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“Novel” multiferroic materials

• Improper ferroelectrics.  Primary
order parameter is magnetic.

• “Complex” magnetic structures.

• |P| is much smaller than for ordinary FE.
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Programme of Work

1. Determine the symmetry of the magnetic structure 
(subgroup of the paramagnetic SG).

2. Extract the rotational (proper/improper) part of the 
surviving symmetry operators and “unprime” if 
necessary.

3. The resulting group S is one of the 32 three-
dimensional crystallographic point groups.

Paolo G. Radaelli, Cologne, Sept 2006

1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm

Common Ingredient: S must be one of the 
10 pyroelectric groups.
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The effect of translations upon the basis vectors



D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

Fourier Components (complex)

D

|

@D

@|

Generic basis vectors (real)

The effect of translations upon the basis vectors



D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

Fourier Components (complex)

D

|

@D

@|

Generic basis vectors (real)

The effect of translations upon the basis vectors



Γ3

|

|

|

|

|

|

|

|

|

|

|

|
*

Γ1

Γ2

Γ4

i-i-11Γ4

-1-111Γ3

-ii-11Γ2

1111Γ1

+90-901801

Space Group P4=C1        k=(0,0,µ)4



D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

Fourier Components

Magnetic Structure

The effect of the inversion operator I
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Co-representations and anti-symmetry

1. “Conventional” irreps discard a set of operators 
(e.g., the inversion I for k inside the Brillouin zone) 
that can still be symmetry operators for the 
magnetic structure (as opposed to its Fourier 
components).

2. Full symmetry properties of emerge only by 
combining normal SG operators with the complex 
conjugation operator K (e.g., KI).

3. Operators of the form Kg act as anti-linear, anti-
unitary operators (cfr. Wigner).  Their 
“corepresentation” theory has been extensively 
developed.

Paolo G. Radaelli, Cologne, Sept 2006
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REMnO3 - Pnma, k = (µ,0,0)
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REMn2O5 - Pbam, k = (1/2,0,µ)

m2m → P < y

1 2z myz mxz KI K2x K2y Kmz
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HgCr2S4
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HgCr2S4 – Fd3m, k = (0,0,µ)

422 → P = 0
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Magnetic Symmetry - Shubnikov Groups
Paolo G. Radaelli



Objectives of this module

• To learn the relevance of time reversal for magnetic 
structures.

• To learn how PG and SG operators act on spins.
• To learn how magnetic groups can be constructed 

from subgroups of index 2.
• To learn how to find those on the International 

Tables for PG and SG.
• To learn about magnetic lattices.
• To be able to construct invariant spin arrangements 

for magnetic SG, with specific examples.
• To learn the relation between Shubnikov groups and 

representations. 

Reference: W. Opechowski and R. Guccione, “Magnetic Symmetry”, in 
Magnetism, Vol II part A, ed. By G.T. Rado and H. Suhl. Academic Press 
(New York and London), 1965, pp 105-165.



Notation-1

Element of Space group {F}:  F=(R|τ(R)+t),
where R is a proper or improper rotation, t is a primitive 
translation and τ(R) is a non-primitive translation.

{R} is the point group associated with {F}.  If {(R|0)} is 
a subgroup of {F}, then {F} is called symmorphic.

Given a position r on the lattice, the subgroup {F (r)} for 
which (R|τ(R)+t) r = t’+ r is called site space group, and 
its point group {R(r)}.

We shall call {A}={E, E’} the 2-elements group of the 
time identity (E) and time inversion (E’).  Because 
crystal structures are static, {F}⊗ {A} is also a 
symmetry group of the crystal.



Notation-2

However, if we add spins (i.e., magnetic moments) to 
some of the atoms, time reversal will switch the direction 
of the spins.  So {F}⊗{A} cannot be a symmetry group 
of the magnetic structure, and the magnetic symmetry 
group, {M}, must be a subgroup of {F}⊗{A} . In 
particular, (I|E’) cannot belong to it.

