give here the 'fundamental lemma' to construct magnetic groups. It will apply equally well to SG, PG or lattices. Let $\{G\}$ be a crystallographic group, $\{M\}$ a derived magnetic group (subgroup of $\{G\} \otimes \{A\}$) and $\{G_M\}$ the group of the elements of $\{G\}$ that are *unprimed* in $\{M\}$. It can be easily shown that

$$\{G\} = \{G_M\} + p \{G_M\}$$

where *p* does not belong to $\{G_M\}$, which is therefore a subgroup of index 2 in $\{G\}$.


This simply has to do with the fact that the product of 2 primed elements must be unprimed.

Follows $\{M\} = \{(G_M/E)\} + p \{(G_M/E')\}$

So, the problem of finding *all* magnetic groups arising from a crystallographic group $\{G\}$ is reduced to that of finding all subgroups of index 2 of $\{G\}$.

Example: magnetic point groups

To apply this rule to magnetic point groups, one needs to look no further that page 781 of the International Tables (copied overleaf). Subgroups of index 2 are those that have exactly half the number of elements of the original group. Elements of the subgroup will be *unprimed*, all the remaining elements being *primed*.

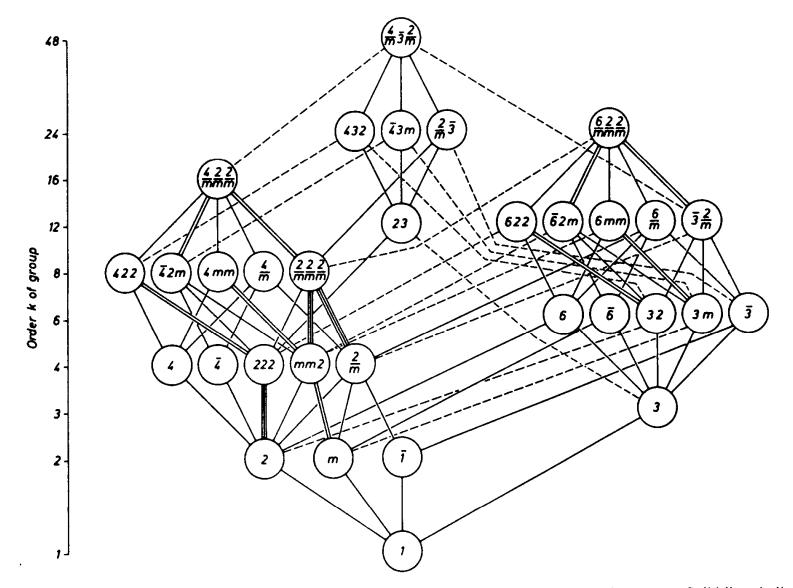
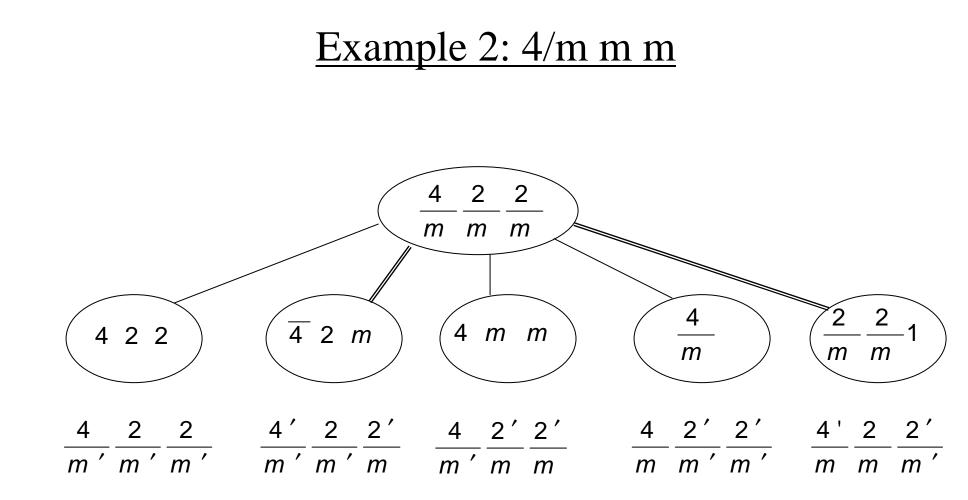



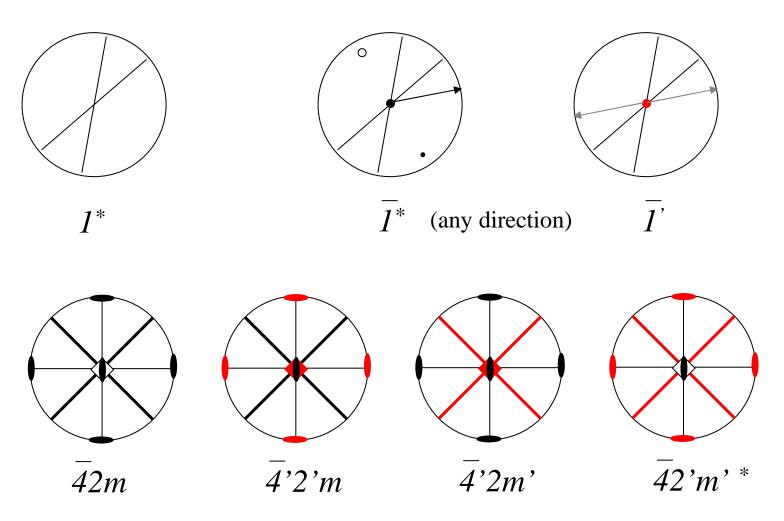
Fig. 10.3.2. Maximal subgroups and minimal supergroups of the three-dimensional crystallographic point groups. Solid lines indicate maximal normal subgroups; double or triple solid lines mean that there are two or three maximal normal subgroups with the same symbol. Dashed lines refer to sets of maximal conjugate subgroups. The group orders are given on the left. Full Hermann-Mauguin symbols are used.

Admissible magnetic point groups

A point group is called *admissible* if all its operators leave *at least one* spin component invariant. Admissible MPG are marked with an asterisk in OG, Table I.

As we shall see, admissible point groups (AMPG) have two very important applications.

- The site symmetry of a magnetic atom *must be* a AMPG.
- A *Ferromagnetic* MSP *must have* a AMPG as its MPG.


The second is a *necessary but not sufficient* condition for the MSP to support FM. The other condition is that its lattice is a trivial magnetic lattice (see below).

23 m3 432 m3m	*6 *6/m 622 6m2 6/mmm	31 33 33 33 33 37 32 37 37 37 37 37	*4 *4 422 4 <i>mm</i> 42 <i>m</i> 42 <i>m</i> 42 <i>m</i>	222 mm2 mmm	*1 *1 *2 *m *2/m
m'3 4'32' #'3m'	6' 6'/m 6'2'2 6'm'm 6'm'2 6/m'mm	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4' 4' 4'/m 4'22' 4'm'm 4'2'm 4/m'mm	*2'2'2 *m'm2' m'mm	1` *2` 2'/m
m3m′	6/m' *62'2' *6m'm' 6'm2' 6'/mm'm	<u>3</u> 'm'	4/m' *42'2' *4m'm' 4'2m' 4'/mm'm	*m'm'2 *m'm'm	2/ <i>m</i> ′
m'3m'	6'/m' *ōm'2' 6'/m'm'm	* <u>3</u> m′	4'/m' *42'm' 4'/m'm'm	m'm'm'	*2'/m'
	*6/mm'm'		- *4/mm'm'		
	6/m'm'm'	• :	4/m'm'm'		

TABLE I

LIST OF THE MAGNETIC POINT GROUPS

Examples of admissible PG

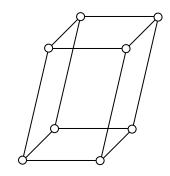
Spin along z

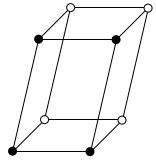
Things to remark about the 42m example

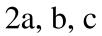
- Spin must be parallel to the 4-fold axis (*always* true except for 2-fold axes).
- 4 must be black. In fact, for spins, 4 = 4
- If a spin is in a plane, that plane *must be red*.
- If a spin is perpendicular to a 2-fold axis, that axis *must be red*.
- Note that the central 2-fold axis of 4' or 4' is always black. This is because the product of two primed 45-degree rotations is an unprimed 90-degree rotation.

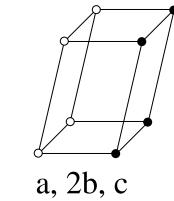
Magnetic	Magnetic point groups	Admissible spin directions
1		$n_1 = 3$ Any direction
2' 2'/m' m'	m'm2'	$n_1 = 2$ Perpendicular to the axis Any direction in the plane
ŧ		$\pi_1 = 1$
m'm'm		Perpendicular to the unprimed plane
2'2'2		Along the unprimed axis
	m'm'2	Along the axis
4 4 4/m	42'2'	of higher
$4m'm' = \overline{42'm'}$		
3 3 32'	3m' 3m'	Along the axis of higher order
		Along the axis of higher order
6m'm' 6m'2'	6/mm'm'	Along the axis of higher order

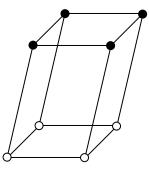
TABLE IV

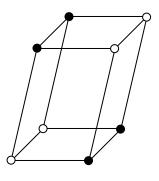

ų. 2

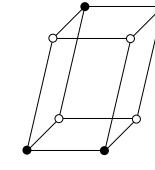

Magnetic Bravais Lattices

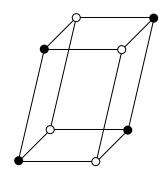

The constructive theorem we have used to generate the magnetic point groups , based on the identification of subgroups of index 2, can be applied to generate magnetic lattices $\{T_M\}$ from Bravais lattices $\{T\}$.

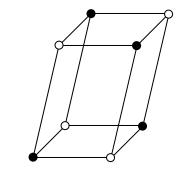

In general, a group of lattice translations generated by a set of primitive vectors a_1 , a_2 , a_3 has exactly *seven* subgroups of index 2. However, they do not always generate independent MBL, as some of them can be equivalent by interchange of the axes. Also, we are only interested in MBL that *belong to the same holoedry* of the original BL.


In fact, as we shall see in the remainder, MSG either share the *same lattice* with the original SG (trivial ML) or the same *point group* (and therefore, necessarily, the same holoedry).

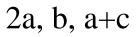


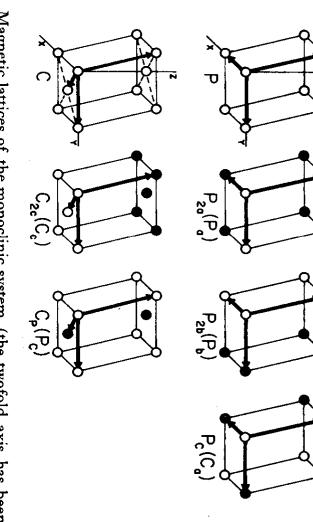






a, b, 2c



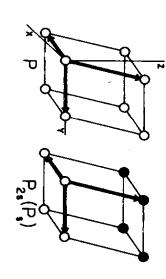
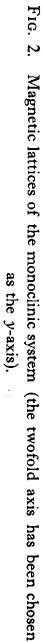
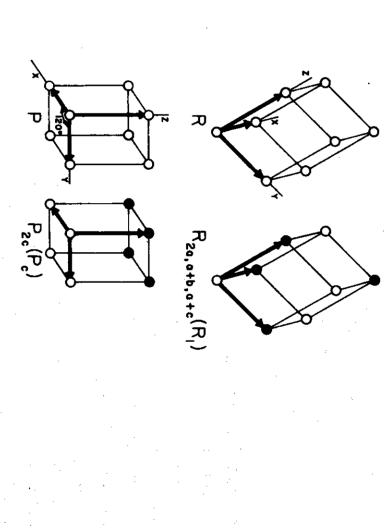


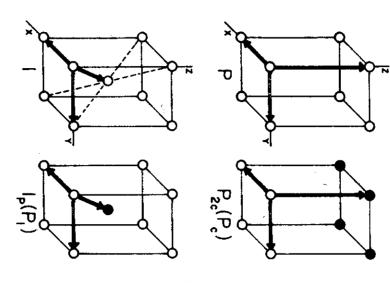
a, b+c, 2c

2a, a+b, c

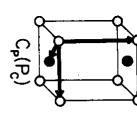
2a, a+b, a+c

N


FIG. 1. Magnetic lattices of the triclinic system.

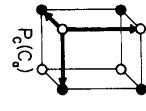
 \mathbf{O}

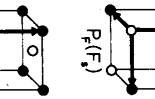

I_P(P)

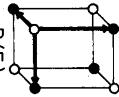
• •

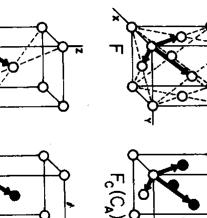
-

σ

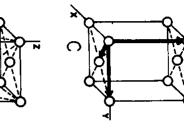

σ



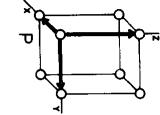

 \sim

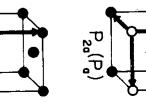

С

C1(1°)

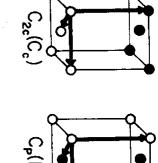


O




à


0


О

ð

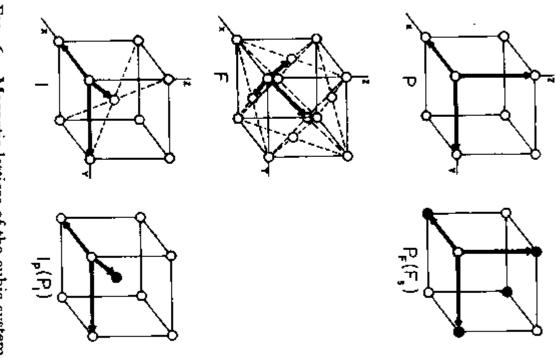


Fig. 6. Magnetic lattices of the cubic system.

Magnetic Space Groups

Once again, the constructive theorem, based on the identification of subgroups of index 2, can be applied to generate magnetic lattices $\{F_M\}$ from space groups $\{F\}$.

The method to generate all the MSG systematically is explained in OG. We will limit ourselves to use the International Tables volume A. In there, for each SG, there is a list of *minimal nonisomorphic subgroups* (Types I, IIa and IIb), and *minimal isomorphic subgroups of lowest index* (Type IIc). The index is indicated in brackets (e.g., [2]).

Therefore, each subgroup listed as [2] will generate a nontrivial magnetic space group. There are 1421 of them in total, 1191 of which are non-trivial. All SG except F23 and $P2_13$ generate at least 1 non-trivial MSG.

Rules to construct Magnetic Space Groups

- 1. Identify the subgroups of type I. They share the same lattice (trivial MBL) but have different PG, so they correspond to all the subgroups of index [2] of the associated PG (with multiplicity). For these, it is sufficient to prime the generators that correspond to missing operators.
- 2. Identify all the other subgroups of index 2 (IIa, IIb and IIc, no distinction). Then
 - Identify the MBL based on the supercell, and write its symbol.
 - For the Belov symbol (right column in OG), one simply need to complete the H-M symbol with that of the subgroup.
 - For the OG symbol, the modified operators with respect to the original symbol will be primed (e.g. m->n=m')

Ţ
Ε
È,
_
Ξ
Г

.

List
0F
MAGNETIC
SPACE
GROUPS [®]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
nic system $P_{1}I$ $P_{1}I$ $P_{1}I$ $P_{1}C$ $P_{1}I$ $P_{1}C$ $P_{1}C$ $P_{1}C$ $P_{1}C$ $P_{1}C$ $P_{1}C$ $P_{2}C$
<u> </u>
ייד וייד נקרא אין אין אין אין אין אין אין אין אין אי
مست ایست (۲۰
ست ایست
ست ایست
·····
. <u></u>
1 L 2cm
Pcm
Triclinic system $P_{\mathfrak{B}}\mathfrak{m}$

^a Every page of Table III should be read first from the top to the bottom of the left-hand double column, then from the top to the bottom of the middle double column, and finally from the top to the bottom of the right-hand double column.

*Pc'a2' *Pca'2'
P1212121
$P_1 2_1 2_1 2_1$
C_2221
I _c 2 ₁ 2 ₁ 2 ₁
P_12221
$P_{C_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2_{1}2$
C ₂ 22 ₁

TABLE	
III	
(continued)	

	*Fm'm'2	$A_{a}ma2$	Azamm'2'	F_dd2	P _{FMn2}
	*Fm'm2'	I_mm2	A _I mm2		* <i>P</i> n'n'2
		P _A mm2	Apmn2		*Pn'n2'
	Fmm2	A_amn2	$A_{3a}mm^2$		
T. Burt. T	Apb a 1		* <i>Am</i> 'm'2		Pmn2
r gnaL1	Apba L		*Amm'2'		T'n a 21
r Acarl	110 02		*Am'm2'		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
D	1 - 1' - J'				* 0/3/
P.ha?	Anhan		Amm2		* D*'^^'
	* 45' 1'7				1
	* Aba'2'	Pcnn2	$C_{P}c'c'2$		Pra2.
	* 46'00'	Pcnc2	Cpc'c2'	Land t	$P_{to}b a L$
	Abal	Pccc2	Cpcc2	FenaL1	Pub al
;	•		*Cc'c'2	PebaL	Pusba2
PAnn2	Apm'a'2		*Cc'c2'		*P5 a 2
P ₄ mn2 ₁	Apma'2'				*Pb 42
PAna21	Apm'a2'		Ccc2		
PAma2	Apma2				Pba2
	* <i>Am'a</i> '2	Pcna21	Cpm'c'21		
	*Ama'2'	$P_{Cmn}2_1$	$C_{P}mc'2'_{1}$	P _s na2 ₁	$P_{1b}m'n2_1'$
	*Am'a2'	$P_{C}ca2_{1}$	$C_{Pm}'c2_1'$	$P_{o}mn2_1$	Pum21
		P_{Cmc2_1}	$C_{PTHC}2_{1}$		*Pm'#'21
	Ama2		*Cm'c'21		*Pmn'21
I_aba2	A16 m 2		*Cmc'21		*Pm'n21
PAcc1	Ap6'm'2		*Cm'c21		-
PBca21	Apom'2'		Cmc1		Pmn21
P_Bmc2_1	Apb'm2'				n mit r
$A_{o}ba2$	$A_{2m}b'm'2$			P_mn2	P #c'7'
B _I ma2	$A_{l}bm2$	I had	C'=''-'''	P_m2	P2
P _B ma2	Aphm2	1	()		* Pn'c'2
$A_{a}bm2$	$A_{2a}bm2$	Pcha2	C		* Pnc'2'
•	* Ab m 2	Perma2	C === /== 2'		*Pn'c2'
	*Abm'2	Cece2	$C_{um}m'^{2}$		
	* Ab m2	C_mc2.	$C_{m'm2'}$		Perro
		I _a nın2	Crmm2	r mal 1	Peoc a L
	Abm2	Pcmm2	C _P #im2	L mont	Lenvie I
,		C _s mm2	C _{1e} mm2	P.ca2.	P. (a)
I _a ma2	April m'2		*Cm'm'2		* Pr'a'7,
PAnc2	Apm'm'2		*C#'#2'		Pcal
Pame2	Apmm'2'		ļ		•
P_Bmn2_1	$A_{Pm}'m2'$		Cmm2	system	Orthorhombic system

TABLE	
Ξ	
(continued)	

			21/1/	P	Intra's
	*Pm'+'^		*Pb'an'	Prmc21	Ipma'2'
	Pmna'		*Pb'a'n	P _I ma2 ₁	Ipm a2
	Pmn'a		Pban'	P _I ma2	1pma2
	Pm'na		Pb'an		*Im'a'2
	1				*1ma 2
	Pmna		Pban		*Im'a2'
	Pn'n'a'	Cacca	Pccom		
	*Pn'na'	Paban	$P_{uc}c'\pi'$		Ima2
	*Pnn'a'	Ретпа	$P_{uc}c'm$	r _i ba2	7 D Odr
	*Pn'n'a	Pacca	P socon'	r kali	I_L'~'1
	Pnna'	C_cem	Pecent	Picc1	I Laini
	Printa	Pacem	Pracem	, 2	1-2-1
	Pn'na		Pc'c'm'		*Ib'a')
			*Pc'cm'		*11,'20'
	Pnna		*Pc'c'm	_	7801
(e	:		Pccm'		#-5
Canca	PAm'ma		Pe' cm	P _f mi2	Ipm'm'2
P.cca	.P			P_{Imn2_1}	Ipmm'2'
Pabern	P _u mm'a		Peem	P _I mm2	Ipmm2
P_bam	Pontma	r saat	T Front		*Im'm'2
	Para mo		5 n n n		* <i>lm</i> 'm2'
9	Panna		1777		
Publican	Pamma		* D* / s / s		Imm2
C.mcm	PAmma		P., .		I
Panna	Pacmma				*Fd d'2
Pomma	$P_{23}mma$		Pnnn		*Fd' d2'
	Pm'm'a'	Comma	Perumani		•
	*Pm'ma'	Pecm	$P_{10}m'm'm$		Fdd2
	*Pmm'a'	Pemma	P _{so} mmm'		1
	*Pm'm'a	F _a mmm	Pronunt	Arba2	Fam'm'2
	Pmma'	Cammin	Рстит	Acma2	$F_{A}mm'2'$
	Pmm'a	Pamm	tututut"5.7	Acbm2	FAm'm2'
	Pm'ma	,	n w w T	CAcc2	$F_{C}m'm'2$
			, , , , , , , , , , , , , , , , , , ,	C_{Amc2_1}	Femm'2'
	Pmma			A_{Cmm2}	F _A mm2
			D.'.	C_{Amm2}	Fcmm2
Panna	$P_{xb}a'n$		1 1101111		
Ponna	P _{zo} b'an		Parmin		Fmm2
Paban	- 300 mile				I

	"Cmica		*Pb'cn		*Pc'cn'
			1 301		"Fccn
	Cancal		* DL		
	Cmc'a		* <i>Pb'c</i> ′n		Pccn'
	Cm'ca		Pbcn'		Pc'cn
			Pbc'n		
	Cmca		Pb'en		Peen
t Cuna				Pennm	$P_{z,b}'a'm$
P Cocn	Cpm cm		Phen	$P_b nma$	$P_{uo}b'am$
		L ^e CCH	L ¹⁰ 22 W W V	Pebam	$P_{20}bam$
Ponnu		Panna	$P_{sc}m'mn$		Pb'a'm'
г впта	Chartent	Pennat	Pacmmin		*Pb'am'
1 Cutura	Cpmc m	Į	Pm'm'n		*Pb'a'm
L'CDCMI	Cpm cm		*Pmm'n'		Pbam'
PAmma	Cpmcm		*Pm'm'n		Pb'am
ŗ	Cm'c'm'		Pmmn'		1.0000
	*Cm'cm'		Pm'mn		PF
	*Cmc'm'			Penna	P ₂₀ c'ca
	*Cm'c'm		Pmmn	Рассп	P ₂₀ cca'
	Стст		14 U U J	Paben	P _{2b} c'ca
	Cmc'm		Deferm	P_vca	P_{socca}
	Cm ² cm		*Pn'n'm		Pc'c'a'
	ļ		Panm		*Pc'ca'
	Cmcm		Pn'nm		*Pec'a'
					*Pc'c'a
	Pn'm'a'		Pmm		Peca'
	*Pn'ma'				Pec'a
	*Pnm'a'	Paben	Pubc'm'		Pc'ca
	*Pn'm'a	Pabca	Pbcm		1 0000
	Pnma'	P.nnu	P_bc'm		Drea
	Pnm'a	Pabem	Probert	Panha	Pumna
	Pn' ma		Pb'c'm'	Pennin	Pumna
			*Pb'cm'	P,ben	P _u m'na
	Pnma		*Pbc'm'	Pomna	Pumna
			*Pb'c'm	,	Pmna
	Pb'c'a'		Pbcm'		*I'm na
	*Pb'c'a		Pbc'm		***
	Pb'ca		Pb'cm		Pmna
	170CA		Phom	o system	Orthorhombic system

	*Ib'c'a		*Fm'm'm		Ce'e'm'
	Ih' ca	-	Fm'mm		*Ccc'm'
	1000				*Cc'c'm
	Thea		Fmmm	-	Ccom'
P _I ban	Ipb'a'm'	Pcnna	Upcc a		Cc'cm
Pjben	Ipb'am'	P c b c n	Cpcca		₹ <u>1000</u>
P _I bam	Ipb'a'm	Pccca	Cpc ca		Ccem
P _l ccn	Ipbam'	Pcban	Cpcca	1,bam	$C_{I}m m m$
P _I bcm	Ipb'am	j	Cc c a	1 _c mma	
P _I ccm	I _P bam		*Ucc'a	Pcban	Cpm'm'm'
	Ib'a'm'		*Cc'c'a	Pcmna	C _P mm'm'
	*Iba'm'		Ccca	Pcbam	C _P m'm'm
	*Ib'a'm		Cc'ca	Pcmmn	Cpmmm'
	Ibam'			Pcmma	C _P m'mm
· .	Ib'am		Ccca	C _o mcm	$C_{2o}mm'm'$
				C _e cem	$C_{2c}m'm'm$
	Ibam	Icbca	C _I m'm'a'	Iomm	C _I mmm
I Inuu		I _c mma	C _I mm'a	Pcmmm	Cpmmm
	1_m'm'm'	Pcbcm	Cpmma'	$C_{o}mm$	$C_{1c}mmm$
r Innin	I pan'an'an	Pcmma	C _P mm'a		Cm m m
	I pantam	Pccca	C _P m'ma		"Cmm m
D	Immm	C_{cca}	$C_{2o}m'm'a$		
		C _e mca	$C_{2c}m'ma$		Cmmm
	* <i>[m'm'm</i>	Icbam	Cımma	14	Cm mm
	Im'mm	Pcccm	Cpmma		
		Comma	$C_{2c}mma$		Cmmm
	Immm		Cm'm'a')
	Fd'd'd'		*Cmm'a'	Pcbcn	C _P m'c'a'
	*Fd'd'd		*Cm'm'a	Pcbca	Cpm'ca'
	Fd'dd		Cmma	Pcmna	Cpmc'a'
			Cm'ma	Pcccn	Cpm'c'a
	Fddd		•	P _c bcm	C _P mca'
			Cmma	$P_{C}nma$	Cpmc'a
CAcca	Fcm'm'm')	Pccca	Cpm'ca
CAmca	Fcmm'm'	Pcnnn	Cpc'c'm'	P _c bam	Cpmca
C_{Accm}	Fcm'm'm	$P_C nna$	C _P cc'm'		Cm'c'a'
$C_A mma$	Fcmmm'	P _C nnm	$C_{PC}c'm$		*Cm'ca'
C _A mcm	Fcm'mm	Pcccn	Cpccm'		
C_Ammm	Fcmmm	$P_{C}mna$	Cpc'cm		Cmca
	Fm'm'm'	P _C ccm	Cpccm	ic system	Orthorhombic system
	-			-	

