

Magnetic Nanostructures Investigated by Small Angle Neutron Scattering

Albrecht Wiedenmann

VIII School of Neutron Scattering "Francesco Paolo Ricci" Structure and Dynamics of magnetic systems

http://www.hmi.de/bereiche/SF/SF3/methods/sans/index_en.html

25.09-6.10.2006 Santa Margerita di Pula (Italy)

Acknowledgements

	SANS-Crew at hmi	
Elvira Garcia-Matres	André Heinemann	Armin Höll
Martin Kammel	Uwe Keiderling SANSPOL	Olivier Perroud
Thomas Keller (TU Mün	chen), Thomas Krist (POLARIS	(hmi), Ferenc Mezei (hmi)
Axel Rupp (hmi)	Werner Heil <i>Ferrofluids</i>	(Univ. Mainz)
Martin Buske (Berlin he	eart), Helmut Bönner	mann (MPI Mühlheim/Ruhr)
Roland P. May (ILL Gren	oble), Charles Dewh Magnetic alloys	urst (ILL Grenoble)
Joachim Kohlbrecher (PSI Switzerland), Jürg	gen Eckert (TU-Darmstadt)
Helmut Herrmann (IFW D	Dresden)	-
	Time-resolved tech	niques
Roland Gähler (ILL), Kla	us Habicht (hmi), Mar <i>Funding</i>	gareta Russina (hmi)
German Research Socie	ty (DFG) Projects Wi-	1151/2, Wi 1151/3

Application : 15 February 15 September

Scientific committee decides

http://www.hmi.de/bensc/

HEAVY OVERLOAD

Content

I. Basics of SANS technique

Scattering law Nuclear and magnetic scattering Scattering of polarised neutrons (SANSPOL, POLARIS)

II. Applications to Materials Science

Magnetic colloids Soft and hard magnetic materials

III. Practice of SANS

SANSPOL instrument V4 Data aquisition, data reduction and analysis techniques

IV. Tutorial - Problem Class

V. New developments-Dynamical studies

- **1.1 Introduction**
- 1.2 Conventional Small Angle Scattering (SANS) Scattering cross section, scattering length, Scattering law, pair correlation function ,General results,Particle scattering, Polydisperse systems,Structure factors
- **1.3 Magnetic scattering**
- 1.4 Polarised neutrons: POLARIS, SANSPOL, SANS
- **1.5 Instrument**

0.5-2 nm 0.5-300nm 0.1-20°

fluctuations of density, composition, magnetization

SAXS (X-rays): Interaction with electrons: Scattering length: b_x = Z*0.282 10⁻¹² cm

SANS (neutrons): Interaction with nucleousIntegralScattering length: b_n (1 H: -0.2, 2 D: +0.5)Between neutron spin and magnetic moment μ Scattering length: b_{mag} = 0.27 *10⁻¹² * μ

hmi

Local

Scattering cross-section

h	m	:

phase 1 $\eta_1 = \sum c_i b_i / \Omega_i$ volume fraction f phase 2 $\eta_2 = \sum c_i b_i / \Omega_i$ volume fraction (1-f) average scattering length density $<\eta> = f \eta_1 + (1-f) \eta_2$ Deviation from $<\eta>$: $\delta_1 = \eta_1 - <\eta> = (1-f)(\eta_2 - \eta_1)$ $\delta_2 = \eta_2 - <\eta> = f(\eta_2 - \eta_1)$

Mean square fluctuation of scattering length densities

$$\langle \eta^2 \rangle = f \delta_1^2 + (1-f) \delta_2^2 = f(1-f) (\eta_1 - \eta_2)^2$$

Nuclear contrast-matching

Scattering from different parts of particle (Micelles in solvents)

a) Isotope mixtures of solvents

b) Isotope substitution (H by D) in molecules

 $I(Q) = <\eta^{2} > \int \gamma(r) d^{3}r \exp [i Qr]$ For isotropic, centro-symmetric scatterers $< \exp [i Qr] > = \sin(Qr)/Qr$ $I(Q) = <\eta^{2} > \int \gamma(r) 4\pi r^{2} dr \sin(Qr)/Qr$ Fourier transform $\gamma(r) = (2\pi^{2} < \eta^{2} >)^{-1} \int I(Q) Q^{2} dQ \sin(Qr)/Qr$