Forward time Backward time

Purpose of the study of magnetic symmetry is to generate 
systematically all the magnetic groups associated with a 
particular space group of the crystal structure.



Caveat

Magnetic space groups, also known as Shubnikov
groups, are perhaps the most elegant description of 
magnetic structures.  However, in the presence of 
magnetic ordering, the crystallographic space group is 
often not known a priori, because the symmetry subtly is 
lowered by magnetic ordering itself.  One has therefore 
to lower the symmetry in a systematic way, which is the 
purpose of representation theory.  The study of 
Shubnikov groups with therefore serve as an 
introduction to the more general methods to be described 
in the remainder of the workshop.



‘Coloured’ groups

We have just seen that the magnetic space group {M} must 
be a subgroup of {F}⊗{A} , and cannot contain (I|E’).  
However, it can contain elements of the form (F|E’), 
which will be called primed (F’).  If it does not, it is called 
a trivial (or colourless) group. Trivial groups can describe 
magnetic structures.  Groups of the type {F}⊗{A} are 
called gray or paramagnetic groups.  All non-trivial 
subgroups of {F}⊗{A} are called black and white groups.

The original concepts and terminology were developed by Heesch (1930) and 
later by Belov and by Zamorzaev (~1955, including a complete list of the 
magnetic SG).  The original aim was purely mathematical or crystallographic 
(study of coloured patterns on lattices, with A being colour inversion). The 
application to magnetism is due to Landau & Lifshitz (1958).  These concept 
can be extended to multicoloured SG, which are also of some interest for 
magnetism. Aleksei Vasil'evich Shubnikov was the founder and first director 
of IC-RAS. 



Colour vs. Spin

The analogy between colour and spin can be made by replacing 
the meaning of E’ from time reversal to colour change.  
However, colour and spin differ fundamentally in the way the 
regular space group operators act upon them.  Colours are 
scalars, whereas spins are axial vectors.

It is important to remember that an axial vector is left 
invariant by centering.  Therefore, proper rotations act on 
spins in the same way as on normal (polar) vectors, whereas for 
mirror operations and centering there is an additional spin flip.

On top of this, priming any operator will entail and additional 
spin flip. 



Flip sx, sy, sz

No effect

1

Does not 
occur

Rotate sx, sy

Flip sx, sy, sz

Flip sxPrimed

No effectRotate sx, syFlip syszUnprimed

12z, 3z, 4z, 6zmx



Constructive theorem

We will give here the ‘fundamental lemma’ to construct 
magnetic groups.  It will apply equally well to SG, PG or 
lattices.  Let {G} be a crystallographic group, {M} a 
derived magnetic group (subgroup of {G}⊗{A}) and 
{GM} the group of the elements of {G} that are 
unprimed in {M}.  It can be easily shown that

{G}= {GM} +p {GM} 
where p does not belong to {GM}, which is therefore a 
subgroup of index 2 in {G}.
This simply has to do with the fact that the product of 2 primed elements 
must be unprimed.

Follows {M}= {(GM|E)} +p {(GM|E’)}
So, the problem of finding all magnetic groups arising 
from a crystallographic group {G} is reduced to that of 
finding all subgroups of index 2  of {G}. 



Example: magnetic point groups

To apply this rule to magnetic point groups, one needs to 
look no further that page 781 of the International Tables 
(copied overleaf).  Subgroups of index 2 are those that 
have exactly half the number of elements of the original 
group.  Elements of the subgroup will be unprimed, all 
the remaining elements being primed.

Example 1: mmm
mmm
222

222 2mm
m
2

mmm ′′′
222

mmm ′
′′ 222

mmm ′
′

′
′ 222





Example 2: 4/m m m

mmm
224

224

mmm ′′′
224

mmm ′
′

′
′ 224

m24 mm4
m
4

1
22
mm

mmm
224 ′

′′
′

mmm
224 ′′

′ mmm ′
′22'4



Admissible magnetic point groups

A point group is called admissible if all its operators leave at 
least one spin component invariant. Admissible MPG are 
marked with an asterisk in OG, Table I.  