*P42'2'

TABLE III (continued)

I.4.ed	$P_1 A_2 n' m'$	P ₁ 4 ₃ 2 ₁ 2	Ip412'2	PC41212	C P4124
1.41md	141mm	7[7]7			D_1'33'
•		P.1.3 3	In4.2'2'	P.4.22	P.4,22
	*P4, n'm'	P14,22	Ip4'122'	I ₆ 4122	P14222
	P4,100	r14177	77 tudr		
	an teler	2		P-4-33	P=4.22
	P4''		14,2'2	P _c 4 ₁ 22	$P_{ze}4_{1}22$
	:		*14,2'2'		P4'2'2
	P4 nm	-	I4'122'		*P4,2'2'
. L 1104			1		P4;22'
Pr4.hc	Pp4'cm'		<i>I</i> 4 ₁ 22		
Pc4.mc	Pp4 ₄ cm			-	P4,22
	*P4_c'm'	P ₁ 4 ₂ 212	IP4'2'2		
	P4'semi	P ₁ 42 ₁ 2	I _P 42'2'	-	P4'12'12
	$P4_{1c}m$	P ₁ 4,22	I ₂ 4'22'		*P412(2'
	•	P ₁ 422	Ip422		P4 ['] ₁ 2 ₁ 2'
	P4 _s cm		14'2'2		
	!		*142'2'		P4.2.2
P.4nc	$P_{1e}4b'm'$		14'22'	$P_{C4_{1}2_{1}2}$	$P_{P}4'_{1}22'$
P.4.bc	$P_{s}A'bm'$			$P_{C}4_{1}22$	L'P4122
$P_c A_2 nm$	$P_{1c}A'b'm$		1422	1	P412.2
P _e Abm	P ₂₀ Abm				7 714.5
	14 OF J.		P4'2'2		*D4 7/7/
	* 041/		*P4 ₈ 2'2'		P4'77'
	P4'b'm		P4'212'		P4122
	ļ		71761. 7	P_4_212	P _{\$0} 4'2' ₁ 2
	P4bm		P4))	P,4212	P ₁₀ 42 ₁ 2
		Pc43212	274422		P47212
14~	$P_{1}4m'm'$	Pc4,22	1 1/24222		- P42'2'
D_AL	- 201777 m		P4,2'2		P4'212'
r Agmic	D. 4		*P4,2'2'		
P _e A _s cm	P ₃ 4'm'm		P4'22'		P4212
I_c4mm	P ₁ 4mm			$P_{c42_{1}2}$	Pp4'22
Рс4тт	Pp4mm		P4,22	PA322	P ₃₄ 4'22'
$P_{e}4mm$	Pz4mm	P _c 4 ₈ 2 ₁ 2	217642 ² .7	I _e 422	P ₁ 422
	*P4m'm'	FeA1212	7178408.5	Pc422	P _P 422
	P4'mm'		7 ¹ 7 ⁴ 8.7	P,422	P ₁₀ 422
	P4'm'm		*P4_212'		P4'2'2
	P4mm		P4'212'		P422
	47777				
ľ			P4.3.3	system	Tetragonal system

TABLE III (continued)

14'c'm		14cm	1p4m m	IpA'mm	Ip4 m m	Ip4mm	*14m'm'	14'mm'	14' m' m		I4mm	~ P430 C	1'420C	P410'c		1'4±0C		Pp4'2mc'	$P_{P}4_{e}mc$	*P4 ₂ m'c'	P4'mc'	P4'm'c		$P4_{tmc}$	*P4n'c'	P4'nc'	P4'n'c		P4+r	PP4'cc'	Pp4cc	*P4c'c'	P4'cc'	P4'c'c		P4~	Tetragonal system
			P _J 4nc	P142mc	$P_{l}4_{2}nm$	P ₁ 4mm												$P_C 4_{snm}$	$P_{C4_{3}Cm}$											$P_{C}4nc$	$P_{C}4ec$						system
P4'2'm		$P\bar{4}2_{1}m$	Pp4'2c'	$P_{P}\overline{4}2c$	*P42'c'	$P\overline{4}'2c'$	P4'2'c	1424	Din.	$P_I \overline{4}' 2m'$	$P_{P}\overline{4}'2m'$	$P_{2a}\overline{42'm'}$	$P_1 \overline{4} 2m$	$P_P \overline{4}2m$	$P_{zc}\overline{4}2m$	*P42'm'	$P\ddot{4}'2m'$	P4'2'm		$P\bar{4}2m$	42m	*I41c'd'	I4icd	14'1c'd		$I4_1cd$	*14 ₁ m'd'	I4'md'	I4'm'd		$I4_{1}md$	14c m	14 cm	Ip4 c m	Ip4cm	*14c'm'	I4'cm'
	-		Pc4n2	$P_{C}\overline{4}c2$						$I_c \tilde{4}c 2$	$P_{C}\overline{4}b2$	$P_{e}\overline{4}2c$	I_4m2	$P_{C}\overline{4}m2$	$P_e \overline{4}2m$																	Pj4cc	Pr42bc	$P_{I}4_{2}cm$	P ₁ 4bm		
P ₁ 4n2	*P4n'2'	P4'n2'	P4'n'2	1'4n2		$P_{2c}\overline{4}'b'2$	$P_{ze}\overline{4b2}$	*P40'2'	P <u>4</u> 'K)'	P3'6')	P462	1	Pp4'c2'	$P_{p}\bar{4}c2$	*P4c'2'	P4'c2'	P4'c'2		D7-2	$P_{p}\overline{4}'m2'$	$P_{2c}\overline{4}'m'2$	$P_i 4m2$	Pp4m2	$P_{2e}\overline{4}m2$	*P4m'2'	P4'm2'	$P\bar{4}'m'2$	P4m2	*F421c	12 P.T	P47210		P421c	$P_{2c}4'2_{1}m'$	$P_{2e}\overline{4}2_{1}m$	* P42'm'	P4'21m'
I _c 42d						$P_e \overline{4} n 2$	P,462						$P_{C}\overline{4}2_{1}c$	$P_{C}\overline{4}2c$						$P_{C}\overline{42}_{1m}$	$P_{e}\bar{4}c2$	$I_e \overline{4}2m$	$Pc\overline{42m}$	P,Am2										$P_c \overline{4} 2_1 c$	$P_c \tilde{A} 2_1 m$		

TABLE III (continued)

P4/m/nc P4/m/nc P4'/m/n' P4'/m/n' P4'/m/n' P4/m/n' P4/m/n' P4/n/ P4/n/ P4'/n/ P4'/n/ P4'/n/ P4'/n'm' P4'/n'm' P4'/n'm'	$P_{c}4/mnc$ $P_{c}4/mnc$ $P_{c}4/mbm$ $P_{c}4_{s}/mm$ $P_{c}4_{s}/mnc$ $P_{c}4_{s}/mnc$	$\begin{array}{c} P4 nbm\\ P4 n'bm\\ P4' nb'm\\ P4' nb'm'\\ P4' nb'm'\\ P4' n'b'm'\\ P4/nb'm'\\ P4/nb'm'\\ P_{sc}4 nbm\\ P_{sc}4' nbm'\\ P_{sc}4' nbm'\\ P_{sc}4' nbm'\\ P_{sc}4 nb'm'\\ P_$		P4 [mmm P4 [m'm'm *P4/mm'm'
P4/m/nc P4/m/nc P4'/mn'c P4'/mn'c P4'/mn'c' P4/mn'c' P4/m'nc P4/mm'n P4/nmm P4'/nmm'n P4'/nmm' P4'/n'mm	$P_{c}4 mnc$ $P_{c}4 mnc$ $P_{c}4 nbm$ $P_{c}4_{s} nnm$ $P_{c}4_{s} nbc$ $P_{c}4_{s} nbc$ $P_{c}4_{s} nbc$	$\frac{P4 nbm}{P4 n'bm}$ $\frac{P4 n'bm}{P4' nb'm}$ $\frac{P4' nb'm'}{P4 nb'm'}$ $\frac{P4' n'b'm'}{P4 nb'm'}$ $\frac{P4}{nb'm}$ $\frac{P_{sc}4}{nbm'}$ $\frac{P_{sc}4' nbm'}{P_{sc}4' nbm'}$	3	P4' [mmm] P4' [m' m' n
P4/m/nc P4/m/nc P4'/mn/c P4'/m/n'c P4'/m/n'c P4/m/n'c P4/m/n' P4/m/m P4/m/m P4/nm/m P4'/mm/m	$P_{c}4/mnc$ $P_{c}4/mnc$ $P_{c}4/mbm$ $P_{c}4_{s}/mm$ $P_{c}4_{s}/mnc$ $P_{c}4_{nmc}$	$\begin{array}{c} P4 nbm\\ P4 n'bm\\ P4' nb'm\\ P4' nb'm'\\ P4' n'b'm'\\ P4' n'b'm'\\ P4/nb'm'\\ P4/nb'm'\\ P4_{xc}4' nbm\\ P_{xc}4' nbm'\\ P_{xc}4' nb'm\\ P_{xc}4 nbm'\\ P_{xc}4 nb'm'\\ \end{array}$		P4 [mmm]
P4/m/nc P4/m/nc P4'/mn'c P4'/mn'c P4'/m/n'c P4/m'n'c P4/m'n'm P4/n/mm P4/nmm' P4'/nmm' P4'/nmm'	$P_{c}4/mnc$ $P_{c}4/mnc$ $P_{c}4/mbm$ $P_{c}4_{s}/mm$ $P_{c}4_{s}/mm$	$\frac{P4 nbm}{P4 n'bm}$ $\frac{P4 n'bm}{P4' nb'm}$ $\frac{P4' nb'm'}{P4 nb'm'}$ $\frac{P4 nb'm'}{P4 nb'm'}$ $\frac{P4 n'b'm'}{P_{sc}4 nbm}$ $\frac{P_{sc}4' nbm'}{P_{sc}4' nbm'}$	-	-
P4/m/nc P4/m/nc P4//mn/c P4'/mn/c P4'/m/n'c P4/m/nc P4/m/nc P4/m/m P4/mm/m P4/nmm P4'/mm/m	$P_{c4} mnc$ $P_{c4} mnc$ $P_{c4} mbm$ $P_{c4} mm$	$\begin{array}{c} P4 nbm\\ P4 n'bm\\ P4' nb'm\\ P4' nbm'\\ P4' nbm'\\ P4' n'b'm'\\ P4 n'b'm'\\ P4 n'b'm'\\ P4 n'b'm'\\ P_{sc}4 nb'm\\ P_{sc}4 nb'm\\ \end{array}$		P4' mm' m
P4/m/nc P4/m/nc P4/m/n'c P4'/m/n'c P4'/m/n'c P4/m/n'c P4/m/n'c P4/n/mm P4/n/m	Pc4/mm	P4/nbm P4/n'bm P4'/nb'm P4'/nb'm P4'/nb'm' P4/nb'm' P4/n'b'm' P4/n'b'm' P4/n'b'm'		P4 m'mm
P4/m/nc P4/m/nc P4'/mn/c P4'/mn/c' P4'/m/n/c' P4/m/n/c' P4/m/n/c' P4/m/m	Pc4/mnc	P4/nbm P4/n'bm P4'/nb'm P4'/nb'm P4'/n'b'm P4/n'b'm' P4/n'b'm'		
P4/m/nc P4/m/nc P4'/mn/c P4'/m/n'c P4'/m/n'c P4/m/n'c' P4/m/n'c'	Pc4/mm	P4/nbm P4/n'bm P4'/nb'm P4'/nbm' P4'/n'b'm *P4/nb'm' P4'/n'bm'		P4 mmm
P4/m/nc P4/m/nc P4'/mn'c P4'/mn'c' P4'/mn'c' P4'/m/n'c' P4/m/n'c' P4/mmn'c'	Pc4/mnc	P4/nbm P4/n'bm P4'/nb'm P4'/nbm' P4'/nbm' *P4/nb'm		4/mmm
P4/m/nc P4/m/nc P4'/mn/c P4'/mn/c' P4'/mn/c' P4/mn/c' P4/m/n/c'	Pc4/mm	P4/nbm P4/n'bm P4' /nb'm P4' /nbm' P4' /n'b'm		* <u>1</u> 42' <i>d</i> '
P4/m/nc P4/m/nc P4'/mn/c P4'/mn/c P4'/m/n/c P4'/m/n/c	Pc4/mm	P4/nbm P4/n'bm P4'/nb'm P4'/nbm'		I4'2d'
P4/m/nc P4/m/nc P4'/mn/c P4'/m/nc' P4'/m/nc' P4'/m/nc'	Pc4/mm	P4/nbm P4/n'bm P4' /nb' m		14°2 d
P4/minc P4/minc P4'/mn'c P4'/mnc' P4'/mnc' P4'/mn'c	P_{C4}/mnc	$\frac{P4 nbm}{P4 n'bm}$		
P4/m/nc P4/m/nc P4'/m/nc P4'/m/nc' P4'/m/nc'	P_{C4}/mnc	P4 nbm		142d
P4/mnc P4/m'nc P4'/mn'c P4'/mnc'	P_{C4}/mn	P4Inbm		
P4/mnc P4/m'nc P4'/mn'c	P_{C4}/mn P_{C4}/mn		$P_1\overline{4}2_1c$	$I_{P}\overline{42'm'}$
P4/mnc P4/m ['] nc	L.C.H June	Pp4' m'cc'	$P_{1}\overline{4}2c$	$I_{p}\overline{4}'2m'$
P4/mnc		Pp4' Imcc'	$P_1\overline{42}_1m$	$I_{P}\overline{4}'2'm$
P4/mnc	$P_{c}4 ncc$	Pp4/m'cc	$P_1\bar{4}2m$	1 = 42 m
	P _C 4/mcc	$P_{P}4 mcc$		*142'm'
		P4/m'c'c'		14'2m'
$P_{2e} + [mom I_e + g]mov$ D $A (mk'm' D A (mm))$		P4' m'cc'		1 <u>7</u> ,2,21
		*P4/mc'c'		142m
		P4'/m'c'c		
		P4' mcc'	$P_I \bar{4}b2$	$I_p \overline{4}c' 2'$
P4 m bm		P4' mc'c	$P_1 \overline{4}c^2$	Ip4c2
*P4/m6 m		P4/m'cc		* I4c'2'
P4' [m'b'm		P4/mcr		$1\bar{4}'c2'$
P4' mbm'				IÀ'~'7
P4 mb m	I _c 4/mcm	$P_{I}4/mm'm'$		ן ו
P4/m bm	Pc4/nbm	$P_{P}4' m' mm'$		1402
	$P_{C}4 mbm$	Pp4' [mmm'	P ₁ 4n2	$I_P4'm'2$
F4/mom	Pc4/nmm	$P_{p}4 m'mm$	Pj4m2	Ip4m2
	Pe4/mcc	P _{2e} 4/mm'm'	- - 1	*14m/2
P4/n'n'c'	$P_c 4_2 mmc$	$P_{2c}A'/mmm'$		14 m2
P4' n'nc'	$P_c 4_2 mcm$	$P_{xc}4' mm'm$		$14 m^2$
*P4/nn'c'	$I_{c}4/mmm$ *	$P_{i}4 mmm$		
P4' n'n'c	P_C4/mmm	$P_P4 mmm$		I4m2
P4' nnc'	P_c4/mmm	$P_{zc}4/mmm$		
P4' nn' c		P4 m'm'm'	stem	Tetragonal system

Tetragonal system	tem	Pp42/m'cm	Pc4 ₃ /nmc	*P42/mn'm'	
P4/nmm		Pp4's/mcm'	Pc42/mbc	P4'2/m'nm'	
		$P_P A_2' m' cm'$	$P_C 4_2 / nbc$	$P4_{y} m'n'm'$	
$P_{u}4' nm'm$	Pe42/ncm	$P4_2 nbc$		$P4_{\circ}/nmc$	
$P_{sc}4' nmm'$	Pe42/nmc			-24	
$P_{2e}4/nm'm'$	$P_c 4/ncc$	P42/n'bc		$P4_2/n'mc$	
DAlass		$P4'_2/nb'c$		$P4'_2 nm'c$	
I MINGL		P4'2(nbc'		P4'sInmc'	
DA 1		P4'2 n'b'c		$P4'_{j}n'm'c$	
I thin cc		*P4z/nb'c'		*P4, nm'c'	
DA'land		P4'2/n'bc'		P4' In'mc'	
PA' m' c' c		$P4_2 \pi'b'c' $		$P4_{2}/n'm'c'$	
* P4/m/'/		P4. mmm			
P4' n'cc'				$P4_2/ncm$	
P4/n'c'c'		$P4_{\mathbf{z}}/n'nm$		DA In'	
P4. mmc		$P4'_2/nn'm$		$P4'_{2}/nc'm$	
		$P4_2/nnm$	-	P4'sIncm'	
P4.1m'mc		$P4_2/n'n'm$		$P4'_2 n'c'm$	
P4's/mm'c		$^{*}P4_{2} mm m$		*P42/nc'm'	
$P4'_2(mmc')$		$P4_2 n'nm'$		$P4'_2/n'cm'$	
P4's/m'm'c		$P4_2 n n m$		$P4_{z}/n'c'm'$	
*P42/mm'c'		$P_{I}4_{2}/nnm$	$I_c 4_1$ and		
$P4'_2 m'mc'$		$\Gamma_{I}4_{2} nn m$	I _c 4 ₁ /acd	14/mmm	
P4 ₂ /m'm'c'		$P4_2 mbc$			
Pp4s/mmc	$P_C 4_u mcm$			14/11 11/11	
Pp42/m'mc	$P_C 4_2/ncm$	P4 _z /m'bc		I + JHLIN TH	
$P_{p}4_{s} mm'c'$	$P_C 4_2 mnm$	$P4'_2 mb'c$		14 mmm	
Pp4's/m'mc	$P_C 4_2 nnm$	$P4_{2}^{\prime}/mbc^{\prime}$		14 m m m	
		$P4'_{a} m'b'c$		*14/mm m	
$P4_2/mcm$		*P4 ₂ /mb'c'		14' [m' mm'	
		P4', m'bc'		14/m m m	} -
F42/m cm		P4_m'b'c'		1p4/mmm	$P_{I}4 mmm$
PA2/mc m			-	Ip4/m mm	$P_{I}4/nmm$
P42/mcm'		P4 ₂ /mm		Ip4' mm' m	$P_I 4_2/mnm$
P4'2/m'c'm	_			Ip4' [mmm'	P _I 4 ₂ /mmc
*P4 ₂ /mc'm'		$P4_{8}/m'nm$		Ip4' m' m' m	$P_{I}4_{3}/nnm$
P4's/m'cm'		P4'2/mn'm		Ind/mm'm'	;
				The transfer of T	$F_{I}4 mnc$
$P4_2(m'c'm')$		$P4'_{2} mnm'$		Ip4' m' mm'	P ₁ 4]mmc P ₁ 4 ₂ /mmc

Tetragonal system	Trigonal system	tem	P3121	
I4/mcm	3 *P3		*P312'1	
			$P_{x}3_{3}21$	$P_{r}3_{2}21$
I4/m/cm I4/mr/m	P_{z_d} 3	$P_{e}3$	P3,12	
I4' mcm'	*P31			
14' m'c'm			*P3,12	;
*14/mc'm'	$P_{2e}3_{2}$	$P_{c}3_{2}$	$P_{2c}3_{1}12$	P_{e}^{3} 12
I4' m' cm'	*P3,		P3 ₂ 21	
I4/m'c'm'				
$I_{P}4 mcm$ $P_{I}4 mcc$	P,3,	P.3,	*P3221	
$I_P 4/m' cm P_I 4/ncc$	T =47 =	1 00 1	$P_{zz}3_{1}21$	P,3121
	*R3		5	
	1		102	
~	R_R3		* 017'	
	است + ا		R _R 32	
I AT 12 T TIALING	- 1 2		ب #	
anonial r an a mir Jr	' 74		P3#1	
$I4_{\lambda}$ amd	P_{20}	Р,3		
ļ	* 0'J		* <i>P</i> 3m'1	
$I4_1/a'md$	2		$P_{w}3m1$	$P_a 3m1$
14'1/am'd	$R\bar{3}'$		$P_{zc}3m'1$	$P_{c}3c1$
$I4'_1 amd'$	R_3		P31m	
14'1/a'm'd	- CC			
* 14 ₁ /am'd'	75		*P31m'	
I4' a'md'	P312		$P_{*.31m}$	P_{-3}
$I4_1 a'm'd'$	* 117'		$P_{zo}31m'$	$P_{c}31c$
14. lood	$P_{2}312$	P,312	P3c1	
	D171			
141/a'cd			*P3c'1	
14'1)ac'd	*P32'1		P31c	
I4, acd	$P_{2c}321$	P _c 321		
14'1 a'c'd	P3112		*P31c'	
*141/ac'd'			R3m .	
14', a'cd'	*P3 ₁ 12′			
$I4_1 a'c'd'$	P203112	P ₂ 3 ₂ 12	*R3m'	

Trigonal system	R _R 3m		6/m
R3m	R _R 3m'	R ₁ 3c	*P6/m
	R3c		
R _R 3m			P6' [m
R _k 3m' R _l 3c	R3'c		P6/m'
	R3'c'		P6'/m'
R3c	*R3c'		$P_{u}6/m$
*R3c'	 Hexagonal system	system	$P_{2c}6'/m$
377	6		*P6 ₂ /m
<u>P31m</u>	*P6		1
D <u>7</u> 11	P6'		P6.1m
P7'1#'	P26	P.6	$P6_{a}'m'$
*P31m'	P ₃₂ 6′	$P_{c}6_{3}$	622
$P_{22}31m$ $P_{3}31m$	*P61		P622
	P6'		P6'3'3
	*P6.		P6'22'
P3'1c			*P62'2'
P3'1c'	$P6_{b}^{\prime}$		P _{2c} 622
*P31c	*P62		$P_{2e}6'22$
P3m1	P6'		P6122
P3'm1	$P_{z_c} 6_z$	$P_{2}6_{1}$	P612'2
P3'm']	$P_{2e}6'_{2}$	$P_{e}6_{1}$	P6'122'
*P3m'l	*P64		*P612'2'
$P_{zo}3m'1$ P_c3c1	P6'		P6 ₅ 22
P3c1	$P_{z}6_{4}$	$P_{z}6_{z}$	P6'2'2
	$P_{ze}6'_4$	$P_{e}6_{b}$	P6'522'
P3'c1	*bd*		* P 6 ₅ 2'2'
*P3c'1	P6'		P6222
R3m	6		P6'2'2
	*₽ē		P6'22'
R3'm	- -		*P622'2'
* n7 - '	P6.	N	$P_{sc}6_{s}22$
	· P _{2c} 6	$P_{p}^{*}6$	$P_{z}6'_{1}22$

TABLE III (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P4'32' P _F 432 F ₁ 432	<u> </u>	452	Ipa3 P _l a3	Ia'3		Pa'3	[]]		Ipm3 Pim3 Ipm'3 Pin3		Im3	5 P.J	5,12	Fd3	Fm'3	.	Fm3	rn 3 P _F n3 F _r d3	D 13	$P_F m 3 = F_s m 3$		Pm3	m3	$I_{P2_1}3 P_{I2_1}3$	$\frac{12_{1}3}{2_{1}3}$	$\frac{P2_{1}3}{2}$	
2 F_{4} P_{4} $P_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 	F4	PF	 	PĂ	43m		- I P					<u>14</u>		رم								 +				q'	
	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	'3 m'	377	`	'3m'	377				132'	1 ³²	f ₁ 32		1 <u>132</u>	•	4,32'	4332				132	4 ₁ 32′	4132	1 U K	4'37'	432			
					 F					ł																			

TABLE III (continued)

f

TABLE
III (cc
ntinued)

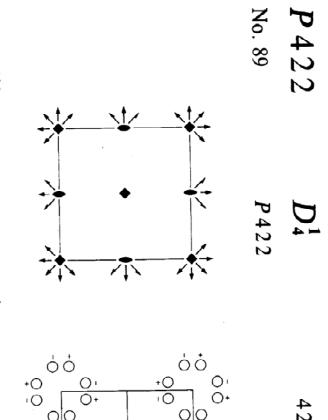
$F_{s}d3m = \frac{Fm3c'}{Fm'3c'}$ $F_{s}d3c = \frac{Fd3m}{Fd'3m}$ $\frac{Fd'3m}{Fd'3c'}$ $\frac{Fd'3c}{Fd'3c'}$ $\frac{Fd'3c'}{Fd'3c'}$

Rules to construct invariant spin arrangements

- Define a magnetic space group generated by the SG of the crystal structure.
- Identify the magnetic site, and define its magnetic point symmetry. A *graphic* representation of the MG is useful.
- Check that the site MPG is *admissible* for at least one spin component. Otherwise, the MSG does not support any magnetic structure on that site.
- Pick one admissible component, and apply in turn all the MSG operators on that component, propagating it to all equivalent sites.