	Limits
r = ∞ :	$\gamma(\infty) = 0$
r = 0 :	γ (0) = 1

Pair distance distribution function p (r)

General results from SANS

"Invariant", independent of shape:

$\int \mathbf{I}(\mathbf{Q}) \mathbf{Q}^2 \mathbf{d}\mathbf{Q} = 2\pi^2 < \eta^2 >$
Extrapolation to Q = 0: $I(0) = \langle \eta^2 \rangle \int \gamma(\mathbf{r}) \ 4\pi \ \mathbf{r}^2 \ \mathbf{dr} = \langle \eta^2 \rangle \ \mathbf{V}_p$
Combination \Rightarrow Volume : I(0) / \int I(Q) Q ² dQ = V _p / 2 π^2
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Porod-approximation (large Q) ⇒ Surface S: γ(r) ∞ 1-Sr/4 V+ ⇒ I(Q) ∞ S / Q ⁴

hm

Real space versus reciprocal space

Particles Scattering : Spheres

 $\begin{array}{ll} & \mbox{Guinier-approximation:} \\ (\mbox{for } QR_g < 1.5) \\ & \mbox{I}(Q) = \Delta \eta^2 \, V_p^{\ 2} \exp((R_g^{\ 2}Q^2/3)) \\ & \mbox{I}_0 & = \Delta \eta^2 \, V_p^{\ 2} \\ & \mbox{R}_g & = (3/5)^{1/2} \, R_0 \end{array}$

Porod approximation: (for QR_g > 2.5) $I(Q) = 2\pi\Delta\eta^2 S^*Q^{-4} = P Q^{-4}$ $S = 4\pi R_0^2$, $V_p = 4\pi/3R_0^3$

Combination

 $R_0^4 = 9 I_0/2 P$

 $I(Q) = \Delta \eta^2 V_p^2 [3(\sin(QR) - (QR)\cos(QR))/(QR)^3]^2$

Cylinders of length L and radius Rc $F^2(Q) = V^2 \Delta \eta^2 \exp(-Q^2 R_c^2/2) / (QL)$ Flat particles with area A and thickness T $F^2(Q) = AT^4 \Delta \eta^2 [\sin(-QT/2) / (-QT/2)]^2 / (QT)^2$ Random coil (Debye) $F^2(Q) = 2 / (QR_g)^4 [(QR_g)^2 - 1 + \exp(-Q^2 R_g^2)]$

Critical fluctuations (Ornstein-Zernicke) $F^{2}(Q) = 1/[1 + (Q^{2}\zeta^{2})]$ with $\zeta^{2} = R_{g}^{2}/3$

l**hm**i

Poly-disperse multi-phase systems

$I(Q) = \iint F_i^2(QR) N_i(R) S_i(QR) dR \otimes Res(Q)$ Form-factor: F(QR) = $\Delta \eta V(R) f(QR)$ contrast \downarrow volume \downarrow shape-factor, size-distribution \downarrow structure factor instrument resolution

111111

Inter-particle correlations

 $I(Q) = \langle F(Q) | ^{2} \langle 1 + | \langle F(Q) \rangle | ^{2} \langle F(Q) | ^{2} \langle S(Q) - 1 \rangle \rangle$

$S(Q) = 1 + N_p \int [g(r) - 1] exp(iQr) dr$

Pair correlation function g(r) :

 $g(r)=1 + (1/2\pi^2 N_p) \int [S(Q)-1] \sin(QR)/QR Q^2 dQ$

- S(Q) = 1 ideal gas
- S(Q) < 1 repulsive potential:
 - Excluded volume, electrostatic repulsion
- S(Q) > 1 attractive interaction