As we shall see,admissible point groups (AMPG) have two 
very  important applications.  

• The site symmetry of a magnetic atom must be a AMPG.
• A Ferromagnetic MSP must have a AMPG as its MPG.

The second is a necessary but not sufficient condition for the 
MSP to support FM.  The other condition is that its lattice is a
trivial magnetic lattice (see below).





Examples of admissible PG

1* 1* 1’

42m 4’2’m 4’2m’ 42’m’ *

(any direction)

Spin along z



Things to remark about the          example 

• Spin must be parallel to the 4-fold axis (always true except 
for 2-fold axes).

• must be black.  In fact, for spins,    = 4
• If a spin is in a plane, that plane must be red.
• If a spin is perpendicular to a 2-fold axis, that axis must be 

red.
• Note that the central 2-fold axis of     or 4’ is always black.  

This is because the product of two primed 45-degree 
rotations is an unprimed 90-degree rotation.

42m

4 4

4’





Magnetic Bravais Lattices

The constructive theorem we have used to generate the 
magnetic point groups , based on the identification of 
subgroups of index 2, can be applied to generate magnetic 
lattices {TM} from Bravais lattices {T}. 

In general, a group of lattice translations generated by a set of 
primitive vectors a1, a2, a3 has exactly seven subgroups of index 
2.  However, they do not always generate independent MBL, as 
some of them can be equivalent by interchange of the axes.  
Also, we are only interested in MBL that belong to the same 
holoedry of the original BL.

In fact, as we shall see in the remainder, MSG either share the same lattice
with the original SG (trivial ML) or the same point group (and therefore, 
necessarily, the same holoedry).



2a, b, c a, 2b, c a, b, 2c

a, b+c, 2c 2a, b, a+c 2a, a+b, c 2a, a+b, a+c











Magnetic Space Groups

Once again, the constructive theorem, based on the 
identification of subgroups of index 2, can be applied to 
generate magnetic lattices {FM} from space groups {F}. 

The method to generate all the MSG systematically is explained 
in OG.  We will limit ourselves to use the International Tables 
volume A.  In there, for each SG, there is a list of  minimal non-
isomorphic subgroups (Types I, IIa and IIb), and minimal 
isomorphic subgroups of lowest index (Type IIc).  The index is 
indicated in brackets (e.g., [2]).

Therefore, each subgroup listed as [2] will generate a non-
trivial magnetic space group.  There are 1421 of them in 
total, 1191 of which are non-trivial. All SG except F23 and 
P213 generate at least 1 non-trivial MSG.



Rules to construct Magnetic Space Groups

1. Identify the subgroups of type I.  They share the same 
lattice (trivial MBL) but have different PG, so they 
correspond to all the subgroups of index [2] of the 
associated PG (with multiplicity).  For these, it is sufficient 
to prime the generators that correspond to missing 
operators.

2. Identify all the other subgroups of index 2 (IIa, IIb and IIc,
no distinction).  Then
• Identify the MBL based on the supercell, and write its 

symbol.
• For the Belov symbol (right column in OG), one simply 

need to complete the H-M symbol with that of the 
subgroup.

• For the OG symbol, the modified operators with respect 
to the original symbol will be primed (e.g. m->n=m’)



































Rules to construct invariant spin arrangements

• Define a magnetic space group generated by the SG of the 
crystal structure.

• Identify the magnetic site, and define its magnetic point 
symmetry.  A graphic representation of the MG is useful.

• Check that the site MPG is admissible for at least one spin 
component.  Otherwise, the MSG does not support any 
magnetic structure on that site.

• Pick one admissible component, and apply in turn all the 
MSG operators on that component, propagating it to all 
equivalent sites.