Rules to determine the MSG from a given structure

- Check that the magnetic structure Γ is Shubnikov-compatible. This is easily done by applying the operators of the *crystal* space group {F} upon Γ(including lattice doublings). Γ is Shubnikov-compatible if and only if, the structure is either invariant (× 1) or reversed (× -1) for each and every F in {F}.
- Prime all the operators in $\{F\}$ for which Γ is reversed, and identify the new primitive translations. This completes the process.


Shubnikov groups and representations

To make a link with the more powerful representation analysis, we can simply think of how a magnetic structure Γ , which is invariant under a particular magnetic groups $\{F_M\}$, will transform under the 'parent' space group $\{F\}$. It is apparent that Γ will be invariant (× 1) under the operators which are *unprimed* in $\{F_M\}$, whereas all the spins will be switched (× -1) for the operators that are *primed* in $\{F_M\}$. In other words, the set of numbers 1 or -1 is a *representation* of $\{F\}$ onto the linear space generated by Γ . We can easily prove that the reverse is also true.

We can conclude the Shubnikov groups are *equivalent to 1-dimensional real representations* of $\{F\}$, with the invariant Γs being their basis sets. In general, if we relax the requirement for invariance of the crystal structure, there is no reason to prefer these to all the (infinite) others, whence the need for extending the analysis to the *full expansion in irreducible representations*.

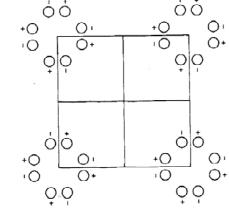
Pnma $P 2_{1}/n 2_{1}/m 2_{1}/a$

Irrep	Shubn.	{1 000}	{2_00z ½0½}	{2_0y0 0½0}	{2_x00 ½½½½	{-1 000}	{m_xy0 ½0½}	{m_x0z 0½0}	{m_0yz ½½½2
Γ_1	Pnma	1	1	1	1	1	1	1	1
Γ ₂	Pn'm'a'	1	1	1	1	-1	-1	-1	-1
Γ ₃	Pn'm'a	1	1	-1	-1	1	1	-1	-1
Γ ₄	Pnma'	1	1	-1	-1	-1	-1	1	1
Γ ₅	Pn'ma'	1	-1	1	-1	1	-1	1	-1
Γ ₆	Pnm'a	1	-1	1	-1	-1	1	-1	1
Γ ₇	Pnm'a'	1	-1	-1	1	1	-1	-1	1
Γ ₈	Pn'ma	1	-1	-1	1	-1	1	1	-1

Origin at 422

Asymmetric unit $0 \le x \le \frac{1}{2}; 0 \le y \le \frac{1}{2}; 0 \le z \le \frac{1}{2}$

Symmetry operations

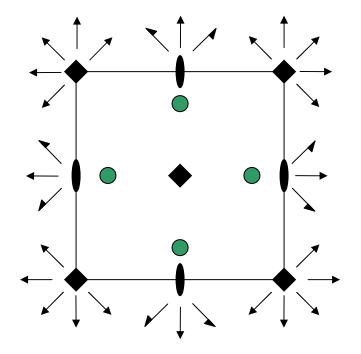

(1) 1 (5) 2 $0,y,0$
$\begin{array}{ccccccc} (2) & 2 & 0, 0, z \\ (6) & 2 & x, 0, 0 \end{array}$
(3) 4^+ 0,0,z (7) 2 x,x,0
$\begin{array}{cccc} (4) & 4^{-} & 0, 0, z \\ (8) & 2 & x, \overline{x}, 0 \end{array}$

٠

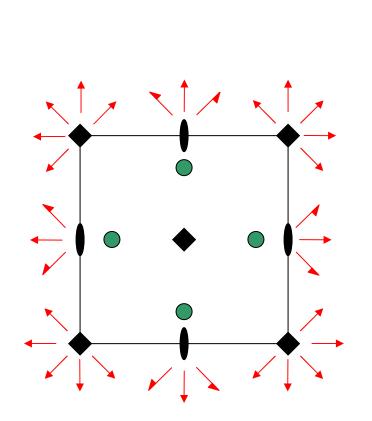
Patterson symmetry P4/mmm

422

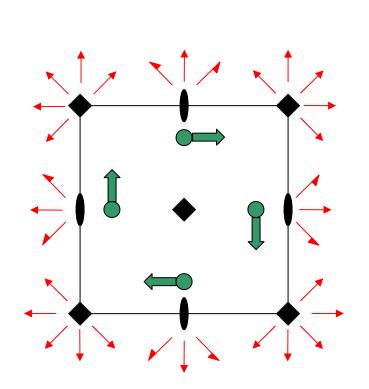
Tetragonal

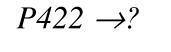

352

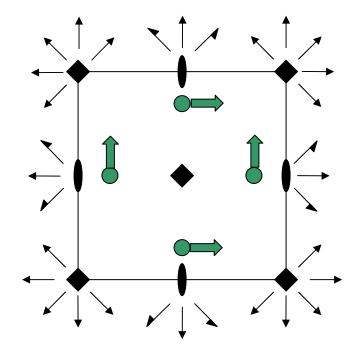
Generators selected
(1);
t(1,0,0);
t(0,1,0);
t(0,0,1);
(2);
(3);
છ

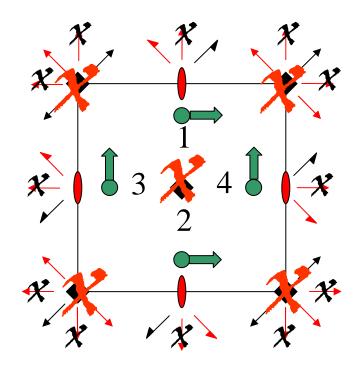

Generators selected (1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (3); (5)	
Positions Multiplicity, Wyckoff letter, Coordinates	Reflection conditions
Site symmetry $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	General: no conditions
	Special:
4 o .2. $x, \frac{1}{2}, 0$ $\overline{x}, \frac{1}{2}, 0$ $\frac{1}{2}, x, 0$ $\frac{1}{2}, \overline{x}, 0$	no extra conditions
4 n . 2 . x, 0, $\frac{1}{2}$ \overline{x} , 0, $\frac{1}{2}$ 0, x , $\frac{1}{2}$ 0, \overline{x} , $\frac{1}{2}$	no extra conditions
4 m .2. x, ±, ± x, ±, ± ±, x, ± ±, x, ±	no extra conditions
4 l .2. $x,0,0$ $\bar{x},0,0$ $0,x,0$ $0,\bar{x},0$	no extra conditions
$4 \ k \ \ 2 \ x, x, t \ \overline{x}, \overline{x}, t \ \overline{x}, x, t \ \overline{x}, \overline{x}, t$	no extra conditions
$4 j 2 \qquad x, x, 0 \bar{x}, \bar{x}, 0 \bar{x}, x, 0 x, \bar{x}, 0$	no extra conditions
4 i 2 0,1,z 1,0,z 0,1,ž 1,0,Z	hkl: h+k=2n
$2 h 4 \dots \frac{1}{2}, $	no extra conditions
2 g 4 $0,0,z$ $0,0,\overline{z}$	no extra conditions
2 f 222. ‡,0, ‡ 0, ±, ‡	hkl: h+k=2n
$2 e 222. \frac{1}{2}, 0, 0 0, \frac{1}{2}, 0$	hkl:h+k=2n
1 d 422 t, t, t	no extra conditions
$1 c 422 \frac{1}{2}, \frac{1}{2}, 0$	no extra conditions
$1 \ b \ 422 \ 0,0,\frac{1}{2}$	no extra conditions
1 a 422 0,0,0	no extra conditions
Symmetry of special projections	
Along $[001]$ $p 4mm$ Along $[100]$ $p 2mm$ $a'=a$ $b'=b$ $a'=b$ $b'=c$ Origin at $0,0,z$ Origin at $x,0,0$	Along [110] $p 2mm$ $a' = \frac{1}{2}(-a+b)$ $b' = c$ Origin at $x, x, 0$
Maximal non-isomorphic subgroups I [2]P411(P4) 1:2:3:4 [2]P221(P222) 1:2:5:6 [2]P212(C222) 1:2:7:8	
If a none II b $[2]P 4_2 22 (c' = 2c); [2]C 422_1 (a' = 2a, b' = 2b)(P 42_1 2); [2]F 422 (a' = 2a, b' = 2b, c' = 2c)(I 422)$	(a, b'=2b, c'=2c)(I422)
Maximal isomorphic subgroups of lowest index IIc $[2]P422(c'=2c); [2]C422(a'=2a, b'=2b)(P422)$	
Minimal non-isomorphic supergroups	

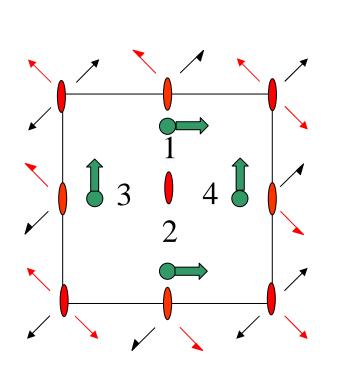
Π [2]P4/mmm; [2]P4/mcc; [2]P4/nbm; [2]P4/nnc; [3]P432 [2]I422


P422 (No 89)

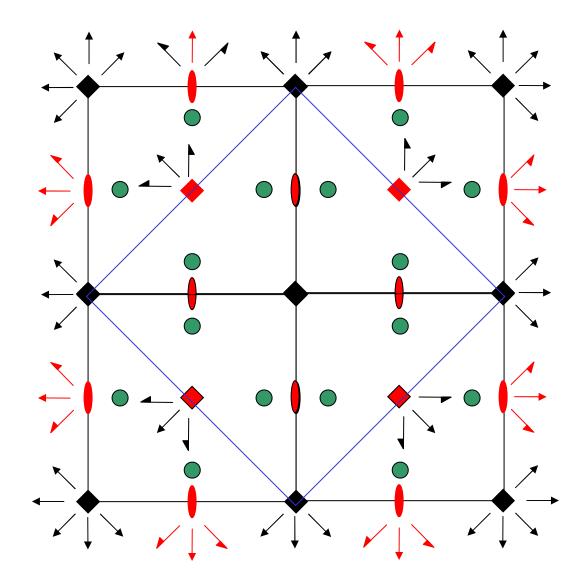

Special position: 40 [.2.] x, ¹/₂, 0

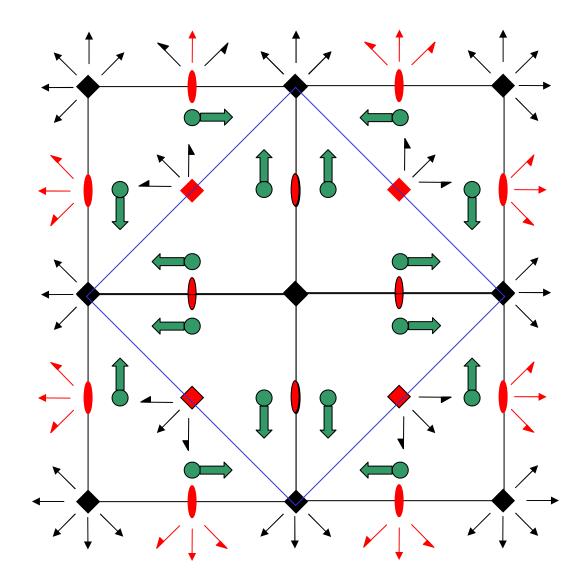



P42'2'



P42'2'

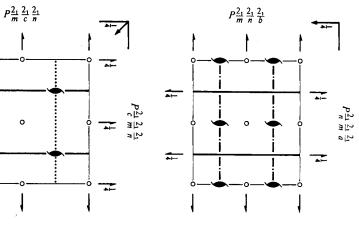




C22'2'

 $P_{P}422$

 $P_{P}422$



No. 62 Pnma

 $P 2_1/n 2_1/m 2_1/a$ D_{2h}^{16}

m m m

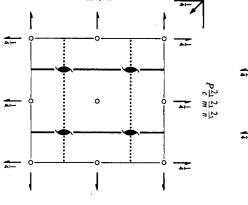
Patterson symmetry Pmmm

4

-

 $P\frac{2_1}{b}\frac{2_1}{n}\frac{2_1}{m}$

<u>_</u>


41-

-

4

o

 $P\frac{2_1}{n}\frac{2_1}{a}\frac{2_1}{m}$

₹ O+12

01+ 1+0

 $O_{\frac{1}{2}} - \frac{1}{2} - O$

⊙<u>1</u>-

 \odot

Q

Ō

Q

Ģ

Ó

 \bigcirc

Q

Ō

Q

 \bigcirc

Q

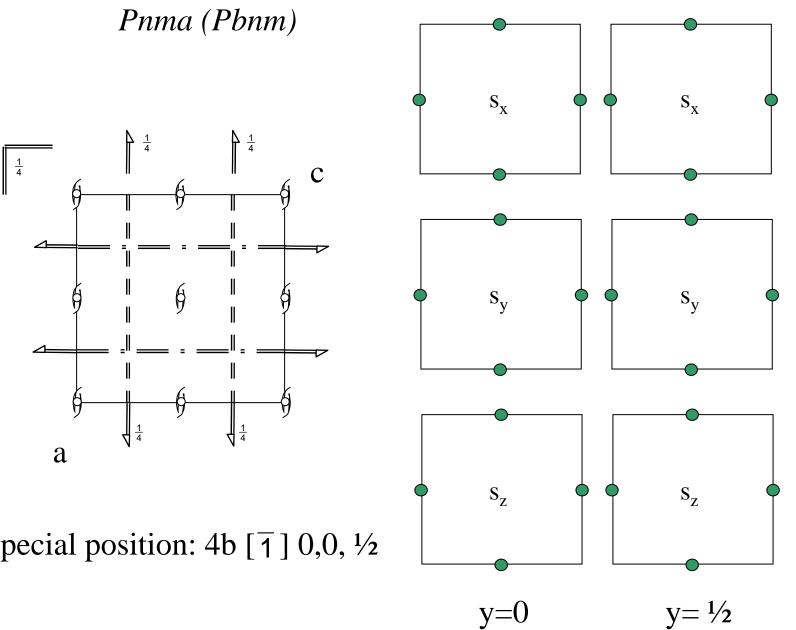
Origin at $\overline{1}$ on 12_11

Asymmetric unit $0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le 1$

Symmetry operations

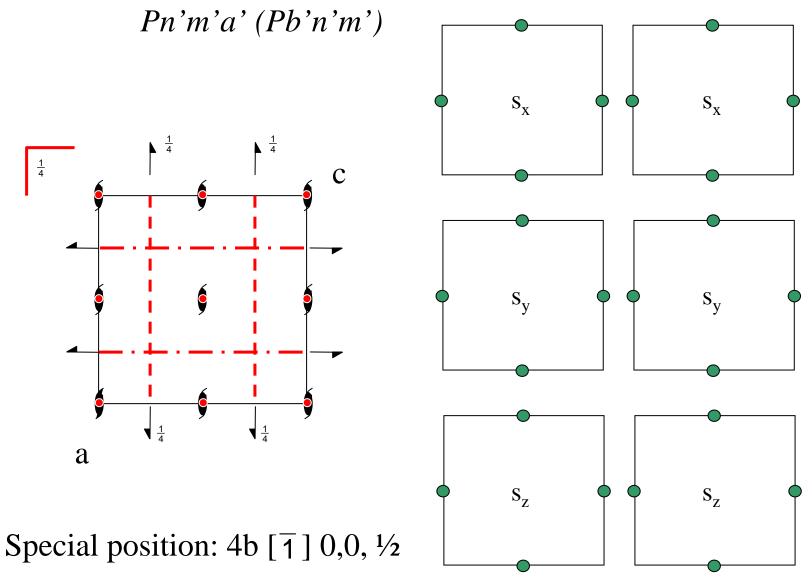
 $\begin{array}{cccc} (1) & 1 \\ (5) & 1 & 0,0,0 \end{array}$ (2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},0,z$ (6) a x, y, $\frac{1}{2}$ (3) $2(0, \frac{1}{2}, 0)$ 0, y, 0(7) $m x, \frac{1}{2}, z$

(4) $2(\frac{1}{2},0,0)$ x, $\frac{1}{4},\frac{1}{4}$ (8) $n(0,\frac{1}{2},\frac{1}{2})$ $\frac{1}{4},y,z$

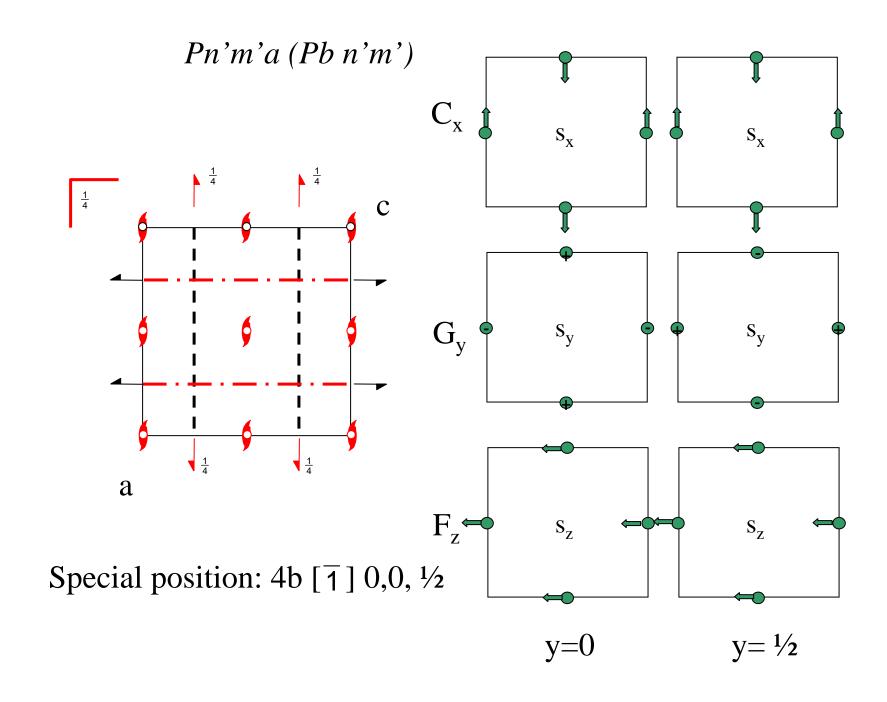

288

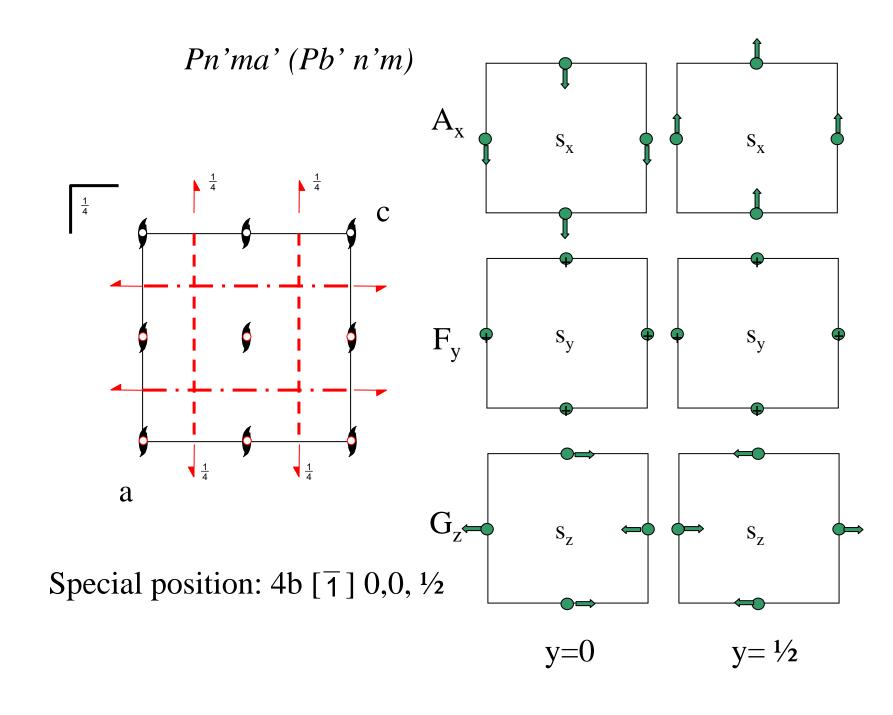
Along [001] p 2gm $a' = \frac{1}{2}a$ b' = bOrigin at 0,0,z Minimal non-isomorphic supergroups Multiplicity, Wyckoff letter, Site symmetry IIc Maximal isomorphic subgroups of lowest index Шb IIa = 4 Maximal non-isomorphic subgroups Symmetry of special 4 4 œ Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); Positions a 9 0 d [2]P2₁2₁2₁ [2]P112₁/a(P2₁/c) [2]P12₁/m1(P2₁/m) [2]P2₁/n11(P2₁/c) [2]Pnm2₁(Pmn2₁) [2]Pn2₁a(Pna2₁) [2]Pn2₁a(Pna2₁) [2]P2₁ma(Pmc2₁) none none none [3]Pnma(a'=3a); [3]Pnma(b'=3b); [3]Pnma(c'=-.m . (1) x, y, z(5) $\bar{x}, \bar{y}, \bar{z}$ 0,0,ł 0,0,0 x, ‡, z projections <u></u>},0,} **},0,0** \$+2,2,2+2 (2) $x+\frac{1}{2}, y, z+\frac{1}{2}$ (6) $x+\frac{1}{2}, y, \overline{z}+\frac{1}{2}$ \sim 1; 2; 3; 4 1; 3; 5; 6 1; 4; 5; 8 1; 4; 5; 8 1; 4; 6; 7 $0, \frac{1}{2}, 0$ $0, \frac{1}{2}, \frac{1}{2}$ Coordinates X, 1, Z 1, 1, 1 **₹,₹,**0 Along [100] c 2 a'=b b'=cOrigin at $x, \frac{1}{2}, \frac{1}{2}$ (3) $\bar{x}, y+\frac{1}{2}, \bar{z}$ (7) $x, \bar{y}+\frac{1}{2}, z$ x+±,±,Z+± c 2m m ü C (2); (4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$ (3); છ 0kl: k+l = 2 hk0: h = 2n h00: h = 2n 0k0: k = 2n 0k0: k = 2n 00l: l = 2nhkl:h+l,k=2nhkl: h+l, k=2nno extra conditions Special: as above, plus General: Reflection conditions Along [010] p: a'=c b'=aOrigin at 0, y, 0 21 p 28 8 20

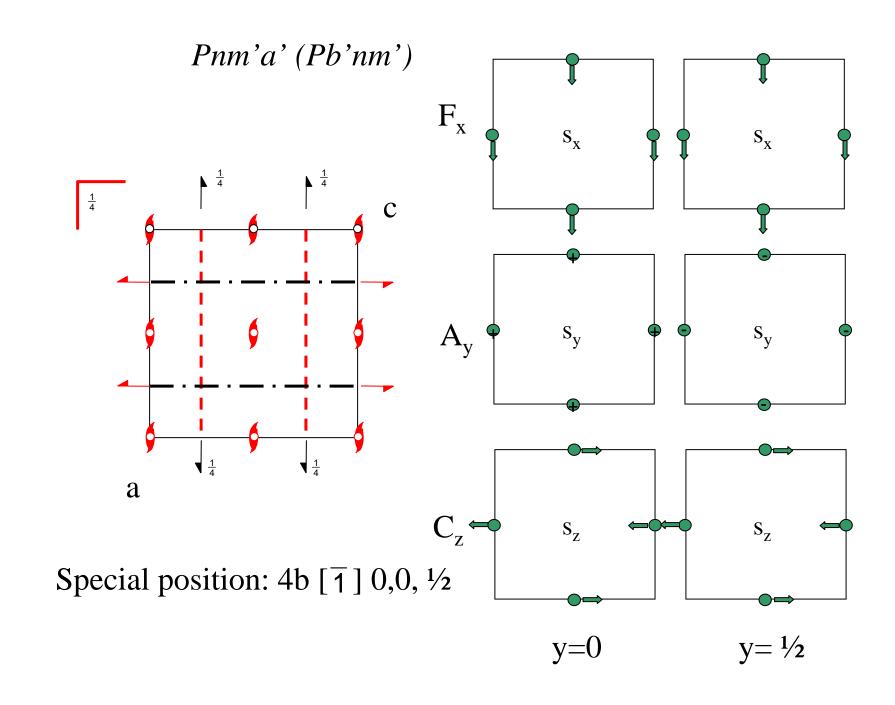
289

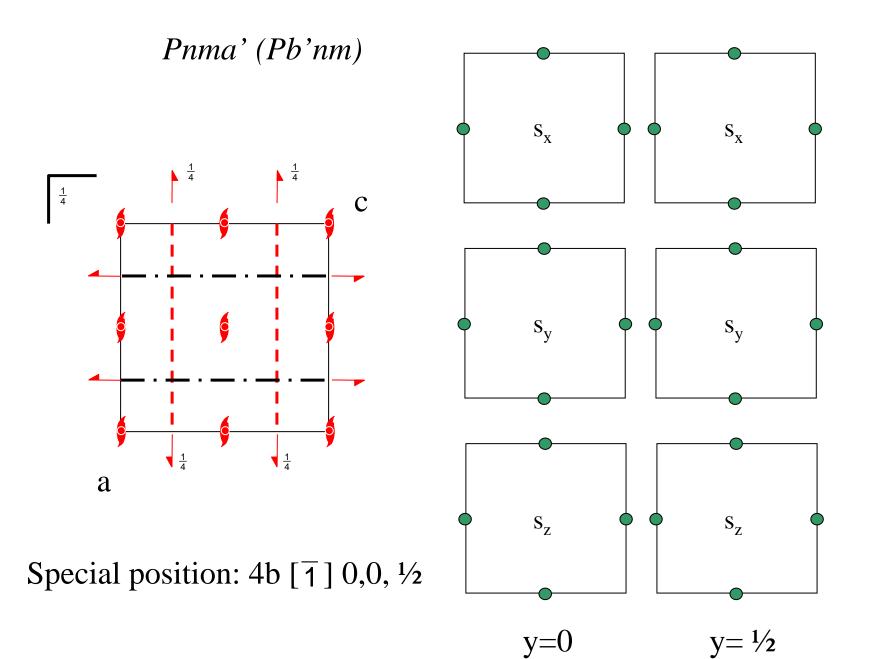

Π

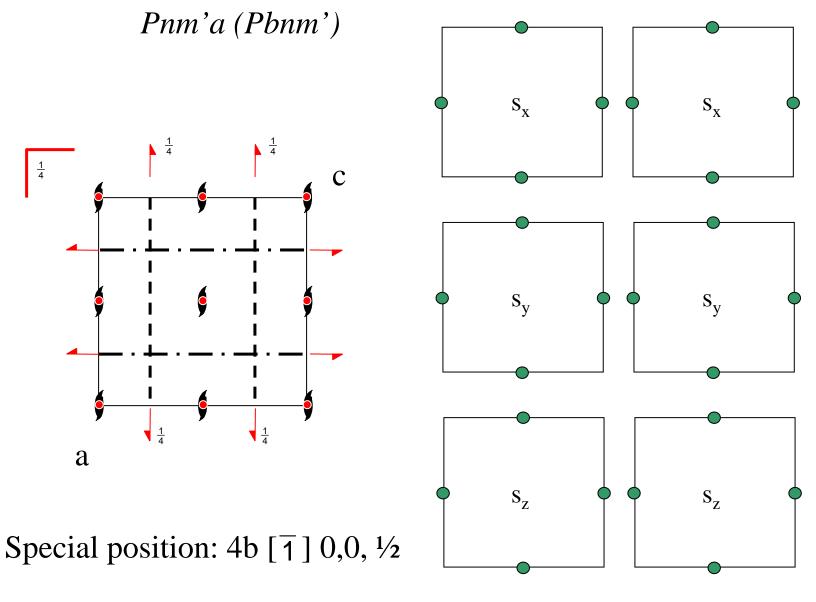
[2]Amma(Cmcm); [2]Bbmm(Cmcm); [2]Ccmb(Cmca); [2]Imma; [2]Pnmm(2a'= a)(Pmmn); [2]Pcma(2b'= b)(Pbam); [2]Pbma(2c'= c)(Pbcm)