In practice

 $S(Q, \alpha) = I(Q, \alpha)_{measured} / I(Q, \alpha)_{non-interacting}$

for diluted samples

Magnetic scattering

Magnetic amplitude

p=($\gamma e^2/2mc^2$) g S f_m(Q)=0.27 10⁻¹² cm/ μ_B |M| f_m(Q)

Magnetic scattering lengh density

 $η_{mag}$ = 0.27 10⁻¹² cm/μ_B $\sum M^{\perp}_{l} c_{i} / \Omega_{i}$

Magnetic contrast

 $\Delta \eta_{mag} = \eta_{mag}$ (particle) - η_{mag} (matrix)

Magnetic Scattering from different parts

a) Change of magnitude and /or direction of applied magnetic field

Magnetic particle scattering: *M*⊥

M^{\perp} : Projection of magnetization onto a plane perpendicular to the scattering vector Q

Magnetic particle scattering : $M \perp$

M^{\perp} : Projection of magnetization onto a plane perpendicular to the scattering vector Q

hm

Magnetic particle scattering : $M \perp$

M^{\perp} : Projection of magnetization onto a plane perpendicular to the scattering vector Q

 $I(Q) = A(Q) + B(Q) \sin^2 \alpha$

Nuclear scattering $A(Q) \propto F_N^2 \propto \Delta \eta_{nuc}^2$ Magnetic scattering $B(Q) \propto F_M^2 \propto \Delta \eta_{mag}^2$

I(Q) $\propto \Delta \eta_{nuc}^2$ + $\Delta \eta_{mag}^2 \sin^2 \alpha$

Transmission-Polariser

hmi

Polarisation

 $P=(n^+-n^-)/(n^++n^-) \qquad n^{+:} \text{ Neutron spin opposite to } H//z$

Magnetic amplitude

 $p=(\gamma e^2/2mc^2) g S f_m(Q)=0.27 10^{-12} cm/\mu_B |M| f_m(Q)$

Atomic scattering amplitudes

 $a^{s,s'} = \langle s' | \mathbf{b}_i - \mathbf{p}_i \mathbf{M}_i \perp \sigma | s \rangle$

$M_{i\perp}$: Component of the magnetic moment perpendicular to Q

σ: neutron-spin operator

 Spin-non flip $a(++) = b - p M \perp^z$ $a(--) = b + p M \perp^z$

 Spin-flip $a(+-) = -p(M \perp^x + i M \perp^y)$ $a(-+) = -p(M \perp^x - i M \perp^y)$

hmi

Amplitudes

Spin-non flip $a(++) = \Delta \eta_N - p \Delta M \perp^z$ $a(--) = \Delta \eta_N + p \Delta M \perp^z$

Spin-flip $a(+-) = -p(\Delta M \perp^x + i \Delta M \perp^y) \quad a(-+) = -p(\Delta M \perp^x - i \Delta M \perp^y)$

Form-factors

 $p=0.27 \ 10^{-12} \ cm/\mu_{B} \mid \Delta M \mid f_{m}(Q), \ F_{N}=\Delta\eta_{N}V_{p}f(Q) \quad , \ F_{M}=p \ V_{p}f(Q)$ $F(++)=F_{N} - F_{M} \ \Delta M \perp^{z} \qquad F(--)=F_{N} + F_{M} \ \Delta M \perp^{z}$ $F(+-)=-F_{M} \ (\Delta M \perp^{x} + i \ \Delta M \perp^{y}) \qquad F(-+)=-F_{M} \ (\Delta M \perp^{x} - i \ \Delta M \perp^{y})$

Amplitudes

Spin-non flip $a(++) = \Delta \eta_N - p \Delta M \perp^z$ $a(--) = \Delta \eta_N + p \Delta M \perp^z$

Spin-flip $a(+-) = -p(\Delta M \perp^x + i \Delta M \perp^y) \quad a(-+) = -p(\Delta M \perp^x - i \Delta M \perp^y)$