Rules to determine the MSG from a given structure

• Check that the magnetic structure Γ is Shubnikov-compatible.  
This is easily done by applying the operators of the crystal
space group {F} upon Γ (including lattice doublings). Γ is 
Shubnikov-compatible if and only if, the structure is either 
invariant (× 1) or reversed (× -1) for each and every F in {F}. 

• Prime all the operators in {F} for which Γ is reversed, and 
identify the new primitive translations.  This completes the 
process.



Shubnikov groups and representations

To make a link with the more powerful representation analysis, 
we can simply think of how  a magnetic structure Γ, which is 
invariant under a particular magnetic groups {FM}, will transform 
under the ‘parent’ space group  {F}.  It is apparent that Γ will be 
invariant (× 1) under the operators which are unprimed in {FM}, 
whereas all the spins will be switched (× –1) for the operators 
that are primed in {FM}.  In other words, the set of numbers 1 or 
–1 is a representation of {F} onto the linear space generated by 
Γ.  We can easily prove that the reverse is also true.

We can conclude the Shubnikov groups are equivalent to 1-dimensional real 
representations of {F}, with the invariant Γ s being their basis sets.  In 
general, if we relax the requirement for invariance of the crystal structure, 
there is no reason to prefer these to all the (infinite) others, whence the need 
for extending the analysis to the full expansion in irreducible representations. 



Pnma
P 21/n 21/m 21/a
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Magnetic Refinements in GSAS
Paolo G. Radaelli



GSAS magnetic options

• The approach of GSAS to magnetic structures is loosely 
based on Shubnikov groups. 

• However, for each space group, not all Shubnicov groups 
generated from it are possible.  The only possible ones are 
those corresponding to subgroups of index 2 of types I and 
IIa.  In other words, the conventional unit cell must be in 
common between the parent group and the subgroup.

• In GSAS there is a straight implementation of the OG 
formalism, where ‘primed’ operators (or lattices) correspond 
to ‘red’ operators.

• Alternatively, one can always generate an additional magnetic 
phase with appropriate constraints.



GSAS magnetic entries

• Phase: in the “phase” menu (keystrokes k-p-p), one has the 
option of selecting (m) whether the phase is nuclear, nuclear 
and magnetic or purely magnetic (a, b, c, respectively). 

• Form factor: in the form factor editing menu (k-p-f) there is 
an option (m) to edit magnetic form factors.  One can use the 
default values (warning! They are different for different 
oxidation states) or input user values (see ITC, volume C). 

• Atoms:  in the atom editing menu (k-l-a) there is an option (m) 
to assign magnetic moments to individual atoms.  Within that 
menu, there is an option (s) to ‘prime’ the group generators.  
GSAS automatically determines if the magnetic point group 
of the site is admissible, and, if so, for which spin directions.  
One can change colours with the c option.  Once out of the s 
menu, one can change the spin components with the m option.



CAF (A’) FM(c) FM(ab) AFM(A) AFM(G)

x in La2-2xSr1+2xMn2O7
Mn+4Mn+3

0.30 0.32 0.34 0.40 0.50 1.000.00







Notes on the Layered Manganite example

• The manganite site is 4e [4mm].  Of the magnetic subgroups 
of [4mm], the only admissible one is 4m’m’.  Consequently, 
the only possible magnetic space groups are *I4/mm’m’
I4/m’m’m’, IP4/mm’m’ and IP4/m’m’m’.  Note that the first 
one is a ferromagnetic group.

• An immediate consequence of the site symmetry of the Mn
site is that the spin has to be directed along the 4-fold axis.

• There are therefore only 4 magnetic structures generated with 
the Shubnikov approach.  The layers are always FM, with the 
intra- and inter-bilayer coupling being FM or AFM.

• Note the significant number of magnetic structures which are 
observed, but cannot be generated with the Shubnikov 
approach.



Magnetic refinements - multi-phase approach

Should the Shubnikov approach be insufficient to describe the 
magnetic structure, one can resort to introducing a second purely 
magnetic phase with appropriate constraints but lower symmetry  
This enables one to deal with any kind of commensurate 
structure, including the representation analysis.  Here are a few 
tips:

1. If the magnetic phase has the same conventional cell as the nuclear one, 
the lattice and phase fraction constraints are straightforward.