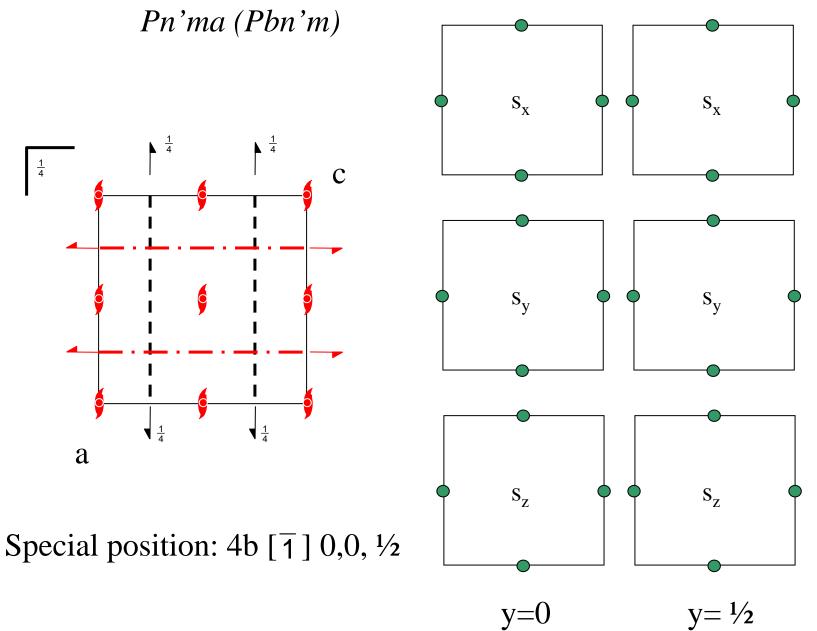

Special position: 4b $[\overline{1}]$ 0,0, $\frac{1}{2}$



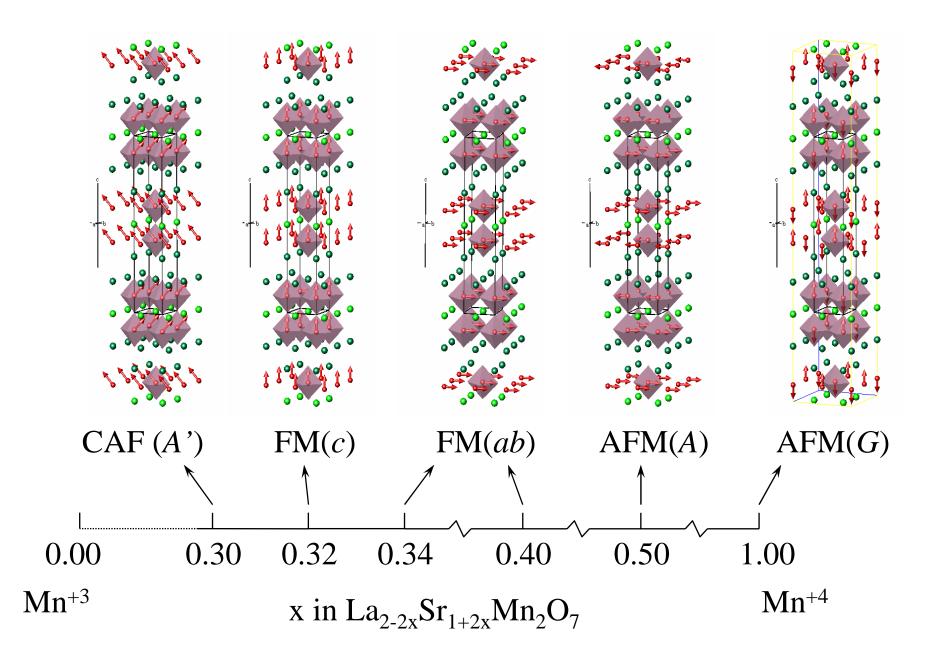



y=0


 $y = \frac{1}{2}$



y=0 $y=\frac{1}{2}$


Magnetic Refinements in GSAS Paolo G. Radaelli

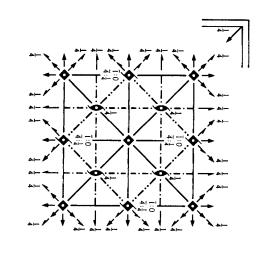
GSAS magnetic options

- The approach of GSAS to magnetic structures is loosely based on Shubnikov groups.
- However, for each space group, not all Shubnicov groups generated from it are possible. The only possible ones are those corresponding to subgroups of index 2 of types I and IIa. In other words, the *conventional* unit cell must be <u>in</u> <u>common</u> between the parent group and the subgroup.
- In GSAS there is a straight implementation of the OG formalism, where 'primed' operators (or lattices) correspond to 'red' operators.
- Alternatively, one can always generate an additional magnetic phase with appropriate constraints.

GSAS magnetic entries

- **Phase**: in the "phase" menu (keystrokes **k-p-p**), one has the option of selecting (**m**) whether the phase is nuclear, nuclear *and* magnetic or purely magnetic (**a**, **b**, **c**, respectively).
- Form factor: in the form factor editing menu (**k-p-f**) there is an option (**m**) to edit magnetic form factors. One can use the default values (<u>warning!</u> They are different for different oxidation states) or input user values (see ITC, volume C).
- Atoms: in the atom editing menu (k-l-a) there is an option (m) to assign magnetic moments to individual atoms. Within that menu, there is an option (s) to 'prime' the group generators. GSAS automatically determines if the magnetic point group of the site is admissible, and, if so, for which spin directions. One can change colours with the c option. Once out of the s menu, one can change the spin components with the m option.

No	
<u>.</u>	4
139	/m
	т
	т


) 45

[4/m 2/m 2/m

4/m m m

Tetragonal . Come

Patterson symmetry I 4/m m m

 $\stackrel{*}{\ominus} \stackrel{*}{\ominus}$

ę

÷

⇔⇔

Ģ

Ð

ı ⊕+ ı ⊕ +

'⊕' '⊕'

+ () ! + () !

± ⊡

+ () + ()

ę

Ð

¢- $\stackrel{+}{\ominus}_{-}$

 \odot ١Đ

¥-0

<u>+⊕</u>+ +⊕+

 $\frac{1}{2} + \bigoplus_{\frac{1}{2}} -$ ¹/₂+ O¹/₂-

 $\frac{1}{2} - \bigoplus_{\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}$ $\bigcirc_{2^+}^{1^-}$

+ ()) + + () |

+ ()) + + () !

÷ Ģ

Origin at centre (4/mmm)

Asymmetric unit $0 \le x \le \frac{1}{2};$ $0 \le y \le \frac{1}{2};$ $0 \le z \le i;$ x≤y

Symmetry operations

For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) +$ set (1) $r(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $\frac{2}{2}(0, \frac{1}{2}, 0)$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ (9) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ (13) $n(\frac{1}{2}, 0, \frac{1}{2})$ $x, \frac{1}{2}, z$	For $(0,0,0)$ + set (1) 1 (5) 2 0, y, 0 (9) 1 0,0, 0 (13) m x, 0, z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} (4) \ 4^-(0,0,\frac{1}{2}) \ \frac{1}{2},0,z \\ (8) \ \frac{2}{2} \ x,x+\frac{1}{2},\frac{1}{4} \\ (12) \ 4^- \ 0,\frac{1}{2},z; \ 0,\frac{1}{2},\frac{1}{4} \\ (16) \ n(\frac{1}{2},\frac{1}{2},\frac{1}{2}) \ x,x,z \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Maximal non-isomorphic subgroups (continued)

, ,		
lla	$\begin{bmatrix} 2 \end{bmatrix} P 4/m m m$	1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16
	[2]P4/nnc	1; 2; 3; 4; 5; 6; 7; 8; (9; 10; 11; 12; 13; 14; 15; 16) + (1 + 1)
	[2]P4/mnc	1; 2; 3; 4; 9; 10; 11; 12; (5; 6; 7; 8; 13; 14; 15; 16) + (4; 4; 4)
	[2]P4/nmm	1:2:3:4:13:14:15:16:(5:6:7.8.9.10.11.17)+(4:4:4)
	$[2]P4_2/nnm$	1: 2: 5: 6: 11: 12: 15: 16: $(3: 4: 7: 8: 9: 10: 13: 14) + (1: 1)$
	$[2]P4_{2}/nmc$	1: 2: 7: 8: 11: 12: 13: 14: (3: 4: 5: 6: 0: 10: 15: 16) 1(1: 1)
	$[2]P4_2/mmc$	1: 2: 5: 6: 9: 10: 13: 14: (3: 4: 7: 8: 11: 17: 15: 16) + (4: 4: 4)
	[2]P4 ₂ /m n m	1; 2; 7; 8; 9; 10; 15; 16; (3; 4; 5; 6; 11; 12; 13; 14) + (4, 4, 4)
ШЪ	none	

Maximal isomorphic subgroups of lowest index

IIc [3]I4/mmm(c'=3c); [9]I4/mmm(a'=3a, b'=3b)

Minimal non-isomorphic supergroups

[3]Fm3m;[3]Im3m

I [2]C4/mmm(2c'=c)(P4/mmm)

0
¥ .
0
<u> </u>
· .
_
<u> </u>
- Z
0
-

No. 139

1 4/m m m

Maxi	Symr Along a'= ± Origin	2	2	4	4	4	00	00	80	80	80	16	16	16	16		2 2 2 2 2 3	Site symmetry	Multipl	Generato
mal non-	$\frac{netr}{a-1}$	a	9	С	d	е	-	9 0)	4	·	с.	×	1	Ħ	2		0	nmetr	icity.	rato
Maximal non-isomorphic subgroups	Symmetry of special projections Along [001] $p 4m m$ $a' = \frac{1}{2}(a-b)$ $b' = \frac{1}{2}(a+b)$ Origin at 0,0,z	4/m m m	4/ <i>m</i> m m	mmm.	Ā m 2	4 <i>m</i> m	2/m	2 <i>m</i> m .	m.2m	m 2m .	m 2m .	2	m	. m	. <i>m</i> .		1 (1) x (5) x (13) x	У <u>с</u>		Generators selected
ornhic c	pecial proje 4 <i>m m</i> b'= ½(a+b)	0,0,0	0,0, 1	0, <u></u> ł,0	0, 1, 1	0,0, <i>z</i>	4, 4, 4	$0, \frac{1}{2}, z$	<i>x</i> , <i>x</i> ,0	x,0,0	x, 1 ,0	x,x+±,t X,X+±,t	x,y,0 x,y,0	x,x,z X,x,Z	0,y,z 0,y, z		, भू, भू, भू , भू, भू, भू, , भू, भू, भू, भू, भू, भू, भू, भू, भू, भू			d (1);
,	ctions			±,0,0	1 ,0,1	0,0,7	• 3, 3, 1 3, 3, 4	±,0,z	<i>x</i> , <i>x</i> ,0	₮ ,0,0	₹ , <u>†</u> ,0	$\begin{array}{c} \frac{1}{4} & \overline{x}, \overline{x} + \frac{1}{2}, \frac{1}{4} \\ \frac{1}{4} & x, x + \frac{1}{2}, \frac{1}{4} \end{array}$	र्र, <u>ज</u> ्र,0 x, ज्र,0	X,X,Z X,X,Z	0, <u>ÿ</u> ,z 0, <u>ÿ</u> ,ž		(2) \bar{x}, \bar{y}, z (6) x, \bar{y}, \bar{z} (10) x, y, \bar{z} (14) \bar{x}, y, z	(0,0,0)+	S	t(1,0,0);
s							3, 1, 1	0, 1, 7	<i>x</i> , <i>x</i> ,0	0,x,0	±,x,0		9 , <i>x</i> ,0 <i>y</i> , <i>x</i> ,0	x,x,z x,x,z	ӯ,0, <i>z</i> y,0, <i>z</i>			(1,1,1)+	Coordinates	; t(0,1,0);
	Along $a' = b$ Origin						4, 2, 1 4, 4, 4	±,0, <i>₹</i>	$x, \overline{x}, 0$	$0,\bar{x},0$	±,,,0	x+±,x,t x+±,x,t	y, x ,0 y,x,0	x,x,z ,,x,z	у,0, <i>z</i> ӯ,0, <i>ž</i>		3) 9,x,z 7) y,x,z 5) 9, <i>x</i> , <i>z</i>	, <u></u> ŧ)+	•	
	Along [100] $c 2mm$ a'=b $b'=cOrigin at x,0,0$											x+2,x,4 x+2,x,4					(4) y, x ,z (8) y , x , z (12) y ,x, z (16) y,x,z			$t(0,0,1); t(\frac{1}{2},\frac{1}{2},\frac{1}{2});$
	Along [110] $p 2mm$ $a' = \frac{1}{2}(-a+b)$ $b' =$ Origin at $x, x, 0$	no extra conditions	no extra conditions	hkl: l=2n	hkl:l=2n	no extra conditions	hkl:k,l=2n	hkl: l=2n	no extra conditions	no extra conditions	no extra conditions	hkl:l=2n	no extra conditions	no extra conditions	no extra conditions	Special: as above,	$ \begin{array}{l} hkl: h+k+l = 2n \\ hk0: h+k = 2n \\ 0kl: k+l = 2n \\ hkl: l = 2n \\ 00l: l = 2n \\ h00: h = 2n \end{array} $	General:	Reflection conditions	(2); (3); (5); (9)

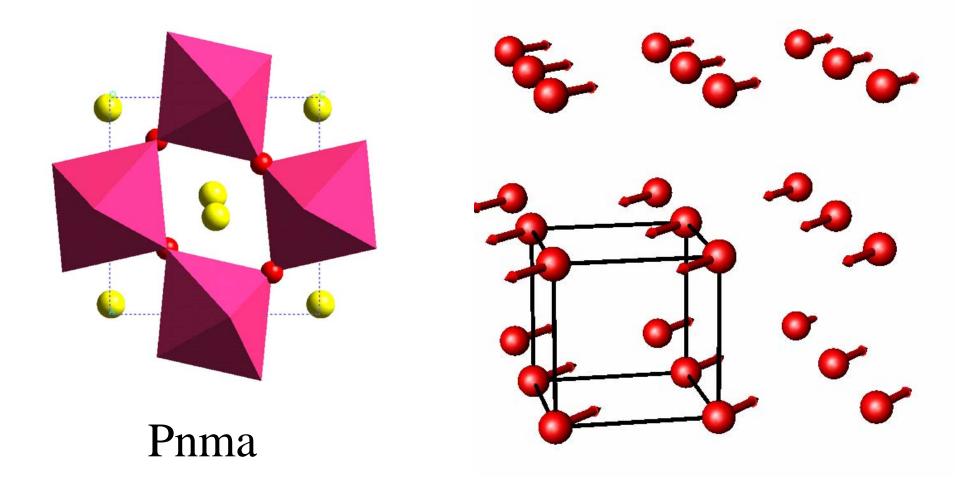
[2] J 4/m 1 1 (I 4/m) [2] J 4mm [2] J 42m [2] J 4m2 [2] J 2/m 2/m 1 (Immm) [2] J 2/m 1 2/m (Fmmm)	
(1; 2; 3; 4; 9; 10; 11; 12)+ (1; 2; 3; 4; 13; 14; 15; 16)+ (1; 2; 5; 6; 11; 12; 15; 16)+ (1; 2; 7; 8; 11; 12; 13; 14)+ (1; 2; 7; 8; 9; 10; 13; 14)+ (1; 2; 7; 8; 9; 10; 15; 16)+	(1; 2; 3; 4; 5; 6; 7; 8) +

(Continued on preceding page)

469

te

Notes on the Layered Manganite example


- The manganite site is 4e [4mm]. Of the magnetic subgroups of [4mm], the only admissible one is 4m'm'. Consequently, the only possible magnetic space groups are *I4/mm'm' I4/m'm'm', $I_P4/mm'm'$ and $I_P4/m'm'm'$. Note that the first one is a ferromagnetic group.
- An immediate consequence of the site symmetry of the Mn site is that the spin *has* to be directed along the 4-fold axis.
- There are therefore only 4 magnetic structures generated with the Shubnikov approach. The layers are *always* FM, with the intra- and inter-bilayer coupling being FM or AFM.
- Note the significant number of magnetic structures which are observed, but cannot be generated with the Shubnikov approach.

Magnetic refinements - multi-phase approach

Should the Shubnikov approach be insufficient to describe the magnetic structure, one can resort to introducing a second *purely magnetic* phase with appropriate constraints but lower symmetry This enables one to deal with any kind of commensurate structure, including the representation analysis. Here are a few tips:

- 1. If the magnetic phase has the same conventional cell as the nuclear one, the lattice and phase fraction constraints are straightforward.
- 2. If the magnetic cell is *larger* than the nuclear one, one has to remember that the phase fraction is proportional to the number of unit cells in the sample. So, if the the volume of the MP is doubled, its phase fraction must be halved.
- 3. One can also set constraints on the lattice when the two cells are different. However, remember that the constraints are on the <u>reciprocal metric</u> <u>tensor</u>, *not* on lattice parameters. Consult a crystallography book to see how they are related for the various lattices.

Shubnikov Groups: a GSAS application

Magnetic powder diffraction and instrumentation Paolo G. Radaelli

Spin Density

Unit-Cell Spin Density (localised and isotropic approx.):

$$\mathbf{M}_{u}(\mathbf{r}) = \sum_{j=1}^{n \text{ atoms}} \hat{\mathbf{m}}_{j} \mu_{j} G_{j} \left(|\mathbf{r} - \mathbf{r}_{j}| \right) \qquad \widetilde{\mathbf{M}}_{u}(\mathbf{k}) = \sum_{j=1}^{n \text{ atoms}} \hat{\mathbf{m}}_{j} \mu_{j} f_{j}(k) e^{-i\mathbf{k} \cdot \mathbf{r}_{j}}$$

Lattice Spin Density (simple translational symmetry):

$$\mathbf{M}(\mathbf{r}) = \sum_{\mathbf{r}_n} \mathbf{M}_u (\mathbf{r} - \mathbf{r}_n) \qquad \qquad \widetilde{\mathbf{M}}(\mathbf{k}) = \sum_{\mathbf{\kappa} \in \Gamma^*} \delta(\mathbf{\kappa} - \mathbf{k})^n \sum_{j=1}^{\text{atoms}} \hat{\mathbf{m}}_j \mu_j f_j(k) e^{-i\mathbf{\kappa} \cdot \mathbf{r}_j}$$

Lattice Spin Density (1-dimensional modulation):

$$\mathbf{M}(\mathbf{r}) = \sum_{\mathbf{r}_n} \overline{\overline{P}}(\mathbf{r}_n \cdot \mathbf{\tau}) \cdot \mathbf{M}_u(\mathbf{r} - \mathbf{r}_n) \quad \widetilde{\mathbf{M}}(\mathbf{k}) = \sum_{\substack{\mathbf{k} \in \Gamma^* \\ l = -\infty, +\infty}} \delta(\mathbf{\kappa} - l\mathbf{\tau} - \mathbf{k}) \sum_{j=1}^{n} \overline{\left(\overline{A}_l \cdot \hat{\mathbf{m}}_j\right)} \mu_j f_j(k) e^{-i\mathbf{\kappa} \cdot \mathbf{r}_j}$$

where $\overline{\overline{P}}(x) = \sum_{l = -\infty}^{+\infty} \overline{A}_l e^{ilx}$ has a periodicity of 1.

Magnetic Scattering of Neutrons

Neutrons are strongly scattered from magnetic moments. The scattering <u>amplitude</u> from an ion is of the order of $\gamma r_e \mu$, where:

 $\gamma = -1.91$ Neutron magnetic moment in nuclear magnetons (spin + orbital).

 $r_e = 0.282 \cdot 10^{-12} cm$ Electron classical radius ($e^2/m_e c^2$) $\mu = ion$ magnetic moment in Bohr magnetons.

For comparison, typical nuclear scattering amplitudes for neutrons are of the order of $0.5 \cdot 1.0 \cdot 10^{-12}$ cm.

Magnetic Scattering of Neutrons- II

Let's recall the formula for the lattice spin density and its Fourier transform:

 $\mathbf{M}(\mathbf{r}) = \sum_{\mathbf{r}_n} \mathbf{M}_u (\mathbf{r} - \mathbf{r}_n) \qquad \qquad \mathbf{\widetilde{M}}(\mathbf{k}) = \sum_{\mathbf{\kappa} \in \Gamma^*} \delta(\mathbf{\kappa} - \mathbf{k})^n \sum_{j=1}^{\text{atoms}} \hat{\mathbf{m}}_j \mu_j f_j(k) e^{-i\mathbf{\kappa} \cdot \mathbf{r}_j}$

The Fourier transform $\tilde{\mathbf{M}}(\mathbf{k})$ is called <u>magnetic structure</u> <u>factor</u>. Unlike the nuclear structure factor, it is an <u>axial</u> <u>vector</u> quantity, and it has to be combined with the other vector quantity in the problem in order to obtain the <u>cross section</u>, which is a scalar. The other vector quantities are the momentum transfer \mathbf{k} (a conventional vector) and the neutron spin \mathbf{s}_n (an axial vector).

The Magnetic Form Factor

$$f(\mathbf{k}) = \frac{\left\langle q \left| \int \mathbf{M}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} dr^3 \right| q \right\rangle}{\left\langle q \left| \int \mathbf{M}(\mathbf{r}) dr^3 \right| q \right\rangle} \text{ over a single atom}$$

In the isotropic case:

$$f(\mathbf{k}) = f(k) = \langle j_0(k) \rangle + \left(1 - \frac{2}{g}\right) \langle j_2(k) \rangle$$



Fig. 6.1.2.2. Comparison of 3d, 4d, 4f, and 5f form factors. The 3ι form factor is for Co, and the 4d for Rh, both calculated from wavefunctions given by Clementi & Roetti (1974). The 4f form factor is for Gd³⁺ calculated by Freeman & Desclaux (1972) and the 5f is that for U³⁺ given by Desclaux & Freeman (1978).

From: International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513

Scattering of Neutrons from MS

It is useful to introduce the quantity Q(k), known as <u>magnetic interaction vector</u>, and defined as:

 $\mathbf{Q}(\mathbf{k}) = \hat{\mathbf{k}} \times \widetilde{\mathbf{M}}(\mathbf{k}) \times \hat{\mathbf{k}}$

Q(k) is the <u>projection</u> of the magnetic structure factor upon the plane <u>perpendicular</u> to the momentum transfer k. Magnetic neutron scattering cross sections only contain Q(k). In other words, scattering of neutrons through k is only determined by the components of the magnetic moments \perp to k. Note that Q(k) can be <u>complex</u>.