Form-factors

$$\begin{split} p=0.27 \ 10^{-12} \ cm/\mu_{B} \mid \Delta M \mid f_{m}(Q), \ F_{N}=\Delta\eta_{N}V_{p}f(Q) \quad , \ F_{M}=p \ V_{p}f(Q) \\ F(++)=F_{N}-F_{M} \ \Delta M \perp^{z} \qquad F(--)=F_{N}+F_{M} \ \Delta M \perp^{z} \\ F(+-)=-F_{M} \ (\Delta M \perp^{x}+i \ \Delta M \perp^{y}) \qquad F(-+)=-F_{M} \ (\Delta M \perp^{x}-i \ \Delta M \perp^{y}) \\ \hline Intensities \ (for \ M \perp^{y}=0) \\ I++(Q) = \ <|F++|^{2} > \qquad I--(Q) = \ <|F--|^{2} > \\ I+-(Q) = \ <|F++|^{2} > \qquad I-+(Q) = \ <|F-+|^{2} > \end{split}$$

M^{\perp} : Projection of magnetization onto a plane perpendicular to the scattering vector Q

P // M // H // z

 $\mathbf{M} \perp^{\mathbf{y}} = \mathbf{0}$

POLARIS: SANS with analysis of polarisation

Spin non-flip scattering (for M⊥^y=0)

$$I++(Q) = (F_N - F_M \sin^2 \alpha)^2$$
 $I--(Q) = (F_N + F_M \sin^2 \alpha)^2$

Spin -flip scattering (for M⊥^y=0)

 $I + -(Q) = (F_M \sin \alpha \cos \alpha)^2$

 $I-+(Q) = (F_{M} \sin \alpha \cos \alpha)^{2}$

SANSPOL and **SANS**

Without polarisation analysis of scattered neutrons

$$I^{+}(Q) = \langle F^{++} | ^{2} \rangle + \langle F^{+-} | ^{2} \rangle = F_{N}^{2} + \{F_{M}^{2} - 2F_{N}F_{M}\}\sin^{2}\alpha$$
$$I^{-}(Q) = \langle F^{--} | ^{2} \rangle + \langle F^{-+} | ^{2} \rangle = F_{N}^{2} + \{F_{M}^{2} + 2F_{N}F_{M}\}\sin^{2}\alpha$$

Anisotropic scattering profile

 $I^{\pm}(Q) = A(Q) + B^{\pm}(Q) \sin^2 \alpha$

Magnetic-nuclear cross term

 $I^{-}(Q) - I^{+}(Q) = 4 F_{N}F_{M} \sin^{2}\alpha$

Sum signal ≡ I (non-polarised SANS)

 $(I^+ + I^-) / 2 = F_N^2 + F_M^2 \sin^2 \alpha$

Nuclear scattering contrast

hmĭ

Nuclear and magnetic scattering contrast

Polarised neutrons: SANSPOL

Polarised neutrons: SANSPOL

Polarised neutrons (SANSPOL)

$$I(Q) (-) \propto \Delta \eta_N^2 + \{\Delta \eta_M^2 + 2\Delta \eta_M \Delta \eta_N \} \sin^2 \alpha$$

Polarised neutrons (SANSPOL)

$$I(Q) (+) \propto \Delta \eta_N^2 + \{ \Delta \eta_M^2 - 2 \Delta \eta_M \Delta \eta_N \} \sin^2 \alpha$$

SANSPOL Instrument V4

hmi'

II. Applications

2. Amorphous magnetic alloys: Soft magnetic materials Bulk Amorphous Hardmagnets

Magnetic Liquids

Magnetic core

Nonmagnetic shell of surfactant Carrier liquid

Applications

Magnetic "drug-targeting"

Diagnostic

Immunoassays BSE- Therapy: Hyperthermie

Transport in strong H- field-gradient Change of relaxation time (SQUID)

Reverse of magnetisation in ac field:(400kHz):local increase of temperature to 50-55°C

Questions

Core: Size, Density, Shape, Distribution?

Shell: Composition, Density, Thickness, Shielding,?

Magnetic Nanostructure: Moment-value , orientation, single-domain, interfaces?

Solvent Penetration?