2. If the magnetic cell is larger than the nuclear one, one has to remember 
that the phase fraction is proportional to the number of unit cells in the 
sample.  So, if the the volume of the MP is doubled, its phase fraction 
must be halved.

3. One can also set constraints on the lattice when the two cells are different.  
However, remember that the constraints are on the reciprocal metric 
tensor, not on lattice parameters.  Consult a crystallography book to see 
how they are related for the various lattices.



Shubnikov Groups:
a GSAS application

Pnma



Magnetic powder diffraction and instrumentation
Paolo G. Radaelli



Spin Density

Unit-Cell Spin Density (localised and isotropic approx.):
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Magnetic Scattering of Neutrons
Neutrons are strongly scattered from magnetic moments.  
The scattering amplitude from an ion is of the order of 
γreµ, where:
γ = −1.91 Neutron magnetic moment 

in nuclear magnetons (spin + 
orbital).

re = 0.282 ·10-12 cm Electron classical radius (e2/mec2)
µ = ion magnetic moment in Bohr magnetons.

For comparison, typical nuclear scattering amplitudes for 
neutrons are of the order of 0.5-1.0 ·10-12 cm.



Magnetic Scattering of Neutrons- II
Let’s recall the formula for the lattice spin density and its 
Fourier transform:
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The Fourier transform          is called magnetic structure 
factor. Unlike the nuclear structure factor, it is an axial 
vector quantity, and it has to be combined with the other 
vector quantity in the problem in order to obtain the 
cross section, which is a scalar.  The other vector 
quantities are the momentum transfer k (a conventional 
vector) and the neutron spin sn (an axial vector).

(k)M
~

The Fourier transform          is called magnetic structure 
factor. Unlike the nuclear structure factor, it is an axial 
vector quantity, and it has to be combined with the other 
vector quantity in the problem in order to obtain the 
cross section, which is a scalar.  The other vector 
quantities are the momentum transfer k (a conventional 
vector) and the neutron spin sn (an axial vector).

(k)M
~



The Magnetic Form Factor

From:  International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513
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Scattering of Neutrons from MS
It is useful to introduce the quantity Q(k), known as 
magnetic interaction vector, and defined as:

kkMkkQ ˆ)(
~ˆ)( ××=

Q(k) is the projection of the magnetic structure factor upon 
the plane perpendicular to the momentum transfer k.
Magnetic neutron scattering cross sections only contain 
Q(k).  In other words, scattering of neutrons through k is 
only determined by the components of the magnetic 
moments ⊥ to k. Note that Q(k) can be complex.



Magnetic Scattering Formulæ
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Polarised neutrons - polarisation analysis

Non-flip

Flip

Total

Unpolarised neutrons



Formulæ Explained
Non-flip: In addition to the nuclear scattering, it contains 

the components of Q(k) parallel to the neutron 
spin and a magneto-structural interference term.

Flip: It contains the components of Q(k) perpendicular
to the neutron spin, plus an additional term which 
is present only if Q(k) is complex.

Total: It contains the nuclear term,  the module square of 
Q(k) and the two terms which are linear in sn.

Unpolarised: It contains only the  nuclear term and  the module 
square of Q(k), since the two terms which are 
linear in sn cancel upon averaging.



Neutron beam polarisation

As we have seen, the scattering cross section depends on the 
initial spin direction si.  Also, in general, the final direction of the 
neutron spin sf is not parallel to the initial one si. Therefore, the 
population of spins in a neutron beam  is generally altered by 
magnetic scattering.  One defines the neutron beam polarisation
as , where is the neutron spin direction and the 
average is taken over all the neutrons in the beam.  The 
transformation of the neutron polarisation upon scattering is 
given by:

nsP ˆ=

As we have seen, the scattering cross section depends on the 
initial spin direction si.  Also, in general, the final direction of the 
neutron spin sf is not parallel to the initial one si. Therefore, the 
population of spins in a neutron beam  is generally altered by 
magnetic scattering.  One defines the neutron beam polarisation
as , where is the neutron spin direction and the 
average is taken over all the neutrons in the beam.  The 
transformation of the neutron polarisation upon scattering is 
given by:

nsP ˆ= nŝ

Cif PPDP +=

Where     is a tensor describing the effects of rotation and 
depolarisation and      describes the creation of new polarisation.