Magnetic Scattering Formulæ

Polarised neutrons - polarisation analysis

Non-flip
$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{k})\right)^{++} = (\gamma_e)^2 \left\{ \left| \hat{\mathbf{s}}_n \cdot \mathbf{Q}(\mathbf{k}) \right|^2 + \left| F'(\mathbf{k}) \right|^2 + \hat{\mathbf{s}}_n \cdot \left[\mathbf{Q}^*(\mathbf{k}) F'(\mathbf{k}) + \mathbf{Q}(\mathbf{k}) F'^*(\mathbf{k}) \right] \right\}$$

Flip
$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{k})\right)^{+-} = (\gamma_e)^2 \left\{ [\hat{\mathbf{s}}_n \times \mathbf{Q}(\mathbf{k})] \cdot [\hat{\mathbf{s}}_n \times \mathbf{Q}^*(\mathbf{k})] + i\hat{\mathbf{s}}_n \cdot [\mathbf{Q}(\mathbf{k})^* \times \mathbf{Q}(\mathbf{k})] \right\}$$

Total
$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{k})\right)^{\top} = (\gamma_{e})^{2} \left\{ \left| \mathbf{Q}(\mathbf{k}) \right|^{2} + \left| F'(\mathbf{k}) \right|^{2} + \hat{\mathbf{s}}_{n} \cdot \left[\mathbf{Q}^{*}(\mathbf{k})F'(\mathbf{k}) + \mathbf{Q}(\mathbf{k})F'^{*}(\mathbf{k}) + i\mathbf{Q}(\mathbf{k})^{*} \times \mathbf{Q}(\mathbf{k}) \right] \right\}$$

Unpolarised neutrons

$$\left(\frac{\mathrm{d}\,\boldsymbol{\sigma}}{\mathrm{d}\,\boldsymbol{\Omega}}(\mathbf{k})\right)^{Unpol} = (\boldsymbol{\gamma}_{e})^{2} \left\{ \left| \mathbf{Q}(\mathbf{k}) \right|^{2} + \left| F'(\mathbf{k}) \right|^{2} \right\}$$

Formulæ Explained

- **Non-flip:** In addition to the nuclear scattering, it contains the components of Q(k) <u>parallel</u> to the neutron spin and a magneto-structural interference term.
- Flip:It contains the components of Q(k) perpendicularto the neutron spin, plus an additional term whichis present only if Q(k) is complex.
- Total: It contains the nuclear term, the module square of Q(k) and the two terms which are linear in s_n .
- **Unpolarised:** It contains only the nuclear term and the module square of Q(k), since the two terms which are linear in s_n cancel upon averaging.

Neutron beam polarisation

As we have seen, the scattering cross section depends on the initial spin direction \mathbf{s}_i . Also, in general, the final direction of the neutron spin \mathbf{s}_f is not parallel to the initial one \mathbf{s}_i . Therefore, the population of spins in a neutron beam is generally altered by magnetic scattering. One defines the <u>neutron beam polarisation</u> as $\mathbf{P} = \langle \hat{\mathbf{s}}_n \rangle$, where $\hat{\mathbf{s}}_n$ is the neutron spin direction and the average is taken over all the neutrons in the beam. The transformation of the neutron polarisation upon scattering is given by:

$$\mathbf{P}_f = \mathbf{\overline{D}} \mathbf{P}_i + \mathbf{P}_C$$

Where **D** is a tensor describing the effects of rotation and depolarisation and \mathbf{P}_{c} describes the creation of new polarisation.

The simplest case-I

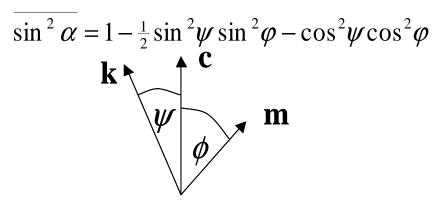
Scattering of unpolarised neutrons from a <u>collinear</u> <u>unmodulated</u> structure. Here, κ is a reciprocal lattice vector.

For collinear structures (all moments // $\hat{m})$

$$|\mathbf{Q}(\mathbf{\kappa})|^2 = \sin^2(\alpha) \left| \sum_{j=1}^{n \text{ atoms}} \mu_j f_j(\mathbf{\kappa}) e^{-i\mathbf{\kappa} \cdot \mathbf{r}_j} \right|^2$$

where α is the angle between $\hat{\kappa}$ and \hat{m}

$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{\kappa})\right)^{Unpol} = (\gamma r_e)^2 \left\{ \left| \mathbf{Q}(\mathbf{\kappa}) \right|^2 + \left| F'(\mathbf{\kappa}) \right|^2 \right\}$$


The simplest case-II

It looks like all the information is there to solve the structure even with unpolarised neutrons and powder diffraction. All the magnetic moment magnitudes are contained in $\mathbf{Q}(\mathbf{\kappa})$ with the appropriate phase factors and signs. Also, the information about the direction of the magnetic moments is there through the prefactor $\sin^2(\alpha)$. So, why bother with polarised neutrons and single-crystal techniques?

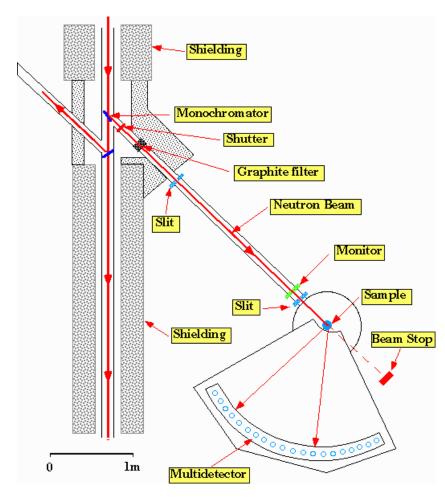
Magnetic Powder Diffraction

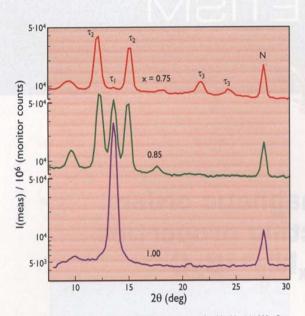
Averaging of the $\sin^2(\alpha)$ term over the (quasi)-degenerate reflections:

For <u>Uniaxial Groups</u> (3-fold, 4-fold, 6-fold) we can only determine the angle φ:

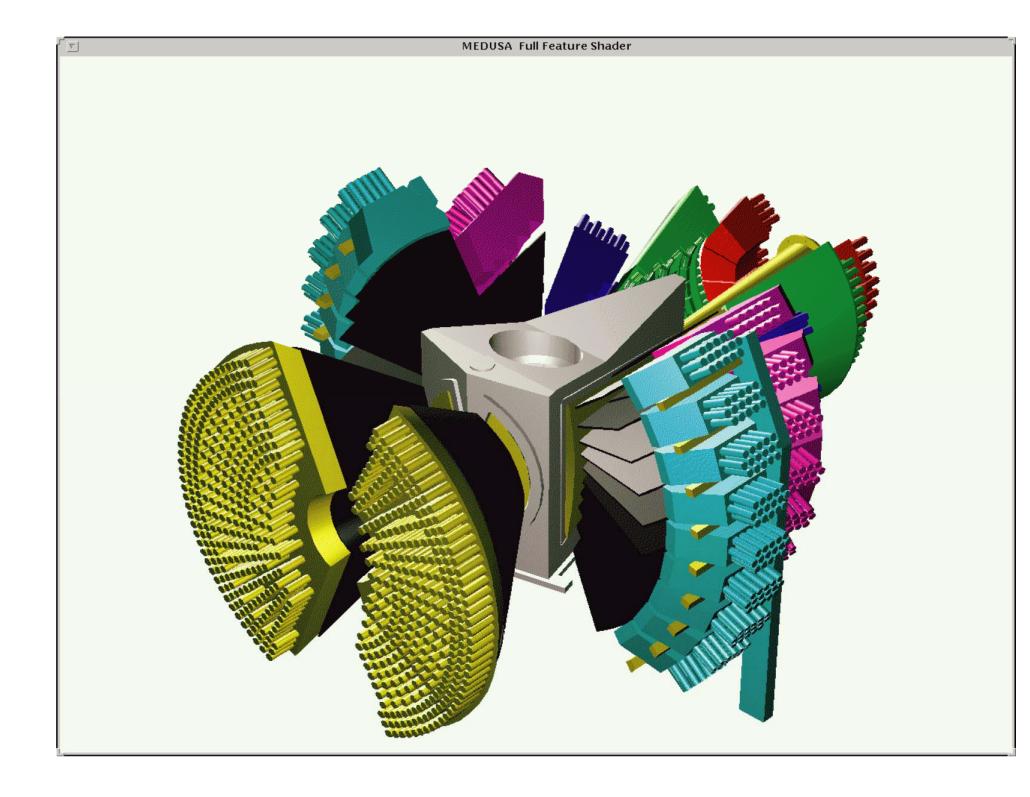
• For <u>Cubic Structures</u>, the direction of the magnetic moments is undetermined:

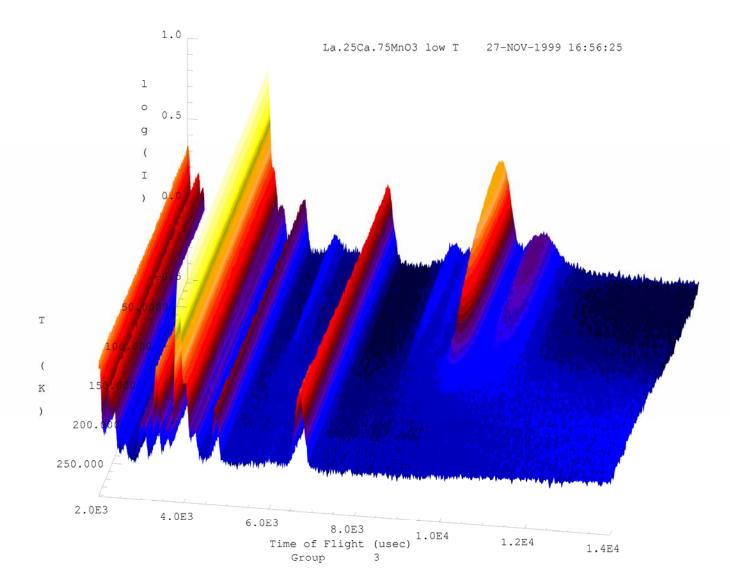
$$\overline{\sin^2 \alpha} = \frac{2}{3}$$

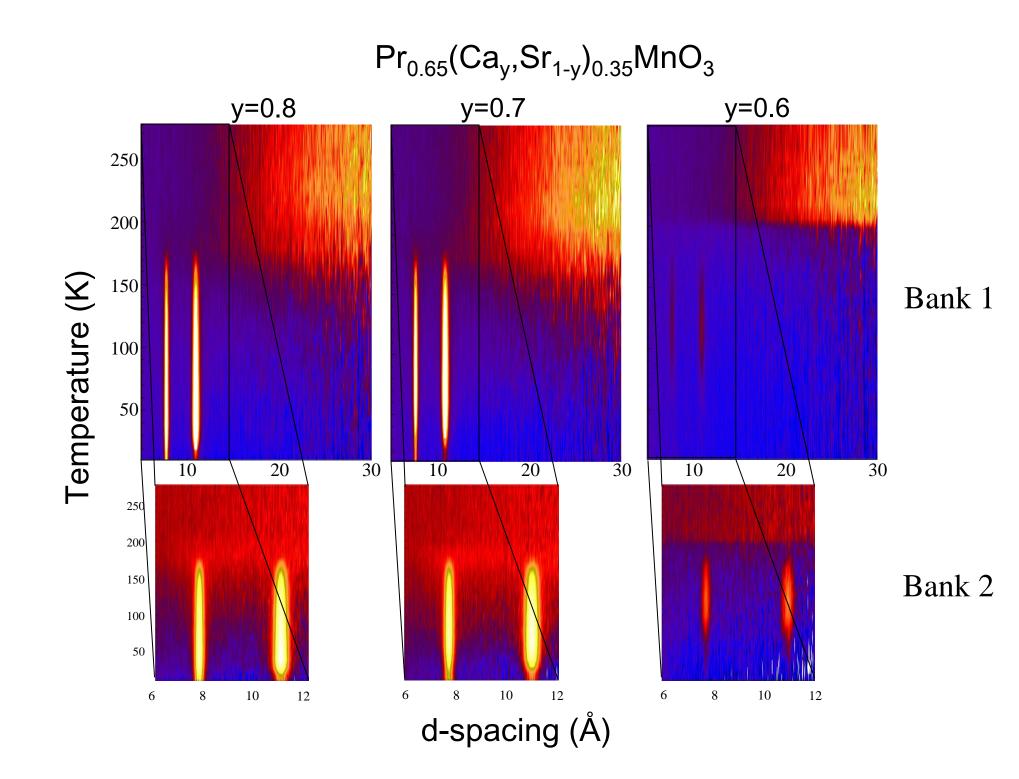

Magnetic Powder Diffractometers-I


- <u>High-k range</u>: For magnetic structure analysis, one rarely needs to go beyond sin(θ)/λ=0.5. Wavelengths > 2 Å are ideal.
- <u>Low-k range</u>: It is <u>essential</u> to have good coverage at low k, as many helimagnetic structures have very long periodicity. k=0.5 Å⁻¹ is the minimum acceptable to do any sensible work. k=0.1 Å⁻¹ is ideal.
- <u>Resolution</u>: it is desirable especially in structure with low crystallographic symmetry, because it enables to reduce the accidental degeneracy.

CW Powder Diffractometers


- Most magnetic structure problems are first tackled using high-intensity CW powder diffractometers (e.g., D1B). The biggest advantages are the excellent coverage at low k, the high flux (that can be further enhanced through focussing) and the simplicity of the data structure. Resolution is generally quite poor.
- The use of high-resolution machines (e.g., D2B) is becoming more common, especially when the magnetic moments are large, the structure has low symmetry and there is an interplay between magnetism and structural properties.


The High-Intensity CW Powder diffractometer D1B at the ILL



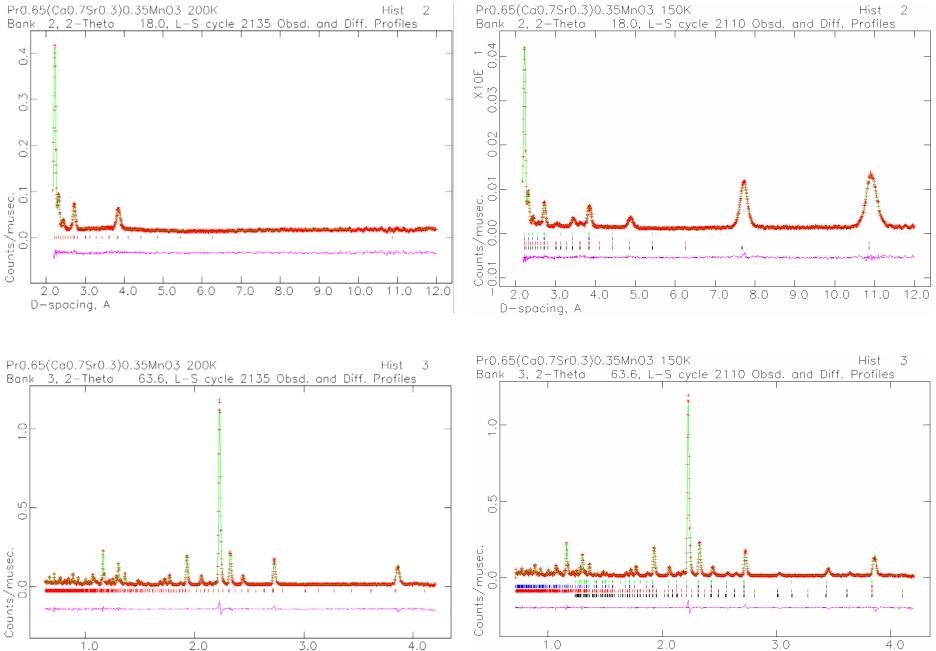
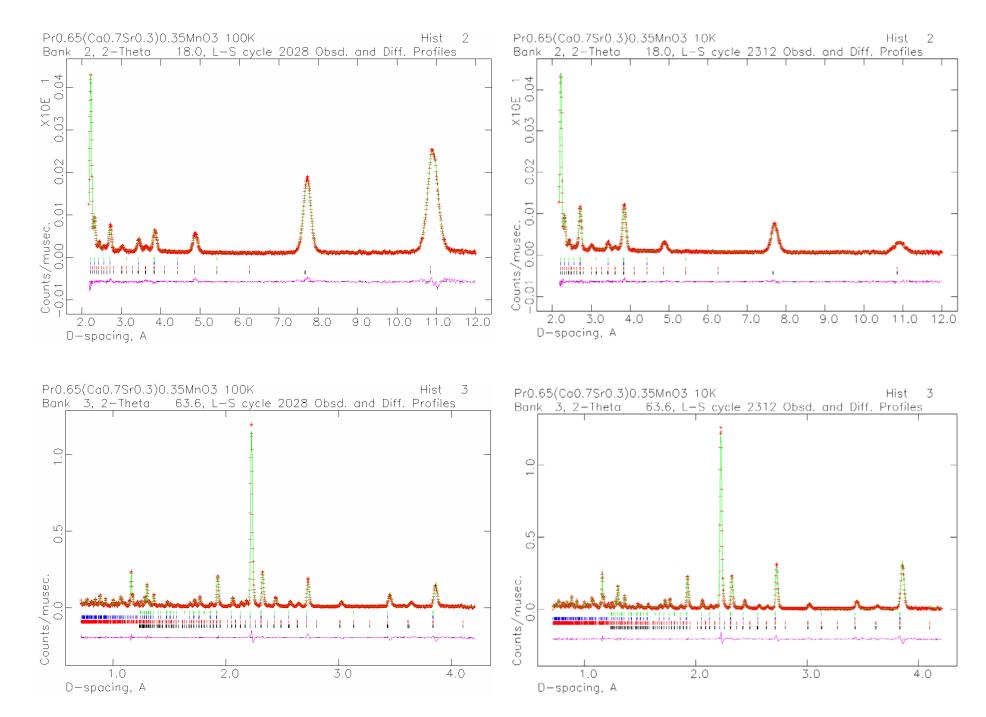
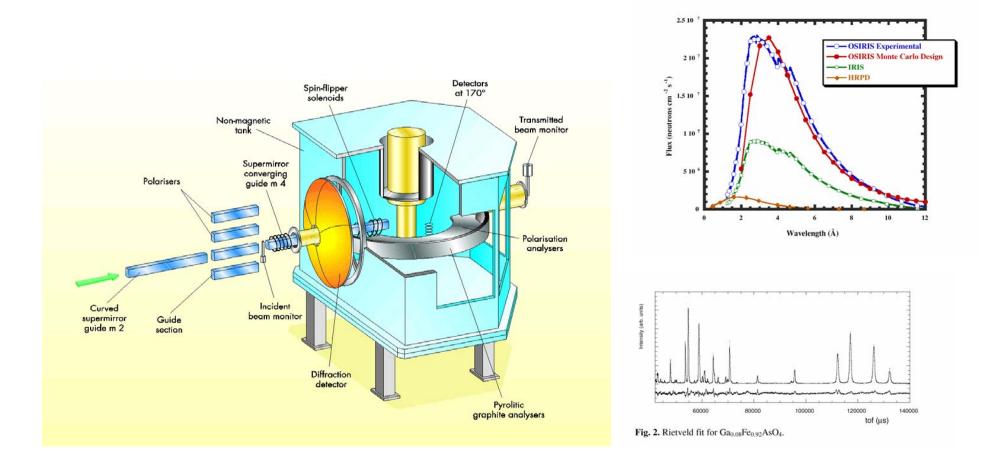
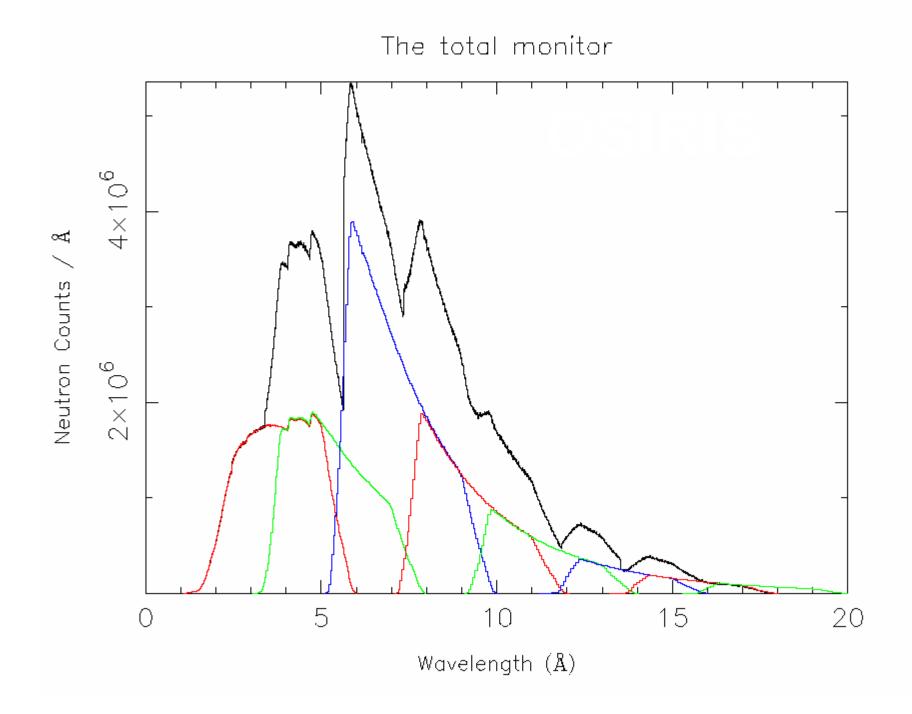
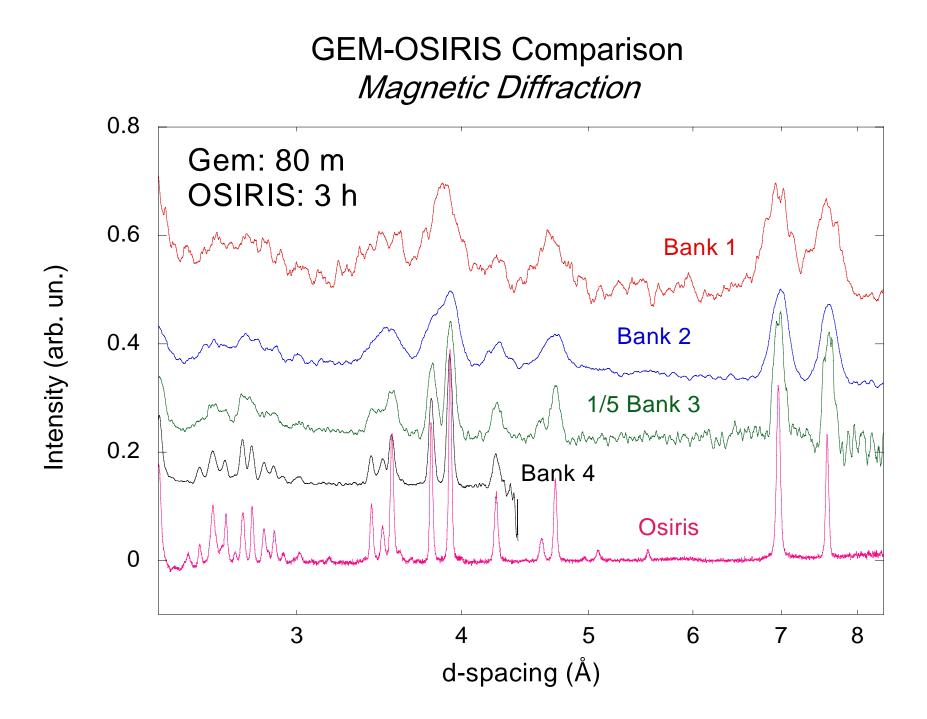


Figure 2: Low-angle part of diffraction pattern for $Ho_xY_{1,x}Ni_2^{11}B_2C$ at 3 K with marked nuclear (N) and magnetic (τ_1, τ_2, τ_3) reflections.