Aggregation: formation of chains, influence of magnetic field?

Materials

1		•
11	111	ł

Core	Со	Fe ₃ C	Fe ₃ O ₄	Ba-
Shell	C ₂₁ H ₃₉ NO ₃ +surfact.	C ₂₁ H ₃₉ NO ₃ +surfact.	Charge Dextrane L-M	Ferrite C ₂₁ H ₃₉ NO ₃
Magnet. Moment	1.7 μ _Β / at	1.6 μ _Β /at	1.24 μ _B / at	0.9 μ _в / at
Carrier liquid	C ₇ H ₈	C ₁₀ H ₂₂	H ₂ O	C ₁₂ H ₂₆
Concentra tion	0.5- 5 vol.%	0.5- 5 vol.%	1- 6 vol. %	2.5 -4 vol.%

2D-SANSPOL scattering patterns

hmi

e.g. Co-Ferrofluid

 $I(Q) = A(Q)+B^{\pm}(Q) \sin^2 \alpha$

 $A(Q) = F_N^2$ $B^+(Q) = F_M^2 - F_N F_M$ $B^-(Q) = F_M^2 + F_N F_M$

Η

SANSPOL sector perpendicular to H

 $I(\perp)=A(Q)+B^{\pm}(Q)$

Flipping ratio I(-) / I(+)

hmi

 $\Delta \eta$ ^(±) = η ^{nuc} ± η ^{mag} - $\eta_{solvent}$

Contrast variation in Co-Ferrofluids

Density profile in Co-Ferrofluid

hmi

SANSPOL intensities

l(on)	$= \mathbf{F}_{\mathbf{N}}^{2} + \{\mathbf{F}_{\mathbf{M}}^{2} +$	$2\mathbf{F}_{\mathbf{N}}\mathbf{F}_{\mathbf{M}}$
l(off)	$= \mathbf{F}_{\mathbf{N}}^2 + \{\mathbf{F}_{\mathbf{M}}^2 -$	$2\mathbf{F}_{\mathbf{N}}\mathbf{F}_{\mathbf{M}}$
l(on)-l(off)	$= 4\mathbf{F}_{\mathbf{N}} \mathbf{F}_{\mathbf{M}}$	

SANS intensities

 $I(nuc) = F_N^2$ I(mag) = F_M^2

using contraints on parameters e.g.:

∆η ₁ (on)	= ∆η ₁ (nuc)+ η ₁ (mag)
∆η ₁ (off)	= ∆η ₁ (nuc)- η ₁ (mag)

Software		
SASFIT	(J. Kohlbrecher)	
MATHEmatica	(A. Heinemann)	
FISH	(R. Heenan)	

Magnetic single-domain particles

Field variation of magnetization in superparamagnetic particles

$$\sigma/\sigma_{\infty} = L(M_{cr}V_{p}\mu_{0}H_{eff}/kT)$$

Langevin function:

L(x)=coth(x)-1/x

Field variation of SANSPOL cross-term

Superparamagnetic behaviour of non-interacting single domains

AW, Physica B (2001) 226-233 A. Heinemann et al AOC(2004) hmi

Diluted poly-disperse systems

Heinemann et al JAC 2002

Magnetite-FF: Contrast Variation

Magnetic core-shell particles

hmi

Magnetic aggregate

Nonmagnetic micelles

Interparticle correlations: Structure factor S(Q)

$S(Q) = 1 + N_p \int [g(r) - 1] exp(iQr) dr$

- g(r) : Pair correlation function
- S(Q) = 1 ideal gas
- S(Q) < 1 repulsive potential:
 - Excluded volume, electrostatic repulsion
- S(Q) > 1 attractive interaction

In practice

 $S(Q, \alpha) = I(Q, \alpha)_{measured} / I(Q, \alpha)_{non-interacting}$

for diluted samples

Field induced ordering

Non-polarised neutrons, H=1 T

For Coconcentrations above 1 vol. % :