D
CP

Where     is a tensor describing the effects of rotation and 
depolarisation and      describes the creation of new polarisation.

D
CP



The simplest case-I
Scattering of unpolarised neutrons from a collinear unmodulated
structure.  Here, κ is a reciprocal lattice vector.
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The simplest case-II

It looks like all the information is there to solve the structure 
even with unpolarised neutrons and powder diffraction. All the 
magnetic moment magnitudes are contained in Q(κ) with the 
appropriate phase factors and signs.  Also, the information about 
the direction of the magnetic moments is there through the 
prefactor sin2(α).  So, why bother with polarised neutrons and 
single-crystal techniques?



Magnetic Powder Diffraction
Averaging of the sin2(α) term over the (quasi)-degenerate reflections:

• For Uniaxial Groups (3-fold, 4-fold, 6-fold) we 
can only determine the angle φ:

ϕψϕψα 2222
2
12 coscossinsin1sin −−=

m
k c

φ
ψ m

k c

φ
ψ

• For Cubic Structures, the direction of the 
magnetic moments is undetermined:

3
2sin 2 =α



Magnetic Powder Diffractometers-I

• High-k range: For magnetic structure analysis, one 
rarely needs to go beyond sin(θ)/λ=0.5.  Wavelengths 
> 2 Å are ideal.

• Low-k range:   It is essential to have good coverage at 
low k, as many helimagnetic structures have very long 
periodicity.  k=0.5 Å-1 is the minimum acceptable to do 
any sensible work. k=0.1 Å-1 is ideal. 

• Resolution:  it is desirable especially in structure with 
low crystallographic symmetry, because it enables to 
reduce the accidental degeneracy.



CW Powder Diffractometers

• Most magnetic structure problems are first tackled 
using high-intensity CW powder diffractometers (e.g., 
D1B).  The biggest advantages are the excellent 
coverage at low k,  the high flux (that can be further 
enhanced through focussing)  and the simplicity of the 
data structure.  Resolution is generally quite poor.

• The use of high-resolution machines (e.g., D2B) is 
becoming more common, especially when the magnetic 
moments are large, the structure has low symmetry and 
there is an interplay between magnetism and structural 
properties. 



The High-Intensity CW Powder 
diffractometer D1B at the ILL
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Means to obtain a polarised beam

• Scattering from a magnetic crystal 
(monochromatic): Cu2MnAl  (Heusler), (Co,Fe)

cancels out for spins antiparallel to the magnetic 
interaction vector  and |Q(k)|=F’(k)

• Magnetic multilayers (white beam)

• 3He polarising filters (white beam)
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Uses of the neutron polarisation
Technique Materials Method Applications Instruments

(examples)

Unpolarised
neutrons

Powders and
single crystals

Measure total
cross section for
unpolarised
neutrons

Survey.  Simple
collinear
structures

D1B, D20 (CWP)
OSIRIS, GEM(TOFP)
D10, D15 (CWSX)

Polarised
neutrons

Usu. single
crystals, typically
FM.

Set M, measure
with P parallel or
antiparallel to M,
to obtain
“Flipping ratios”

Form factors, spin
density
distributions.

D3

Uniaxial
polarimetry

Powders and
single crystals

Set Pi along any
direction and
measure the
projection of Pf

onto Pi.

Separate magnetic
from nuclear
scattering.  Some
non-collinear
structures

D7
TAS + polariser +
analyser.
OSIRIS (future)

Spherical
polarimetry.