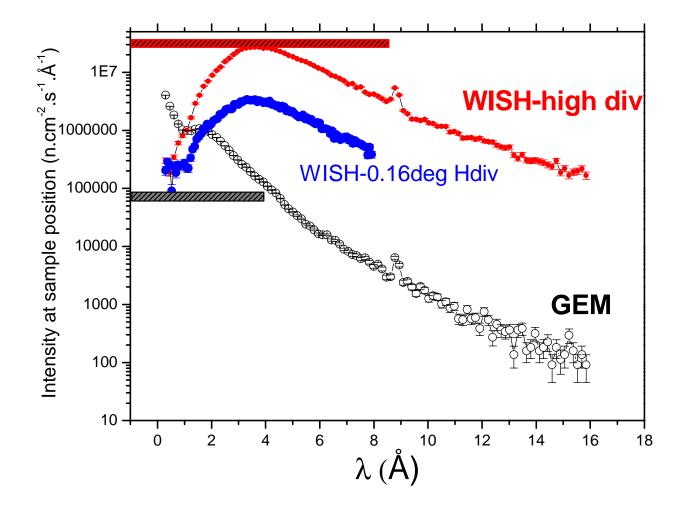





D-spacing, A


D-spacing, A

OSIRIS



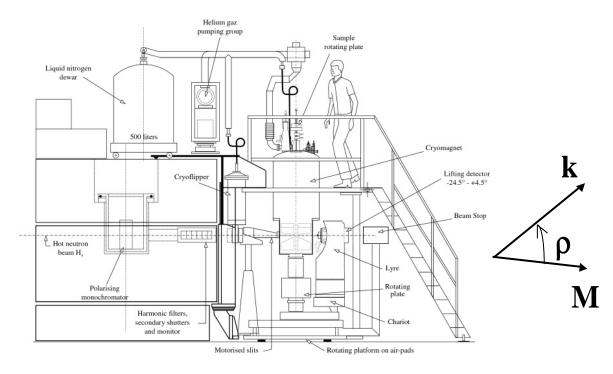
WISH

Monte-Carlo simulations

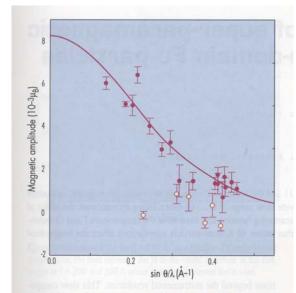
Means to obtain a polarised beam

• Scattering from a magnetic crystal (monochromatic): Cu₂MnAl (Heusler), (Co,Fe)

$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{k})\right)^{\uparrow} = (\gamma r_e)^2 \left\{ \left| \mathbf{Q}(\mathbf{k}) \right|^2 + \left| F'(\mathbf{k}) \right|^2 + 2\hat{\mathbf{s}}_n \cdot \left[\mathbf{Q}(\mathbf{k}) F'(\mathbf{k}) \right] \right\}$$


cancels out for spins antiparallel to the magnetic interaction vector and $|\mathbf{Q}(\mathbf{k})|=F'(\mathbf{k})$

- Magnetic multilayers (white beam)
- ³He polarising filters (white beam)


Uses of the neutron polarisation

Technique	Materials	Method	Applications	Instruments (examples)
Unpolarised neutrons	Powders and single crystals	Measure total cross section for unpolarised neutrons	Survey. Simple collinear structures	D1B, D20 (CWP) OSIRIS, GEM(TOFP) D10, D15 (CWSX)
Polarised neutrons	Usu. single crystals, typically FM.	Set M , measure with P parallel or antiparallel to M , to obtain "Flipping ratios"	Form factors, spin density distributions.	D3
Uniaxial polarimetry	Powders and single crystals	Set \mathbf{P}_i along any direction and measure the projection of \mathbf{P}_f onto \mathbf{P}_i .	Separate magnetic from nuclear scattering. Some non-collinear structures	D7 TAS + polariser + analyser. OSIRIS (future)
Spherical polarimetry.	Single crystals	Set \mathbf{P}_i along any direction and measure the full \mathbf{P}_f .	Complex non- collinear AFM strcutures.	TAS + polariser + analyser +Cryopad

D3 (ILL)

$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{k})\right)^{\uparrow} = (\gamma_{e})^{2} \left\{ \left| \mathbf{Q}(\mathbf{k}) \right|^{2} + \left| F'(\mathbf{k}) \right|^{2} + 2\hat{\mathbf{s}}_{n} \cdot \left[\mathbf{Q}(\mathbf{k})F'(\mathbf{k}) \right] \right\}$$
$$R = \frac{1 + 2Py\sin^{2}\rho + y^{2}\sin^{2}\rho}{1 - 2Py\sin^{2}\rho + y^{2}\sin^{2}\rho} \quad ; \quad y = (\gamma_{e})M(\mathbf{k})/F(\mathbf{k})$$

Figure 2: The magnetic amplitude per V³⁺ ion induced in V₂O₃ by 4.6 T at 180 K. The points denoted by • are for reflections with ℓ even and those marked \bigcirc are for ℓ odd. The full curve is the V³⁺ 3d form factor normalised to 8.2 \cdot 10-3 μ_{B} .

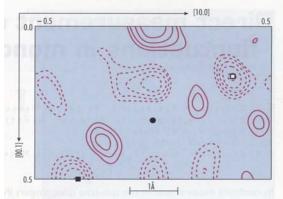


Figure 3: The section, parallel to (01.0) passing through the origin, of the maximum entropy reconstruction of the difference between the observed magnetisation distribution and that due to spherically symmetric V³⁺ ions. The \bullet marks the position of the V³⁺ ion, the \blacksquare that of the O²⁻ ion in the plane of the section and the \square that of the O²⁻ which is 0.1 Å below it. The contours are logarithmically spaced with a factor of two between successive levels. The highest contour is at 0.33 · 10⁻³ µ_BÅ³.

Uniaxial Polarisation Analysis

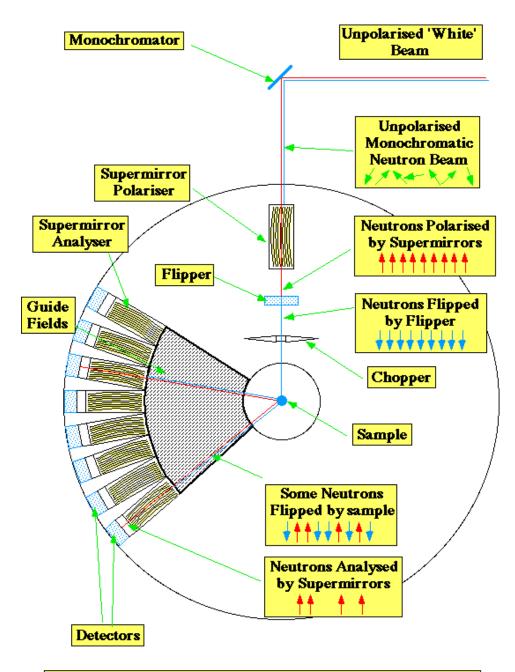
• One-detector setup

	Non spin-flip	Spin-flip
$\vec{P}_i \ \mathbf{k}$	$\sigma_c + \frac{1}{3}\sigma_i$	$\frac{2}{3}\sigma_i + \sigma_m$
$\vec{P}_i \perp \mathbf{k}$	$\sigma_c + \frac{1}{3}\sigma_i + \frac{1}{2}\sigma_m$	$\frac{2}{3}\sigma_i + \frac{1}{2}\sigma_m$

- σ_c : Nuclear Coherent
- σ_i : Nuclear spin
 - incoherent
- σ_m : Magnetic (electrons)

Ŕ

 $|\alpha|$

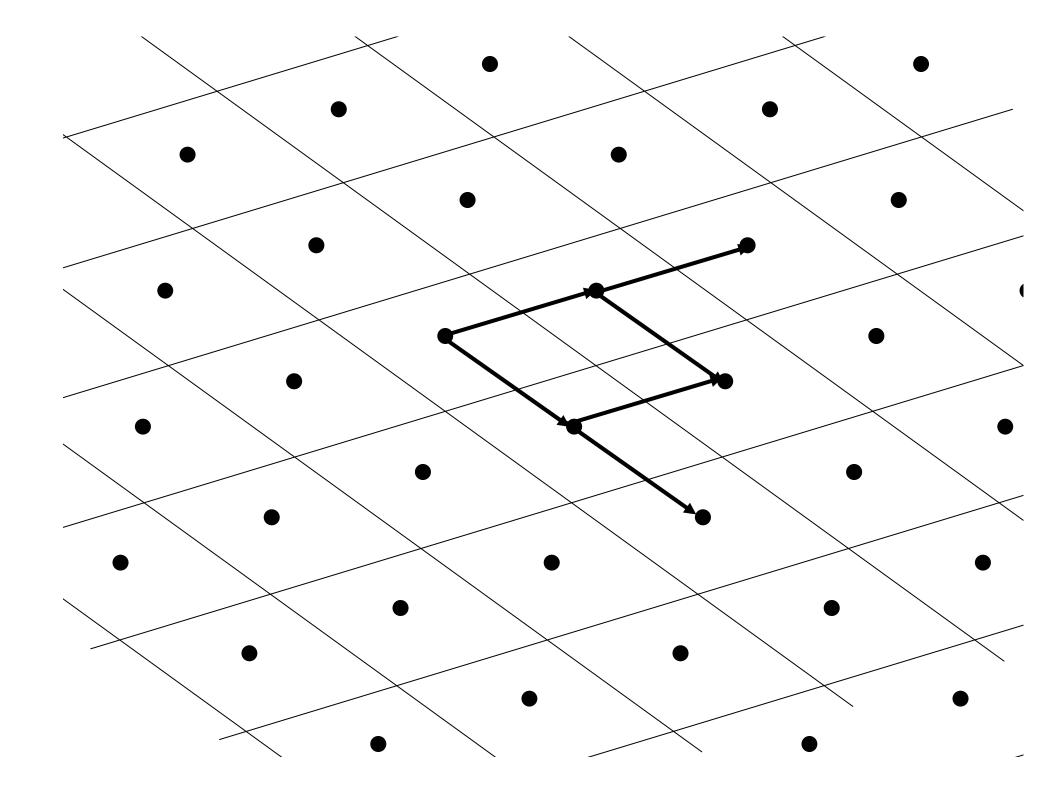

X

• Multidetector setup

	Non spin-flip	Spin-flip		
$\vec{P}_i \ \vec{x}$	$\sigma_c + \frac{1}{3}\sigma_i + \frac{1}{2}\sigma_m \sin^2\alpha$	$\frac{2}{3}\sigma_i + \frac{1}{2}\sigma_m (1 + \cos^2 \alpha)$	k _i	
$\vec{P}_i \ \vec{y}$	$\sigma_c + \frac{1}{3}\sigma_i + \frac{1}{2}\sigma_m \cos^2 \alpha$	$\frac{2}{3}\sigma_i + \frac{1}{2}\sigma_m(1+\sin^2\alpha)$		Z
$ec{P}_i \ ec{z}$	$\sigma_c + \frac{1}{3}\sigma_i + \frac{1}{2}\sigma_m$	$\frac{2}{3}\sigma_i + \frac{1}{2}\sigma_m$		

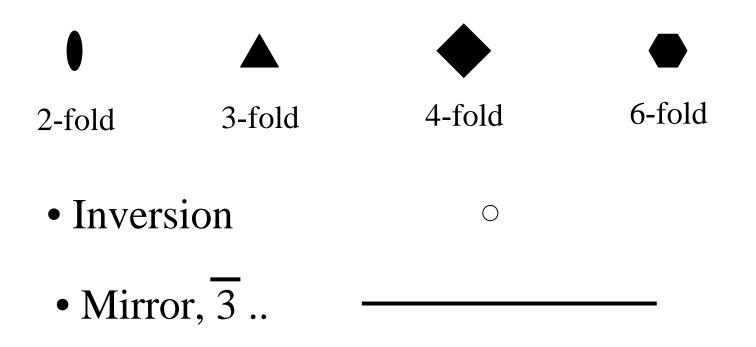
D7 (ILL)

- Diffuse scattering
- Cold neutrons
- Supermirror polarisers
- 32 detectors
- 1-directional polarisation analysis: Separation of coherent and incoherent scattering
- 3-directional polarisation analysis:Separation also of magnetic scattering
- Time-of-flight option

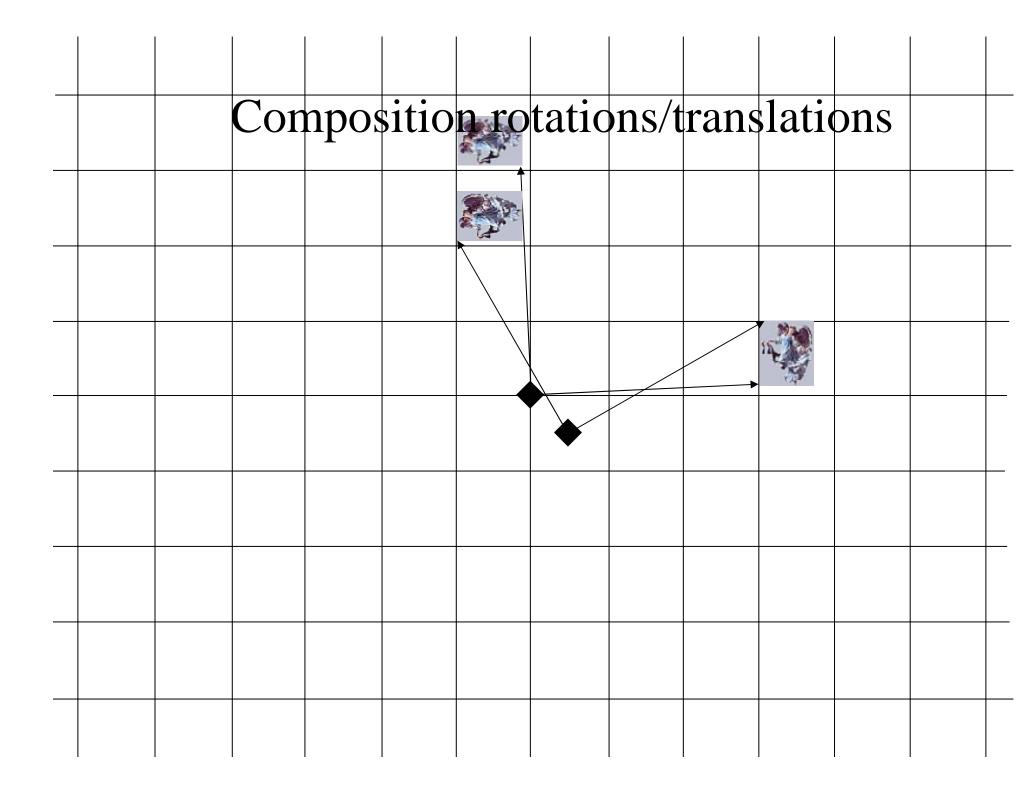

General Layout of D7 for Polarisation Analyses

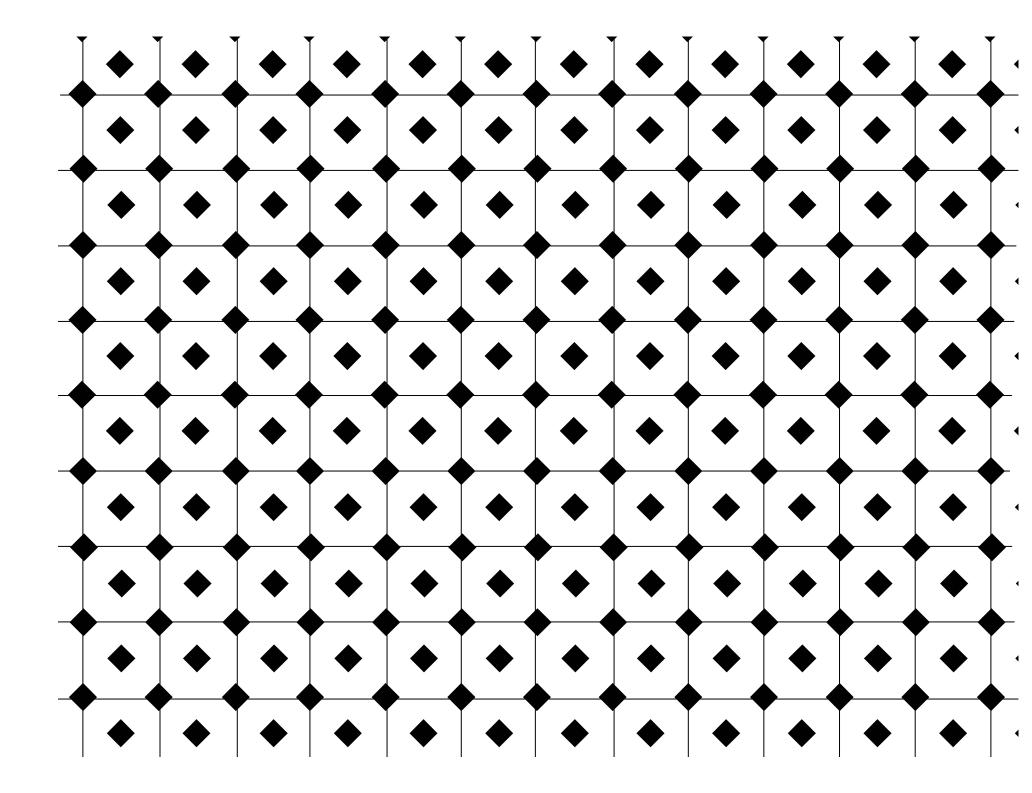
Magnetic Symmetry Paolo G. Radaelli

Symmetry in the solid state

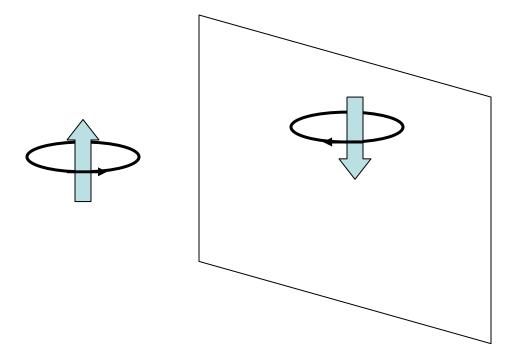

- Symmetry = invariance
- *Think active! everything is affected*
- Ordering = symmetry breaking (lowering)
- Crystalline state = Translational invariance

Symmetry operators form a group



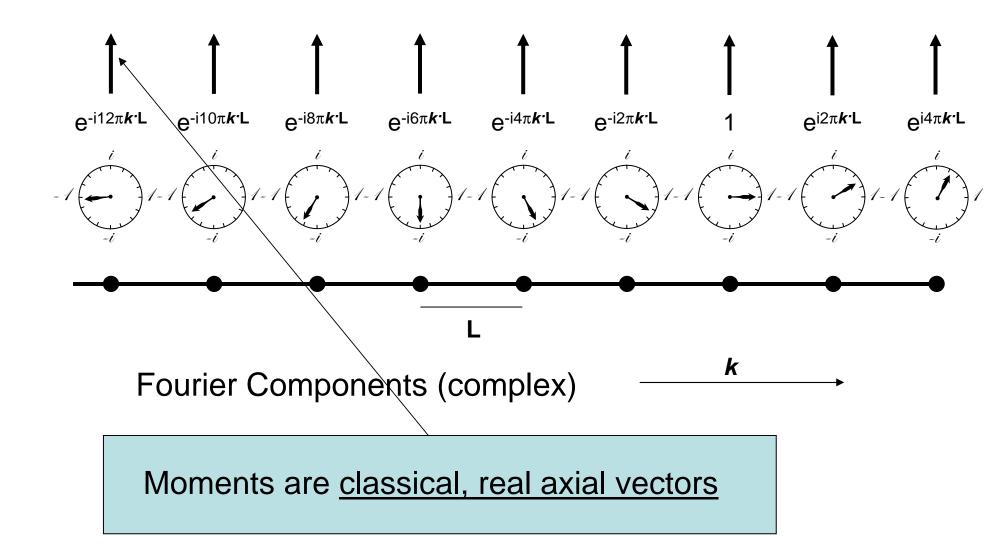

Other types of symmetry

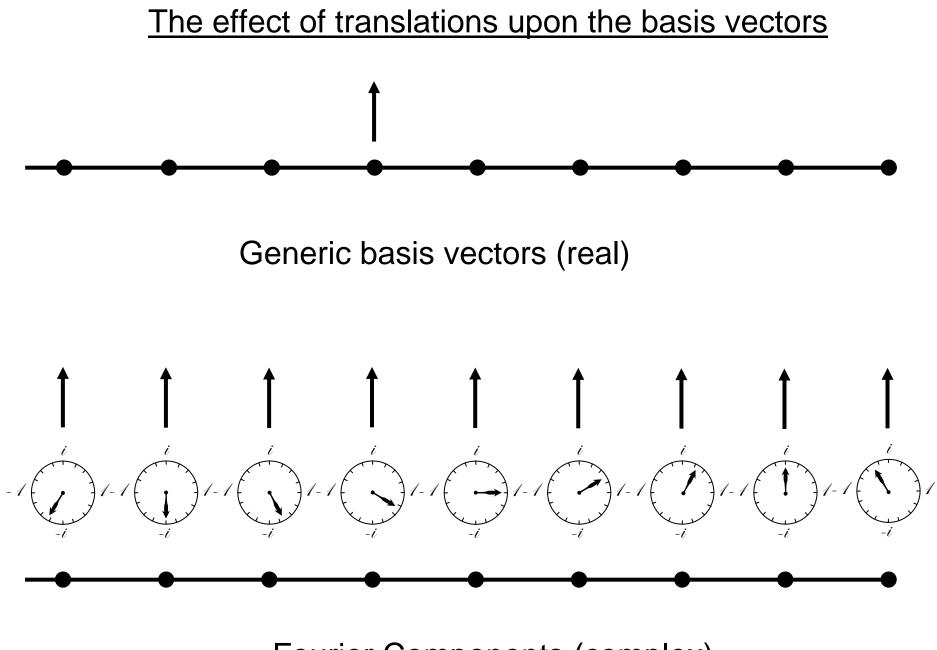
• Rotations



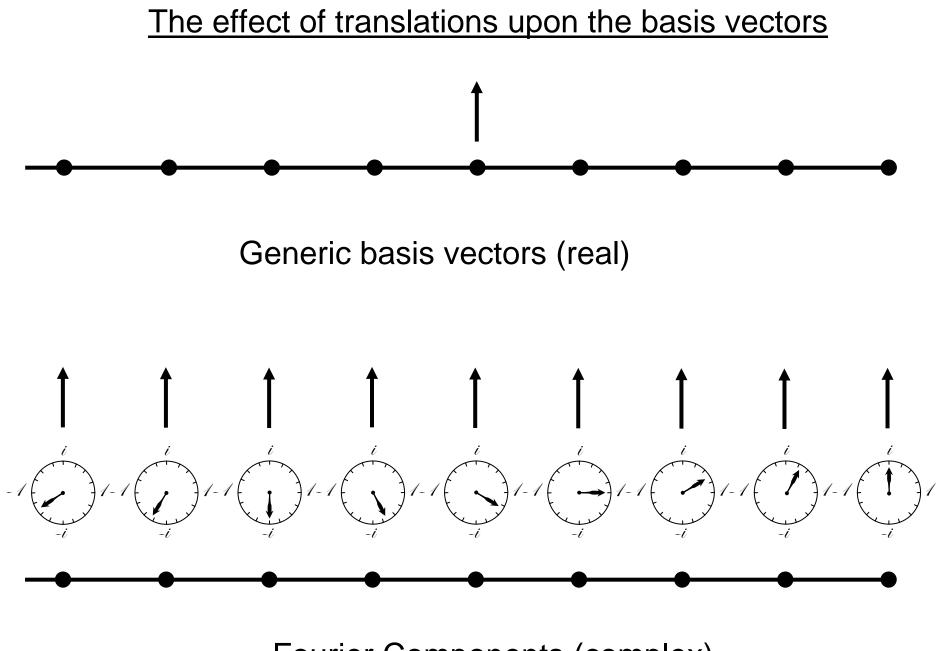
• + non-primitive translations....= 230 SG

Effect of symmetry on magnetic moments

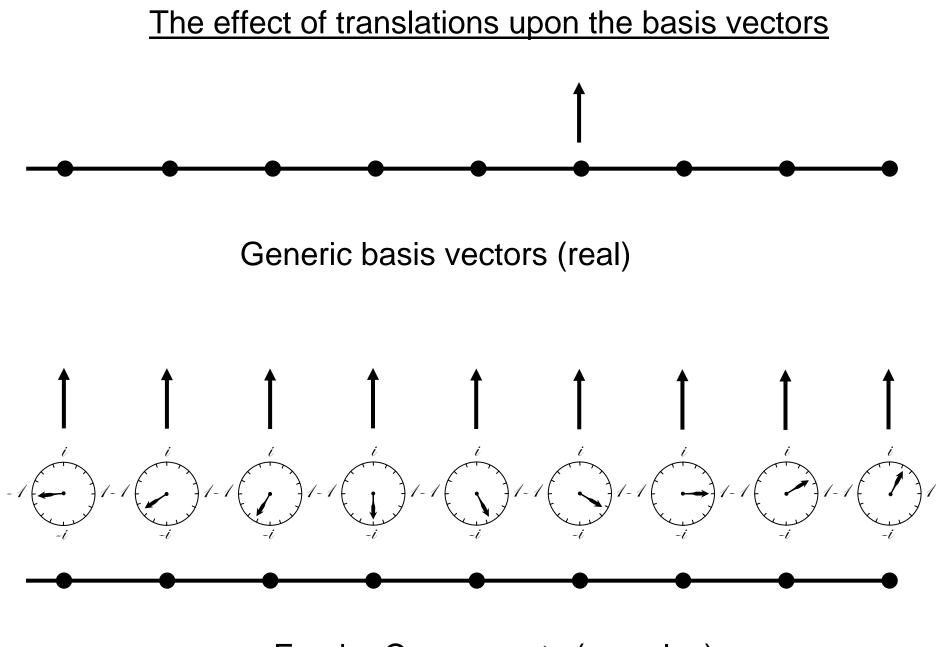


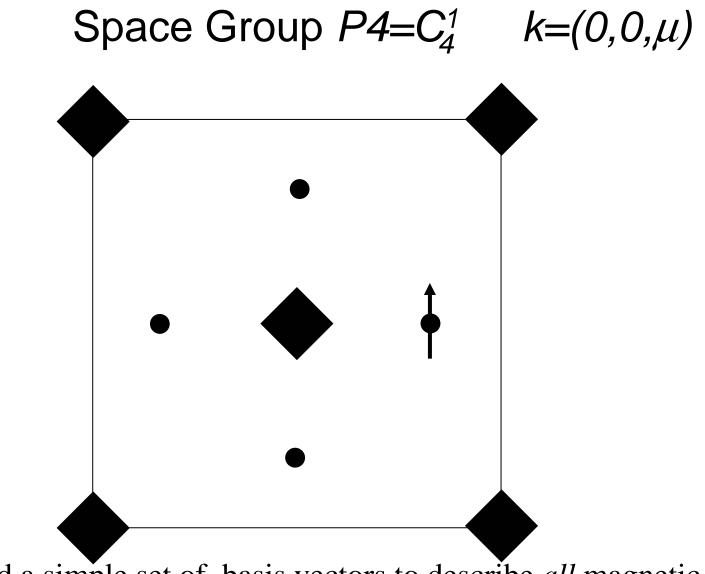

	m _x	2 _z , 3 _z , 4 _z , 6 _z	1	1
Unprimed	Flip s _y s _z	Rotate s _x , s _y	No effect	No effect
Primed	Flip s _x	Rotate s _x , s _y Flip s _x , s _y , s _z	Flip s _x , s _y , s _z	Does not occur

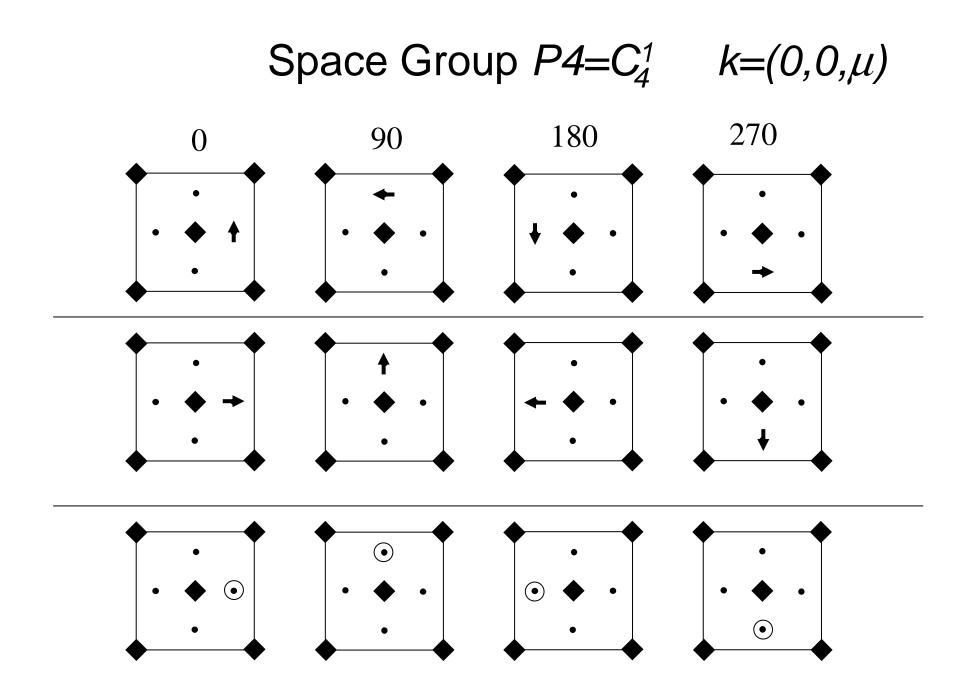
Basis Vectors

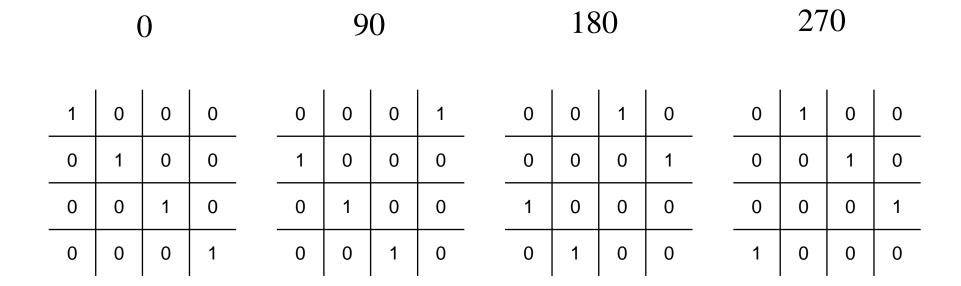

- Stop thinking at vectors as arrows!
- "Vectors" are elements of a linear space, where we define addition and multiplication by a scalar (complex or real). E.g., wavefunction.
- We can define a **basis** of linearly independent vectors.
- Description of magnetic structures = find "suitable" (highly symmetric) bases....