Peaks ! disappear at H=0

A.Wiedenmann et. al. Phys Rev E 2003

3 vol.% Co-FF:SANSPOL

Polarised neutrons

Sectors of 2D-SANSPOL

hmi

Anisotropic in-plane structure factors

hmi

Neutrons parallel to H

Radial averaged SANSPOL

Model fits at high Q
from diluted samples
using form-factors
alone

11111

Neutrons parallel to H

timi

Nature of field induced ordering

Hexagonal symmetry

Q₁=0.33 nm⁻¹

hmi

 $Q_2 / Q_1 = \sqrt{3}$

Q₃= 0.24 nm⁻¹

(0 0 1), (0 0-1)

a_{hex} = 21.3 nm

c_{hex}= 26.1 nm

Q (hkl) = $2\pi / \{4(h^2+k^2+hk)/3a^2 + l^2/c^2\}^{1/2}$

hmi

Texture type I

Turn around [110] direction of magnetic field by 90°

Particle moments M // [110] along H

Pseudo-crystalline hexagonal particle alignment

Texture type I

R_c = 3.8 nm, d=1.9 nm a_{hex}= 21 nm c_{hex}= 25...70 nm

A.Wiedenmann, A. Hoell, M. Kammel, Phys Rev E 2003

Field induced ordering: 1 vol.% Co-FF

Diffraction planes perpendicular to H

1 vol.% Co-FF: Field induced ordering

Diffraction planes perpendicular to H

Ordering- 1st step:chaining

SANSPOL Co-3 vol.%

Co-existence of uncorrelated chains with hexagonal ordered domains

Intensity I(Q \perp H) at low Q:

Ordering - 1st step:chaining

Particle size <R_c> = 3.8 nm, d=1.9 nm

Shortest possible distance 11.4 nm

OBSERVED:

Diffraction planes from quasi-1D chains

σ (1D) =2π /∆**Q= 21 nm**

hmi

Second example: Co-L9

SANS H=1 T

Confirmation of hexagonal symmetry

Field dependence of ordering

6 vol.% Co in Oil L9

SANS H=1 T Saturation

 $I(Q,\alpha) = [F_{M}^{2}L^{2}(x) \sin^{2}\alpha + F_{N}^{2}] S(Q,\alpha) + [2L(x)/x - \sin^{2}\alpha(L^{2}(x) - 1 + 3L(x)/x)] F_{M}^{2}$

SANSPOL : Co-L9

2D Gaussian fits

At H=1 T:

Hexagonal ordering a_{hex} = 18.9 nm

c_{hex} = 21.9 nm

= 4 $F_N F_M L(x) S(Q,\alpha)$

At H=0

Isotropic scattering: no peaks

Cylinders L= 80 nm R=4.3 nm (5-6 core-shell particles)

Spontaneous formation of chains I(Q) ~Q⁻¹

At H=1 T

Anisotropic scattering peaks

Perpendicular to H $Q_3 = 0.28 \text{ nm}^{-1}$

> Sectors $\pm 30^{\circ}$ Q₁= 0.38 nm⁻¹

Co-existence with chain segments

I(Q) ∼Q⁻¹

SANS sector 90°: Difference I_H- I_{H=0}

Structure evolution in magnetic field

SANSPOL sector 30° I(on)-I(off)

Competition between magnetic dipol-interaction and thermal energy

$$\gamma = M_{sat}^2 V_c^2 \mu_o / 4\pi k_B^2 T \sigma^3$$
.

Present range 1.4 < γ < 8

Computer simulations (MSA): Chaining in head-to tail conformation (de Gennes)

Lateral attractions

Molecular dynamics predicts close-packed structures (Hess)

SANSPOL with Polarisation Analysis

A. Wiedenmann Physica B 2005

³He filter

Spin selective neutron absorption: (Passell, Schermer; 1966)

³He[↑] + n $\downarrow \rightarrow$ [⁴He^{*}] \rightarrow t + p + 0.76 MeV $\sigma^{\uparrow\downarrow} \approx 3000 \text{ barn} \cdot \lambda$ [Å]