Single crystals Set Pi along any
direction and
measure the full
Pf.

Complex non-
collinear AFM
strcutures.

TAS + polariser +
analyser
+Cryopad



D3 (ILL)
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Uniaxial Polarisation Analysis

• One-detector setup

• Multidetector setup
N on  sp in -flip Sp in-flip

xPi
ασσσ 2

2
1

3
1 sinmic ++ )cos1( 2

2
1

3
2 ασσ ++ mi

yPi
ασσσ 2

2
1

3
1 cosmic ++ )sin1( 2

2
1

3
2 ασσ ++ mi

zPi mic σσσ 2
1

3
1 ++ mi σσ 2

1
3
2 +

ki

k

x

y

z α
ki

k

x

y

z α

N on sp in -flip Sp in-flip

kiP ic σσ 3
1+ mi σσ +3

2

k⊥iP mic σσσ 2
1

3
1 ++ mi σσ 2

1
3
2 +

σc:  Nuclear Coherent
σ i:  Nuclear spin-

incoherent
σm: Magnetic (electrons)



D7 (ILL)

• Diffuse scattering

• Cold neutrons

• Supermirror polarisers

• 32 detectors

• 1-directional polarisation
analysis: Separation of 
coherent and incoherent 
scattering

• 3-directional polarisation
analysis:Separation also of 
magnetic scattering

• Time-of-flight option



Magnetic Symmetry
Paolo G. Radaelli



Symmetry in the solid state

• Symmetry = invariance

• Think active! – everything is affected

• Ordering = symmetry breaking (lowering)

• Crystalline state = Translational invariance 



Symmetry operators form a group





Other types of symmetry

• Rotations

2-fold 3-fold 4-fold 6-fold

• Inversion

• + non-primitive translations….= 230 SG

• Mirror, 3 ..



Composition rotations/translations





Effect of symmetry on magnetic moments

Flip sx, sy, 
sz

No effect

1

Does not 
occur

Rotate sx, 
sy

Flip sx, sy, 
sz

Flip sxPrimed

No effectRotate sx, 
sy

Flip syszUnprimed

12z, 3z, 4z, 6zmx



Basis Vectors

• Stop thinking at vectors as arrows!

• “Vectors” are elements of a linear space, where 

we define addition and multiplication by a 

scalar (complex or real).  E.g., wavefunction.

• We can define a basis of linearly independent 

vectors.

• Description of magnetic structures = find 

“suitable” (highly symmetric) bases…. 
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Moments are classical, real axial vectors
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Fourier Components (complex)

The effect of translations upon the basis vectors
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D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

Fourier Components (complex)

D

|

@D

@|

Generic basis vectors (real)

The effect of translations upon the basis vectors



Space Group P4=C1        k=(0,0,µ)4

1. Find a simple set of  basis vectors to describe all magnetic 
structures.

2. Find out how they are related by symmetry
3. Express this in matrix form.



Space Group P4=C1        k=(0,0,µ)4

0 90 180 270



1000

0100

0010

0001

0100

0010

0001

1000

0010

0001

1000

0100

0001

1000

0100

0010

0 90 180 270

Matrix representation

1. Fully reduce this to 1-dimensional representations.
2. Remember you have the following numbers at your disposal:

1, -1, i, -i.  One of the irreps is totally symmetric.
3. Remember composition rules….
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Magnetic powder diffraction and instrumentation
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neutrons 

X-rays 
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The Scattering Function
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Magnetic Scattering of Neutrons
Neutrons are strongly scattered from magnetic moments.  
The scattering amplitude from an ion is of the order of 
γreµ, where:
γ = −1.91 Neutron magnetic moment 

in nuclear magnetons (spin + 
orbital).

re = 0.282 ·10-12 cm Electron classical radius (e2/mec2)
µ = ion magnetic moment in Bohr magnetons.

For comparison, typical nuclear scattering amplitudes for 
neutrons are of the order of 0.5-1.0 ·10-12 cm.