Propagation Vector

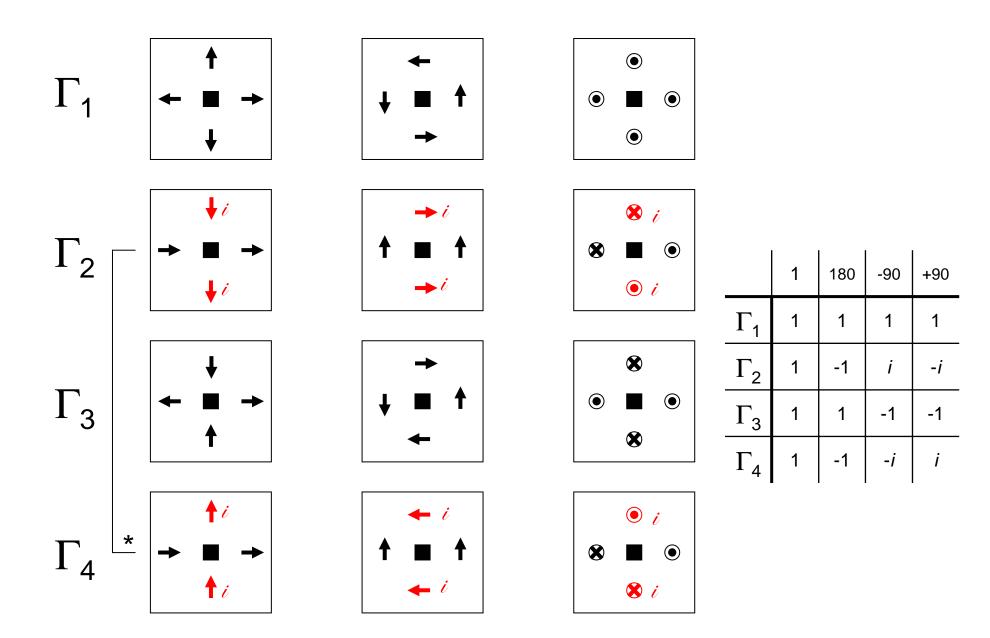


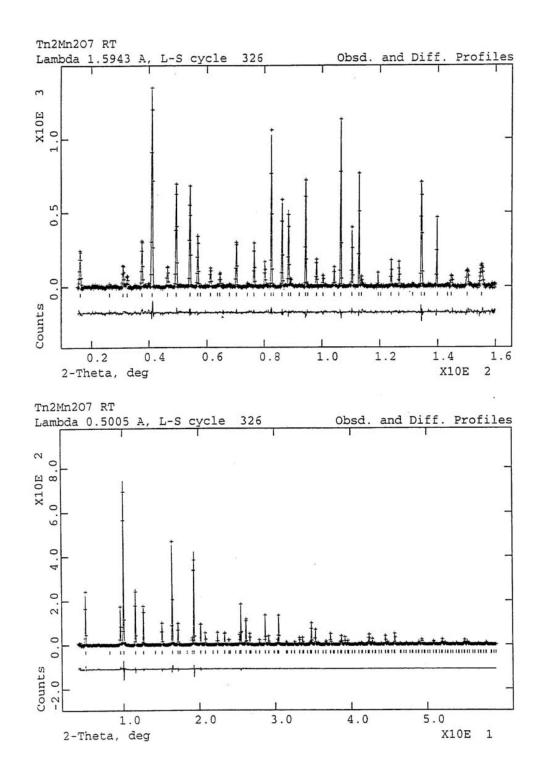

Fourier Components (complex)


Fourier Components (complex)


Fourier Components (complex)

- 1. Find a simple set of basis vectors to describe *all* magnetic structures.
- 2. Find out how they are related by symmetry
- 3. Express this in matrix form.


Matrix representation


1. Fully reduce this to *1-dimensional* representations.

- 2. Remember you have the following numbers at your disposal: 1, -1, i, -i. One of the *irreps* is totally symmetric.
- 3. Remember composition rules....

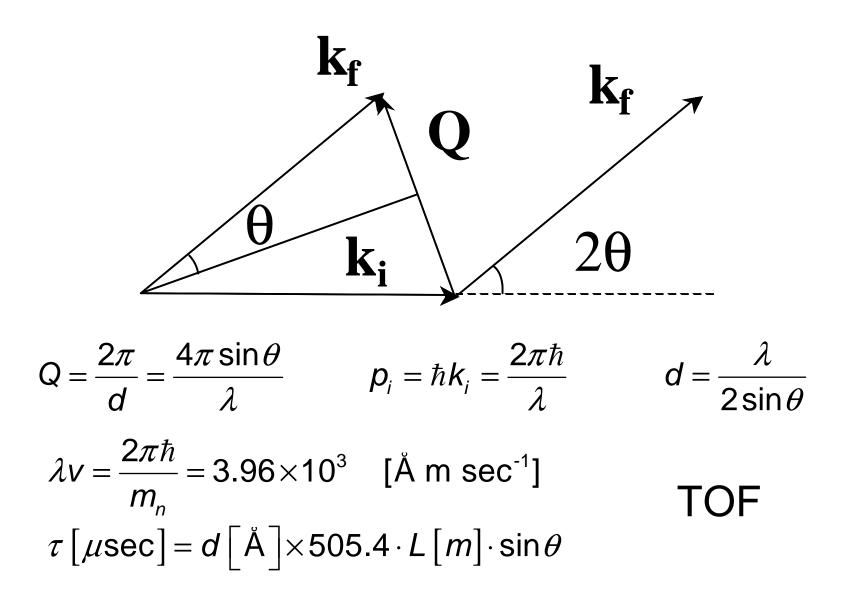
Space Group $P4=C_{4}^{1}$ $k=(0,0,\mu)$

Magnetic powder diffraction and instrumentation Paolo G. Radaelli

neutrons

Scattering condition for a single crystal

$$\mathbf{k}_i = \frac{2\pi}{\lambda} \hat{\mathbf{s}}_i \qquad \mathbf{k}_f = \frac{2\pi}{\lambda} \hat{\mathbf{s}}_f \qquad \mathbf{p} = \hbar \mathbf{k} \quad \square \qquad De Broglie$$

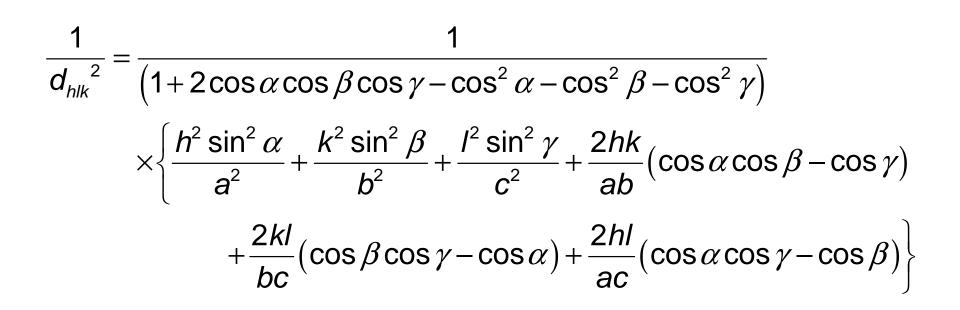

$$(\mathbf{k}_{f} - \mathbf{k}_{i}) \cdot \mathbf{a}_{j} = \mathbf{Q} \cdot \mathbf{a}_{j} = 2\pi h_{j}$$

 $h_{j} = h, k, l$ (Miller indices) Laue equation

$$\mathbf{Q} = \mathbf{k}_{f} - \mathbf{k}_{i} = \tau = 2\pi \sum_{i} \mathbf{a}_{i}^{*} h_{i}$$

$$\mathbf{a}_{1}^{*} = \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot (\mathbf{a}_{2} \times \mathbf{a}_{3})} \cdots$$

Reci


Reciprocal lattice

Note: often people use $\mathbf{Q} = \mathbf{k}_i - \mathbf{k}_f$

Scattering triangle and Bragg law

Spacing formulae

The Scattering Function

$$P = \varepsilon_{det} \Phi V n_u \cdot \int S(\mathbf{Q}) d\Omega \quad [particles/sec]$$

 n_u ["*units*"/Å³] number density S(**Q**) [*barns* = 10⁻²⁴ *cm*²] Scattering function

Sometimes $S(\mathbf{Q})$ is normalised to $S_{\infty}(\mathbf{Q})$

Magnetic Scattering of Neutrons

Neutrons are strongly scattered from magnetic moments. The scattering <u>amplitude</u> from an ion is of the order of $\gamma r_e \mu$, where:

 $\gamma = -1.91$ Neutron magnetic moment in nuclear magnetons (spin + orbital).

 $r_e = 0.282 \cdot 10^{-12} cm$ Electron classical radius ($e^2/m_e c^2$) $\mu = ion$ magnetic moment in Bohr magnetons.

For comparison, typical nuclear scattering amplitudes for neutrons are of the order of $0.5 \cdot 1.0 \cdot 10^{-12}$ cm.

Single-atom magnetic scattering factors

$$\vec{\mathbf{A}}_{mag} = r_{e} \cdot \gamma \cdot f_{m}(\mathbf{Q}) \mu \cdot \frac{1}{\mathbf{Q}^{2}} (\mathbf{Q} \times \hat{\mathbf{m}} \times \mathbf{Q})$$
$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{mag}^{unpol} = \left(r_{e} \cdot \gamma \cdot f_{m}(\mathbf{Q}) \cdot \mu\right)^{2} \cdot \frac{1}{\mathbf{Q}^{4}} |\mathbf{Q} \times \hat{\mathbf{m}} \times \mathbf{Q}|^{2}$$
$$f_{m}(\mathbf{Q}) = \frac{\int d\mathbf{r} M(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}}}{\int d\mathbf{r} M(\mathbf{r})}$$

$$\gamma = -1.91 \,\mu_n$$
; $\mu_n = 1/966 \,\mu_B$; $\mu_B = \frac{\hbar e}{2m} = 9.25 \times 10^{-24} JT^{-1}$

The Magnetic Form Factor

a single atom

$$f(\mathbf{Q}) = \frac{\left\langle \psi \left| \int \hat{\mathbf{M}}(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} dr^3 \right| \psi \right\rangle}{\left\langle \psi \left| \int \hat{\mathbf{M}}(\mathbf{r}) dr^3 \right| \psi \right\rangle} \text{ over}$$

In the isotropic case:

$$f(\mathbf{Q}) = f(Q) = \langle j_0(Q) \rangle + \left(1 - \frac{2}{g}\right) \langle j_2(Q) \rangle$$

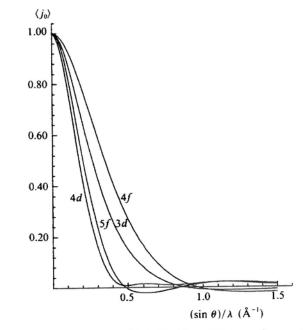


Fig. 6.1.2.2. Comparison of 3d, 4d, 4f, and 5f form factors. The 3ι form factor is for Co, and the 4d for Rh, both calculated from wavefunctions given by Clementi & Roetti (1974). The 4f form factor is for Gd³⁺ calculated by Freeman & Desclaux (1972) and the 5f is that for U³⁺ given by Desclaux & Freeman (1978).

From: International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513

Atomic scattering factors

$$A_{\text{Atom}} = r_{e} \cdot \left[P + (1 - P)\cos^{2} 2\theta\right]^{\frac{1}{2}} \cdot f(\mathbf{Q})$$

$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text{Atom}} = r_{e}^{-2} \cdot \left[P + (1 - P)\cos^{2} 2\theta\right] \cdot \left|f(\mathbf{Q})\right|^{2}$$

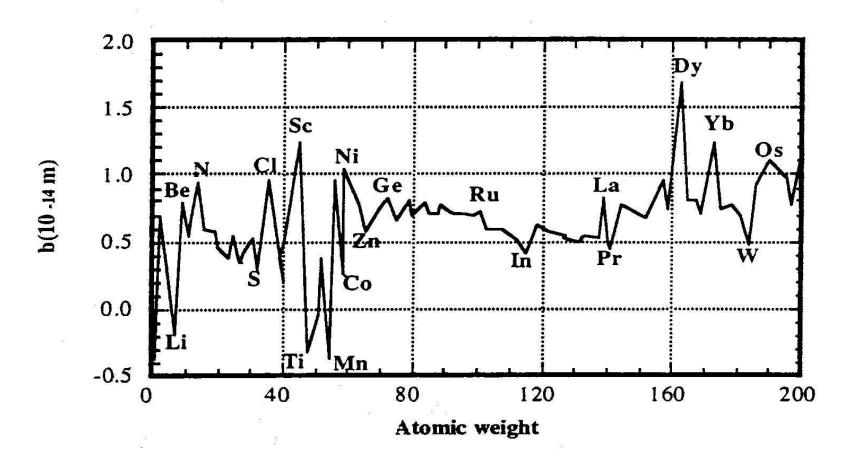
$$r_{e} = \frac{e^{2}}{mc^{2}} = 0.2818 \ 10^{-14} \text{ m} \qquad r_{e}^{-2} = 7.94 \times 10^{-2} \text{ barns}$$

$$f(\mathbf{q}) = \int d\mathbf{r} \rho(\mathbf{r}) e^{i\mathbf{q}\cdot\mathbf{r}}$$

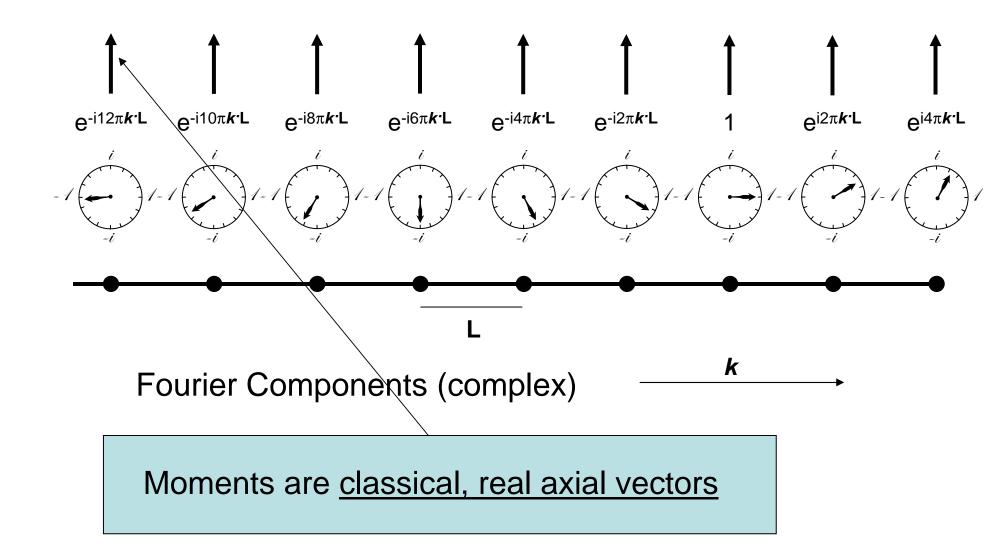
$$A_{coh} = b_{coh}$$
$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{coh} = \left|b_{coh}\right|^{2} \quad \text{[barns]}$$

Neutrons (nuclear)

$$\mathbf{A}_{mag} = r_{e} \cdot \gamma \cdot f_{m}(\mathbf{Q}) \mu \cdot \hat{\mathbf{m}}$$


$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{mag}^{unpol} = \left(r_{e} \cdot \gamma \cdot f_{m}(\mathbf{Q}) \cdot \mu\right)^{2} \cdot \frac{1}{Q^{4}} |\mathbf{Q} \times \hat{\mathbf{m}} \times \mathbf{Q}|^{2}$$

$$f_{m}(\mathbf{Q}) = \frac{\int d\mathbf{r} M(\mathbf{r}) e^{i\mathbf{Q} \cdot \mathbf{r}}}{\int d\mathbf{r} M(\mathbf{r})}$$


Neutrons (*magnetic*)

$$\gamma = -1.91 \,\mu_n$$
; $\mu_n = 1/966 \,\mu_B$; $\mu_B = \frac{\hbar e}{2m} = 9.25 \times 10^{-24} \, JT^{-1}$

Fermi lengths vs atomic weight

Propagation Vector

Scattering of neutrons from magnetic structures

$$\vec{\mathbf{m}}_{j,n} = \vec{\mathbf{m}}_{j} e^{i\varphi_{j}} e^{i\mathbf{k}\cdot\mathbf{R}_{n}} + c.c.$$

$$\vec{\mathbf{A}}(\mathbf{Q}) = r_e \cdot \gamma \cdot \sum_{n,j} f_j(\mathbf{Q}) \frac{\mathbf{Q} \times \vec{\mathbf{m}}_{j,n} \times \mathbf{Q}}{Q^2} e^{i\mathbf{Q} \cdot \mathbf{R}_n - W_j(Q)} =$$
$$= r_e \cdot \gamma \cdot \sum_n \vec{\mathbf{M}}_p e^{i(\mathbf{Q} + \mathbf{k}) \cdot \mathbf{R}_n} + \vec{\mathbf{M}}_p^* e^{i(\mathbf{Q} - \mathbf{k}) \cdot \mathbf{R}_n}$$

$$\vec{\mathbf{M}}_{p} = \sum_{j} f_{j}(\mathbf{Q}) \frac{\mathbf{Q} \times \vec{\mathbf{m}}_{j} e^{i\varphi_{j}} \times \mathbf{Q}}{Q^{2}} e^{-W_{j}(Q)}$$

It is useful to define **Q**, the *magnetic interaction vector*

Scattering of neutrons from magnetic structures-II

$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{mag}^{unpol} = \vec{\mathbf{A}}(\mathbf{Q}) \cdot \vec{\mathbf{A}}^*(\mathbf{Q}) =$$

$$= \left(r_{e} \cdot \gamma\right)^{2} \sum_{n,n'} \left[\vec{\mathbf{M}}_{p} e^{i(\mathbf{Q}+\mathbf{k})\cdot\mathbf{R}_{n}} + \vec{\mathbf{M}}_{p}^{*} e^{i(\mathbf{Q}-\mathbf{k})\cdot\mathbf{R}_{n}}\right] \cdot \left[\vec{\mathbf{M}}_{p}^{*} e^{-i(\mathbf{Q}+\mathbf{k})\cdot\mathbf{R}_{n}} + \vec{\mathbf{M}}_{p} e^{-i(\mathbf{Q}-\mathbf{k})\cdot\mathbf{R}_{n'}}\right]$$

$$= (r_{e} \cdot \gamma)^{2} N \sum_{n} \vec{\mathbf{M}}_{p} \cdot \vec{\mathbf{M}}_{p}^{*} \left[e^{i(\mathbf{Q}+\mathbf{k})\cdot\mathbf{R}_{n}} + e^{i(\mathbf{Q}-\mathbf{k})\cdot\mathbf{R}_{n}} \right] + (r_{e} \cdot \gamma)^{2} \sum_{n,n'} \left[\vec{\mathbf{M}}_{p} \cdot \vec{\mathbf{M}}_{p} e^{i(\mathbf{Q}+\mathbf{k})\cdot\mathbf{R}_{n}-i(\mathbf{Q}-\mathbf{k})\cdot\mathbf{R}_{n'}} + \vec{\mathbf{M}}_{p}^{*} \cdot \vec{\mathbf{M}}_{p}^{*} e^{i(\mathbf{Q}-\mathbf{k})\cdot\mathbf{R}_{n}-i(\mathbf{Q}+\mathbf{k})\cdot\mathbf{R}_{n'}} \right]$$

Case 1: k is a generic point in the Brillouin zone

$2\mathbf{k} \neq \mathbf{\kappa}$

$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{mag}^{unpol} = \left(r_e \cdot \gamma\right)^2 N \vec{\mathbf{M}}_p \cdot \vec{\mathbf{M}}_p^* \left[\delta \left(\mathbf{Q} - \mathbf{\kappa} + \mathbf{k}\right) + \delta \left(\mathbf{Q} - \mathbf{\kappa} - \mathbf{k}\right)\right]$$

 $\mathbf{q} \coloneqq \mathbf{Q} - \mathbf{\kappa}$

Case 2: k is a Lifshits vector (special point of symmetry)

$2\mathbf{k} = \mathbf{\kappa}$

$$\left(\frac{\partial\sigma}{\partial\Omega}\right)_{mag}^{unpol} = (r_e \cdot \gamma)^2 N \,\delta(\mathbf{Q} - \mathbf{\kappa} + \mathbf{k}) \Big[2\vec{\mathbf{M}}_p \cdot \vec{\mathbf{M}}_p^* + \vec{\mathbf{M}}_p \cdot \vec{\mathbf{M}}_p + \vec{\mathbf{M}}_p^* \cdot \vec{\mathbf{M}}_p^* \Big]$$
$$= 4(r_e \cdot \gamma)^2 N \,\delta(\mathbf{Q} - \mathbf{\kappa} + \mathbf{k}) \Big| \operatorname{Re}\vec{\mathbf{M}}_p \Big|^2$$

$$\vec{\mathbf{m}}_{j,n} = \vec{\mathbf{m}}_{j} e^{i\varphi_{j}} (-1)^{n/\prime} + c.c. = 2\vec{\mathbf{m}}_{j} \cos \varphi_{j} (-1)^{n/\prime}$$

Magnetic Scattering Formulæ

Polarised neutrons - polarisation analysis

Non-flip

$$\left(\frac{\mathrm{d}\,\boldsymbol{\sigma}}{\mathrm{d}\,\Omega}(\mathbf{Q})\right)^{++} = \left(\gamma r_{e}\right)^{2} \left\{ \left| \hat{\mathbf{s}}_{n} \cdot \vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right) \right|^{2} + \left| F'(\mathbf{Q}) \right|^{2} + \hat{\mathbf{s}}_{n} \cdot \left[\vec{\mathbf{M}}_{p}^{*}(\mathbf{Q}) F'(\mathbf{Q}) + \vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right) F'^{*}(\mathbf{Q}) \right] \right\}$$

Flip
$$\left(\frac{\mathrm{d}\,\boldsymbol{\sigma}}{\mathrm{d}\,\Omega}(\mathbf{Q})\right)^{+-} = \left(\gamma r_{e}\right)^{2} \left\{ \left[\hat{\mathbf{s}}_{n} \times \vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right) \right] \cdot \left[\hat{\mathbf{s}}_{n} \times \vec{\mathbf{M}}_{p}^{*}\left(\mathbf{Q}\right) \right] + i \hat{\mathbf{s}}_{n} \cdot \left[\vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right)^{*} \times \vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right) \right] \right\}$$

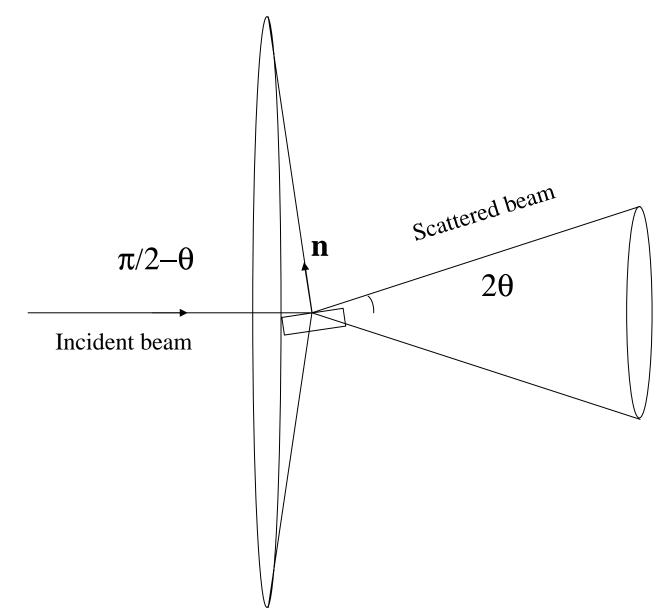
Total

$$\left(\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}(\mathbf{Q})\right)^{\uparrow} = \left(\gamma r_{e}\right)^{2} \left\{\left|\vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right)\right|^{2} + \left|F'(\mathbf{Q})\right|^{2} + \hat{\mathbf{s}}_{n} \cdot \left[\vec{\mathbf{M}}_{p}^{*}\left(\mathbf{Q}\right)F'(\mathbf{Q}) + \vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right)F'^{*}\left(\mathbf{Q}\right) + i\vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right)^{*}\right)\right\}$$

Unpolarised neutrons

$$\left(\frac{\mathrm{d}\,\boldsymbol{\sigma}}{\mathrm{d}\,\boldsymbol{\Omega}}(\mathbf{Q})\right)^{Unpol} = \left(\gamma r_{e}\right)^{2} \left\{\left|\vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right)\right|^{2} + \left|F'(\mathbf{Q})\right|^{2}\right\}$$

Formulæ Explained


- **Non-flip:** In addition to the nuclear scattering, it contains the components of $M_p(Q)$ <u>parallel</u> to the neutron spin and a magneto-structural interference term.
- Flip:It contains the components of $M_p(Q)$
perpendicular to the neutron spin, plus an
additional term which is present only if $M_p(Q)$ is
complex.
- Total: It contains the nuclear term, the module square of $M_p(Q)$ and the two terms which are linear in s_n .
- **Unpolarised**: It contains only the nuclear term and the module square of $\mathbf{M}_p(\mathbf{Q})$, since the two terms which are linear in \mathbf{s}_n cancel upon averaging.