 3 He \uparrow + n \uparrow \rightarrow 3 He \uparrow + n \uparrow $\sigma\uparrow\uparrow\approx$ 5 barn

Advantages:

- Unlimited angular acceptance
- Broad range of usable wavelength
- No deflection of neutrons
- Polarisation of white beams

Compression of polarised ³He

Piston compressor at University of Mainz

Neutron polarisation P_n P_n =tanh(x P_{He}) Transmission $T(+) = exp[-x (1 - P_{He})]$ $T(-) = exp[-x (1 + P_{He})]$ $T_0 = exp[-x]$

Neutron optique filter thickness : $x = N_{He} \sigma$

Performance of ³He filter

Outlook:Polarisation analysis at V4

Outlook:Polarisation analysis at V4

Outlook: POLARISation analysis at V4

Neutron Scattering cross-sections *

 $d\sigma/d\Omega(ij)(Q,\alpha,x) = C_{ij} S(Q,\alpha) + D_{ij} F_{M}^{2}(Q)$

* R.M.Moon, T.Riste, W.C. Koehler (1969) and R.Pynn, J.Hayter (1983)

$d\sigma/d\Omega$ (ij)(Q, α) = C_{ij} S(Q, α) + D_{ij} F_M²(Q)

a(x) = L(x) / x, $b(x) = L^2(x) - 1 + 3 a(x)$ $x = M_{cr}V_p \mu_0 H_{eff} / kT$

ij	C _{ij}	D _{ij}
POLARIS		
l(++)	$[F_M L(x) \sin^2 \alpha - F_N]^2$	a sin ² α – b sin ⁴ α
l()	$[F_M L(x) \sin^2 \alpha + F_N]^2$	a sin ² α – b sin ⁴ α
l(+ -),l(-+)	[F _M L(x) sin $\alpha * \cos \alpha$] ²	a(2- sin ² α) - b [sin α * cos α] ²
SANSPOL		
l(+)	$[F_{M}^{2}L^{2}(x) - 2F_{M}F_{N}L(x)]sin^{2}\alpha + F_{N}^{2}$	<mark>a - b sin</mark> ²α
l(-)	$[F_{M}^{2}L^{2}(x) + 2F_{M}F_{N}L(x)] \sin^{2}\alpha + F_{N}^{2}$	<mark>a - b sin</mark> ²α
l(-) - l(+)	4 F _M F _N L(x) sin²α	0
SANS		
I(Q)	$F_{M}^{2} L^{2}(x) \sin^{2}\alpha + F_{N}^{2}$	2a - b sin²α

$d\sigma/d\Omega$ (ij)(Q, α) = C_{ij} S(Q, α) + D_{ij} F_M²(Q)

a(x) = L(x) / x, $b(x) = L^2(x) - 1 + 3 a(x)$ $x = M_{cr}V_p \mu_0 H_{eff} / kT$

ij	C _{ij}	D _{ij}
POLARIS		
l(++)	$[F_M L(x) \sin^2 \alpha - F_N]^2$	a sin ² α – b sin ⁴ α
l()	$[F_M L(x) \sin^2 \alpha + F_N]^2$	a sin ² α – b sin ⁴ α
l(+ -),l(-+)	Purely magnetic	Purely magnetic
SANSPOL		
l(+)	$[F_M^2L^2(x) - 2F_MF_NL(x)]sin^2\alpha + F_N^2$	a - b sin²α
l(-)	$[F_{M}^{2}L^{2}(x) + 2F_{M}F_{N}L(x)] \sin^{2}\alpha + F_{N}^{2}$	a - b sin²α
l(-) - l(+)	4 F _M F _N L(x) sin²α	0
SANS		
l(Q)	$F_{M}^{2} L^{2}(x) \sin^{2}\alpha + F_{N}^{2}$	2a - b sin²α

Field induced ordering?- Non-perfect alignment of M?