Single-atom magnetic scattering factors 
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The Magnetic Form Factor

From:  International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513
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Atomic scattering factors 
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Fermi lengths vs atomic weight 



D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

D

|

@D

@|

Propagation Vector

L

k

e-i12πk·L e-i10πk·L e-i8πk·L e-i6πk·L e-i4πk·L e-i2πk·L 1 ei2πk·L ei4πk·L

Fourier Components (complex)

Moments are classical, real axial vectors



,

( ),

2
,

( ) ( )*

( )

2

. .

( ) ( )

( )

j n

n j

n n

j

j

i i
j n j

i W Qj n
e j

n j

i i
e p p

n

i
W Qj

p j
j

e e c c

r f e
Q

r e e

e
f e

Q

ϕ

ϕ

γ

γ

⋅

⋅ −

+ ⋅ − ⋅

−

= +

× ×
= ⋅ ⋅ =

= ⋅ ⋅ +

× ×
=

∑

∑

∑

k R

Q R

Q k R Q k R

m m

Q m Q
A Q Q

M M

Q m Q
M Q
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It is useful to define Q, the magnetic interaction vector
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Case 2: k is a Lifshits vector (special point of symmetry)
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Magnetic Scattering Formulæ
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Formulæ Explained
Non-flip: In addition to the nuclear scattering, it contains 

the components of Mp(Q) parallel to the neutron 
spin and a magneto-structural interference term.

Flip: It contains the components of Mp(Q) 
perpendicular to the neutron spin, plus an 
additional term which is present only if Mp(Q) is 
complex.

Total: It contains the nuclear term,  the module square of 
Mp(Q) and the two terms which are linear in sn.

Unpolarised: It contains only the  nuclear term and  the module 
square of Mp(Q), since the two terms which are 
linear in sn cancel upon averaging.
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The simplest case-I
Scattering of unpolarised neutrons from a collinear unmodulated
structure.  Here, κ is a reciprocal lattice vector.
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The simplest case-II

It looks like all the information is there to solve the structure 
even with unpolarised neutrons and powder diffraction. All the 
magnetic moment magnitudes are contained in Mp(Q) with the 
appropriate phase factors and signs.  Also, the information about 
the direction of the magnetic moments is there through the 
prefactor sin2(α).  So, why bother with polarised neutrons and 
single-crystal techniques?



Magnetic Powder Diffraction
Averaging of the sin2(α) term over the (quasi)-degenerate reflections:

• For Uniaxial Groups (3-fold, 4-fold, 6-fold) we 
can only determine the angle φ:

ϕψϕψα 2222
2
12 coscossinsin1sin −−=

m
Q c

φ
ψ

• For Cubic Structures, the direction of the 
magnetic moments is undetermined:

3
2sin2 =α



Magnetic Powder Diffractometers-I

• High-Q range: For magnetic structure analysis, one 
rarely needs to go beyond sin(θ)/λ=0.5.  Wavelengths 
> 2 Å are ideal.

• Low-Q range:   It is essential to have good coverage at 
low k, as many helimagnetic structures have very long 
periodicity.  Q=0.5 Å-1 is the minimum acceptable to 
do any sensible work. Q=0.1 Å-1 is ideal. 

• Resolution:  it is desirable especially in structure with 
low crystallographic symmetry, because it enables to 
reduce the accidental degeneracy.



CW Powder Diffractometers

• Most magnetic structure problems are first tackled 
using high-intensity CW powder diffractometers (e.g., 
D1B).  The biggest advantages are the excellent 
coverage at low Q,  the high flux (that can be further 
enhanced through focussing)  and the simplicity of the 
data structure.  Resolution is generally quite poor.

• The use of high-resolution machines (e.g., D2B) is 
becoming more common, especially when the magnetic 
moments are large, the structure has low symmetry and 
there is an interplay between magnetism and structural 
properties. 



The High-Intensity CW Powder 
diffractometer D1B at the ILL
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