SX Scattering Function

$$S(\mathbf{Q}) = \frac{(2\pi)^3}{v_0} \sum_{\tau} \delta^{(3)} \left(\mathbf{Q} - \tau\right) \left| F(\tau) \right|^2 \quad \left[\text{barns} \right]$$

$$v_0$$
[ų]unit cell volume $n_u = \frac{1}{v_0} [u.c./Å^3]$ number density τ R.L. nodes

Debye-Scherrer cones and powder stats

Powder Scattering Function

$$\begin{split} \mathbf{S}(\mathbf{Q}) &= \frac{2\pi^2}{V_0} \sum_{\text{mod } \tau} m_{\tau} \frac{\delta\left(\mathbf{Q} - \tau\right)}{\mathbf{Q}^2} \left| \mathbf{F}(\tau) \right|^2 \quad \text{[barns]} \\ & \begin{array}{c} v_0 & [\mathring{A}^3] & \text{unit cell volume} \\ n_u &= \frac{1}{V_0} \rho[u.c./\check{A}^3] & \text{number density} \\ \tau & \text{R.L. nodes} \\ m_{\tau} & \text{multiplicity} \\ p & \text{packing fraction} \\ \end{split}$$

The simplest case-I

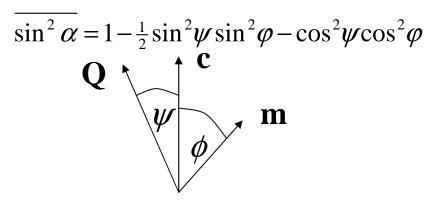
Scattering of unpolarised neutrons from a <u>collinear</u> <u>unmodulated</u> structure. Here, κ is a reciprocal lattice vector.

For collinear structures (all moments // $\hat{m})$

$$\left|\vec{\mathbf{M}}_{p}(\mathbf{Q})\right|^{2} = \sin^{2}\left(\alpha\right) \left|\sum_{j=1}^{n \text{ atoms}} \mu_{j}f_{j}(Q)e^{-i\mathbf{Q}\cdot r_{j}-W}\right|^{2}$$

where α is the angle between **Q** and $\hat{\mathbf{m}}$

$$\left(\frac{\mathrm{d}\,\boldsymbol{\sigma}}{\mathrm{d}\,\boldsymbol{\Omega}}(\mathbf{Q})\right)^{Unpol} = \left(\gamma r_{e}\right)^{2} \left\{\left|\vec{\mathbf{M}}_{p}\left(\mathbf{Q}\right)\right|^{2} + \left|F'(\mathbf{Q})\right|^{2}\right\}$$


The simplest case-II

It looks like all the information is there to solve the structure even with unpolarised neutrons and powder diffraction. All the magnetic moment magnitudes are contained in $\mathbf{M}_p(\mathbf{Q})$ with the appropriate phase factors and signs. Also, the information about the direction of the magnetic moments is there through the prefactor $\sin^2(\alpha)$. So, why bother with polarised neutrons and single-crystal techniques?

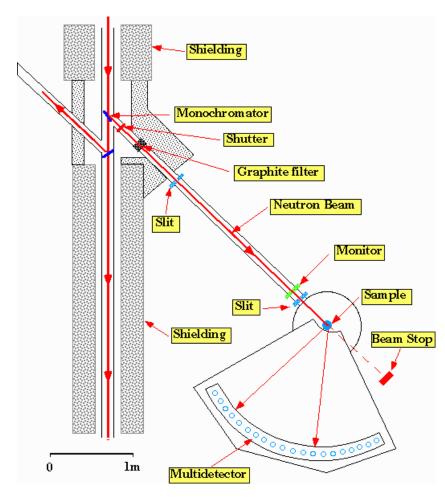
Magnetic Powder Diffraction

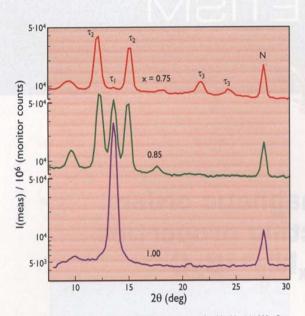
Averaging of the $\sin^2(\alpha)$ term over the (quasi)-degenerate reflections:

For <u>Uniaxial Groups</u> (3-fold, 4-fold, 6-fold) we can only determine the angle *φ*:

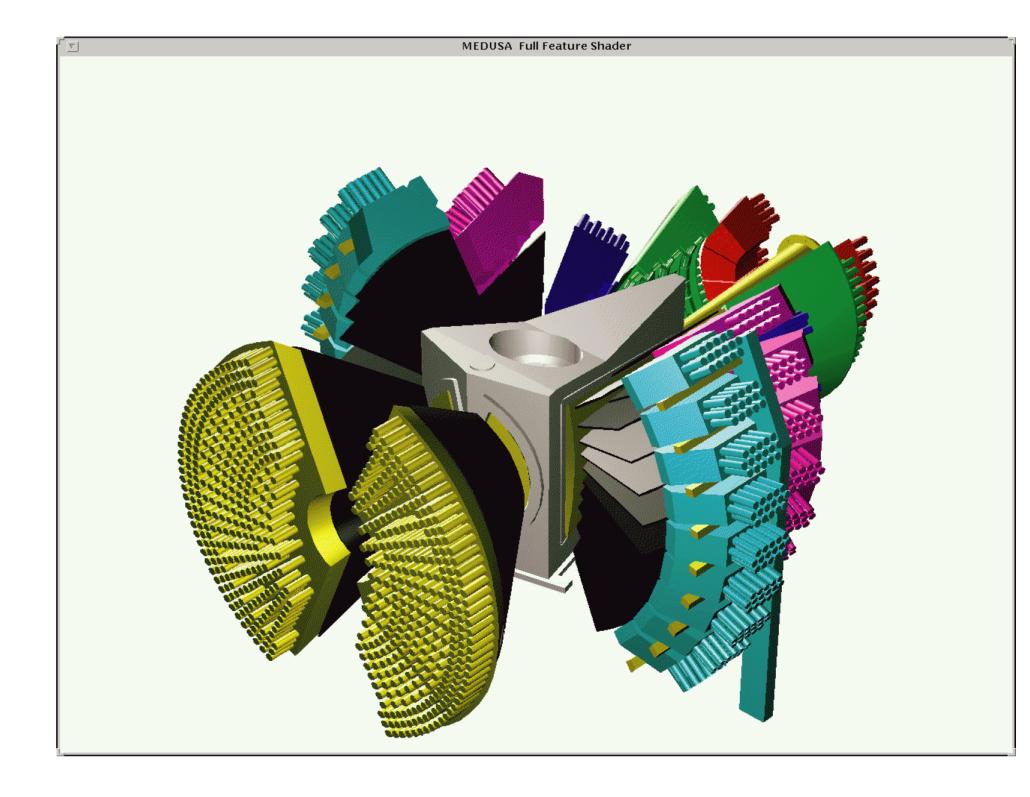
• For <u>Cubic Structures</u>, the direction of the magnetic moments is undetermined:

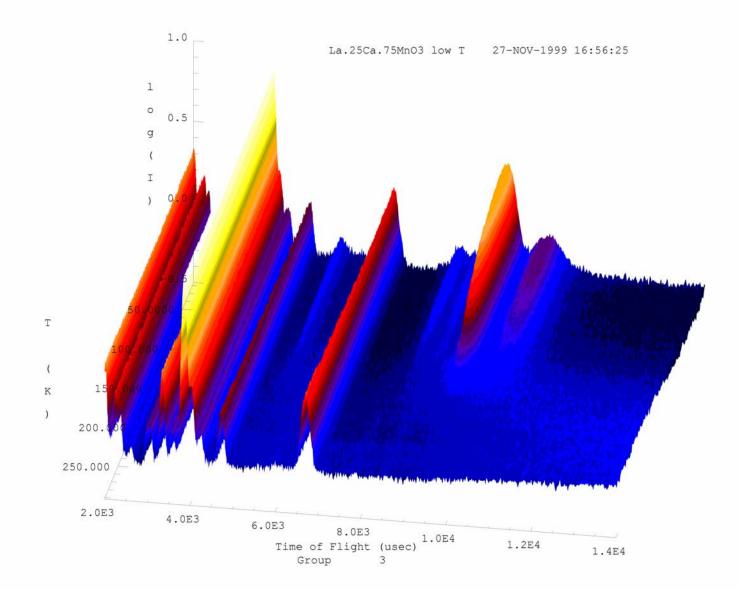
$$\overline{\sin^2 \alpha} = \frac{2}{3}$$

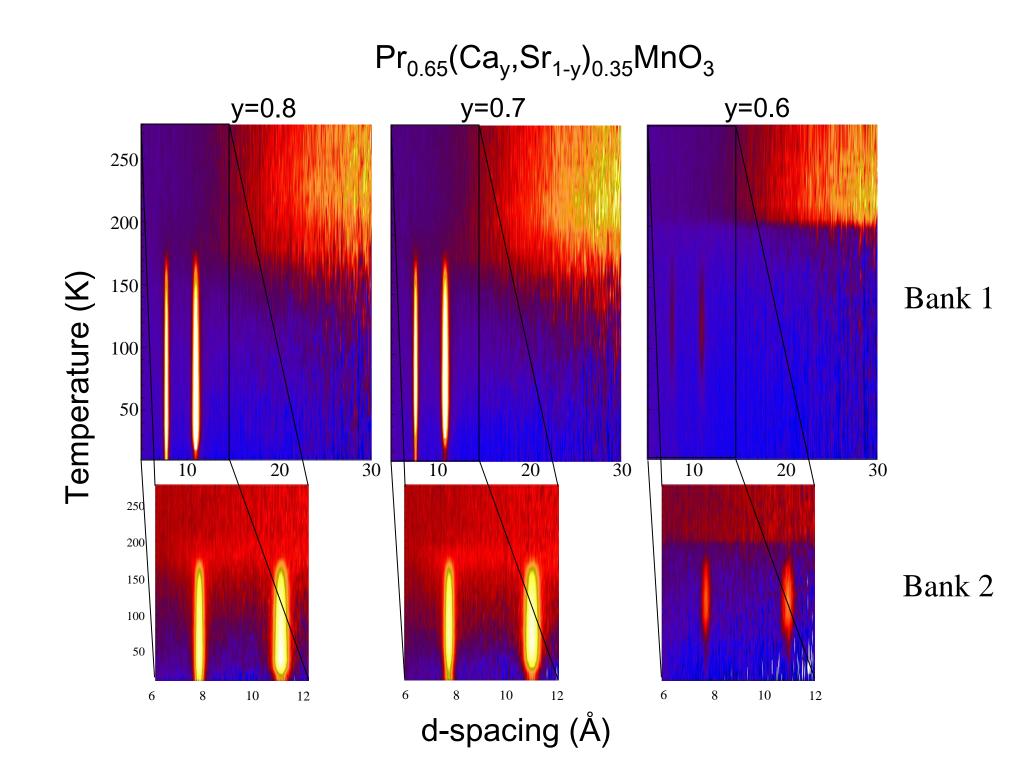

Magnetic Powder Diffractometers-I


- <u>High-Q range</u>: For magnetic structure analysis, one rarely needs to go beyond sin(θ)/λ=0.5. Wavelengths > 2 Å are ideal.
- <u>Low-*Q* range</u>: It is <u>essential</u> to have good coverage at low *k*, as many helimagnetic structures have very long periodicity. $Q=0.5 \text{ Å}^{-1}$ is the minimum acceptable to do any sensible work. $Q=0.1 \text{ Å}^{-1}$ is ideal.
- <u>Resolution</u>: it is desirable especially in structure with low crystallographic symmetry, because it enables to reduce the accidental degeneracy.

CW Powder Diffractometers


- Most magnetic structure problems are first tackled using high-intensity CW powder diffractometers (e.g., D1B). The biggest advantages are the excellent coverage at low Q, the high flux (that can be further enhanced through focussing) and the simplicity of the data structure. Resolution is generally quite poor.
- The use of high-resolution machines (e.g., D2B) is becoming more common, especially when the magnetic moments are large, the structure has low symmetry and there is an interplay between magnetism and structural properties.


The High-Intensity CW Powder diffractometer D1B at the ILL



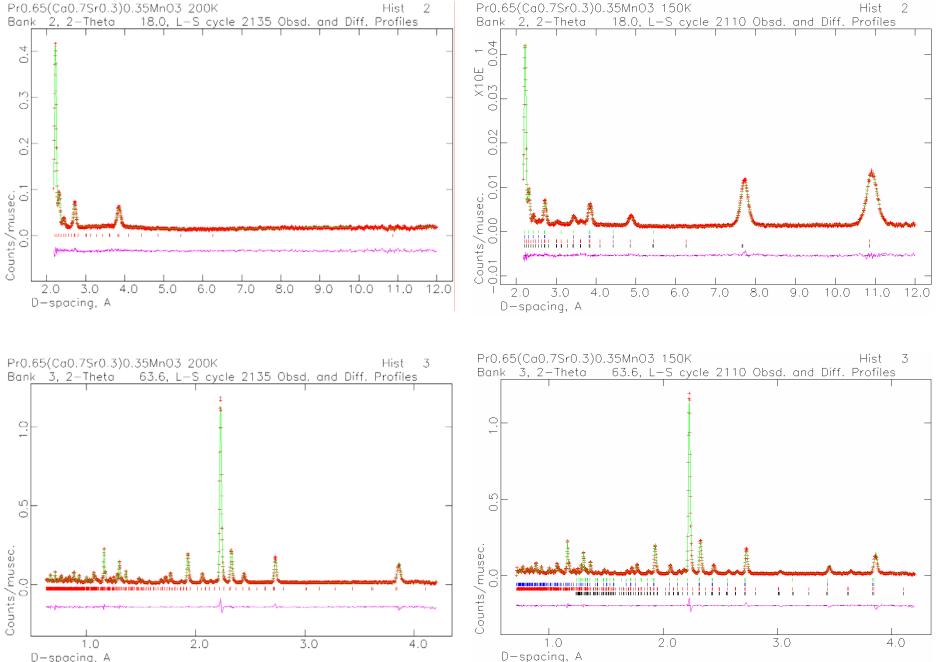
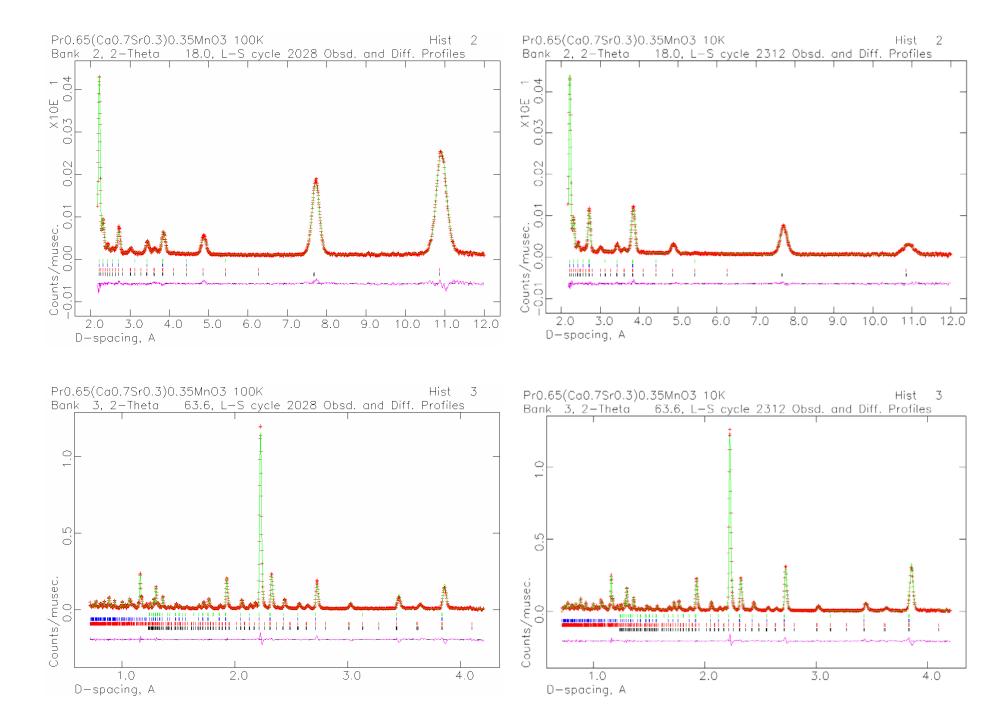
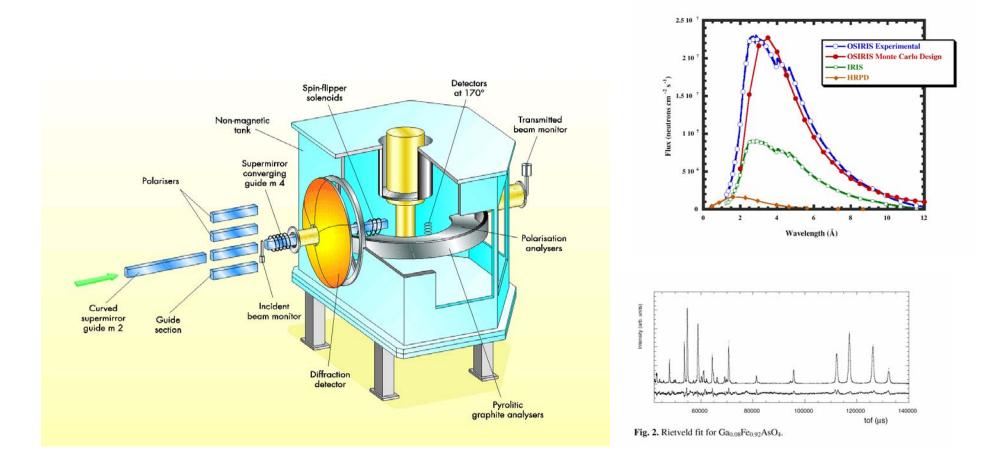
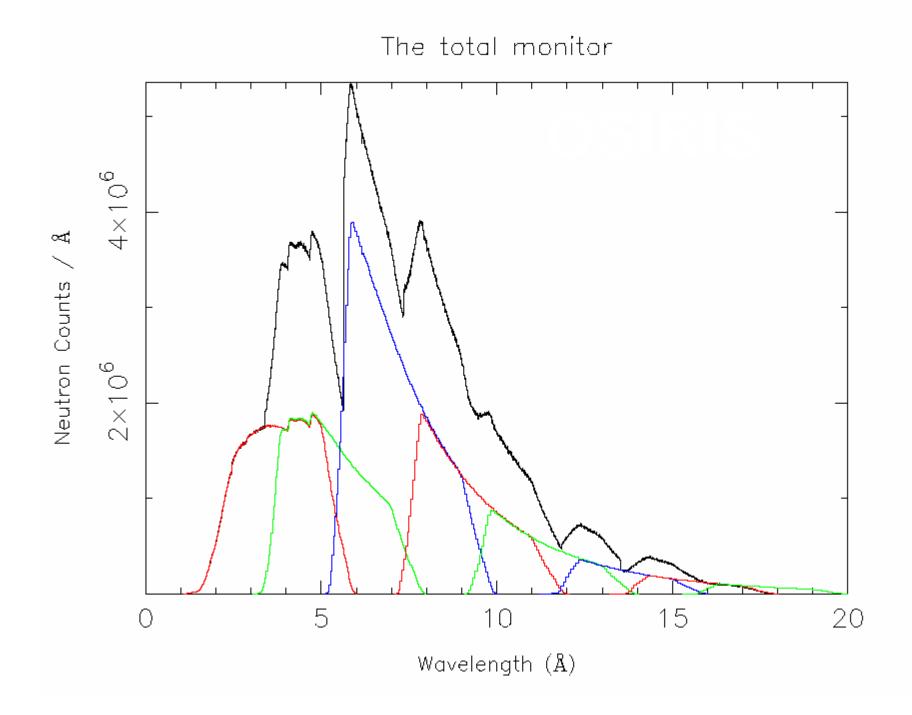
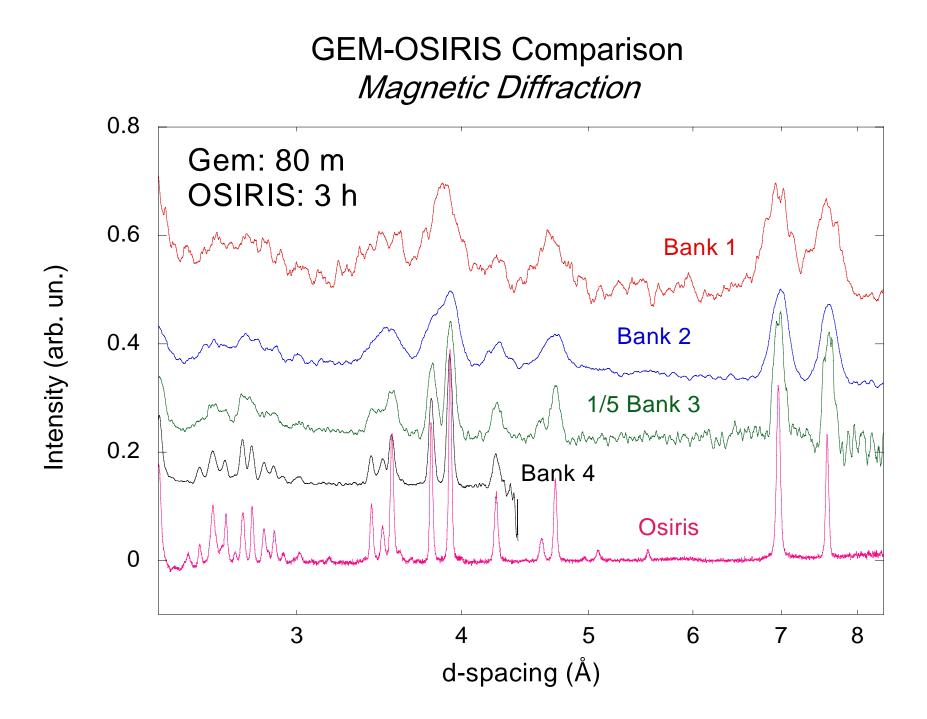


Figure 2: Low-angle part of diffraction pattern for $Ho_xY_{1,x}Ni_2^{11}B_2C$ at 3 K with marked nuclear (N) and magnetic (τ_1, τ_2, τ_3) reflections.

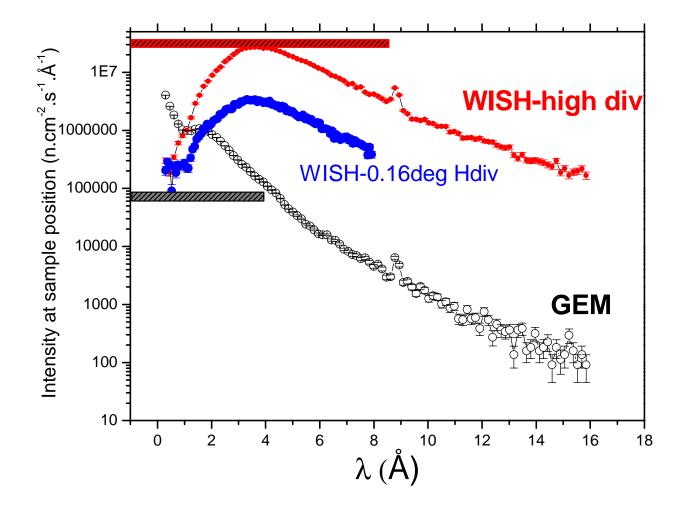







D-spacing, A

OSIRIS



WISH

Monte-Carlo simulations