5 vol % Co-FF in C_6D_8 H=0.05 T

Field induced ordering?- Non-perfect alignment of M? 5 vol % Co-FF in C₆D₈ H=0.05 T

POLARIS I(-): spin-flip

$I_{sf}(Q) = F_{M}^{2} \{ [L^{2}(x) S(Q) - L^{2}(x) + 1 - 3L(x)/x] [sin^{2}\alpha * cos^{2}\alpha] + (2 - sin^{2}\alpha)L(x)/x \}$

Uniaxial polarisation analysis in SANS: Additional contrast variation technique

Imperfect alignment of magnetic particle moments

Field induced correlations S(Q,α): Separation of purely magnetic contribution and purely nuclear contributions

Summary: Nanostructures in Ferrofluids

Competing interactions

Magnetic dipol-interaction versus thermal energy

1. Magnetic colloids: "Ferrofluids"

2. Amorphous magnetic alloys:

Soft magnetic materials

Bulk amorphous hardmagnets

Soft magnetic alloys

Fe_{73.5} Si _{15.5}B₇Nb₃ Cu₁: Amorphous ferromagnetic alloy

Improvement of soft magnetic properties by heat treatment

Magnetic contrast variation

Ferromagnetic single domain in ferromagnetic matrix Magnetisation ratio $\gamma(T) = M^{am} / M^{cr}$ Effective magnetic field $M_{eff}(T)$

Scattering cross-section [cm⁻¹]

SANSPOL :Fe-Si-B-Nb-Cu 2 % n-Fe₃Si

A.W. Physica B (2001) 226-233, Heinemann et al 1999

Diffusion zone: Enrichment of Nb

Contrasts for magnetic core, shell and matrix

$$\begin{split} \Delta n_1^{(\pm)} &= n_1^{nuc} \pm n_1^{mag} - n_m^{(\pm)} \\ \Delta \eta_2^{(\pm)} &= \eta_2^{nuc} \pm \eta_2^{mag} - \eta_m^{(\pm)} \\ \eta_m^{(\pm)} &= \eta_m^{nuc} \pm \eta_m^{mag} \end{split}$$

Weak magnetization in the interface between n- Fe₃Si matrix

11111

M^{\perp} : Projection of magnetization onto a plane perpendicular to the scattering vector Q

∠β (ΔΜ , z)

 $|M \perp | = |M| \sin \alpha$

$$\begin{array}{ll} \mathsf{M}\bot^z &= \mid \mathsf{M}\bot\mid \cos\left(90^\circ - (\alpha+\beta)\right) \\ &= \mid \mathsf{M}\bot\mid \sin(\alpha+\beta) \\ &= \mid M \mid \sin\alpha\,\sin(\alpha+\beta) \end{array}$$

 $\begin{array}{ll} \mathsf{M} \bot^{\mathsf{x}} &= \mid \mathsf{M} \bot \mid \sin(90^{\circ} \text{-}(\alpha + \beta)) \\ &\mid M \mid \sin \alpha \cos (\alpha + \beta) \end{array}$

 $\mathbf{M} \perp^{\mathbf{y}} = \mathbf{0}$

Results: Soft magnetic metallic glasses

Diffusion controlled enrichment of Nb around nanocrystals: magnetic dilution:

Weak magnetic interlayer reduces ferromagnetic coupling between matrix and nanocrystals

$Nd_{60} Fe_x Co_{30-x} Al_{10}$ alloys

Magnetic Properties

Non-magnetic

Soft-magnetic

hard-magnetic

versus

compositions and cooling conditions Mold-casting Melt-spinning

Magnetic and crystalline microstructure

Magnetization at H=1T

H= 1T

Almost isotropic patterns

Near Tc₂: Decrease of I(Q) at low Q

Weak magnetic contribution

SANSPOL in Nd₆₀Fe₂₀Co₁₀Al₁₀

Volume distributions

Scattering contrasts

Scattering length densities in Nd₆₀Fe₂₀Co₁₀Al₁₀ Imi

Microstructure model Nd₆₀Fe₂₀Co₁₀Al₁₀

Fe-rich crystalline phase

Nd-rich crystalline phases f₁ and f₂

Nd-rich amorphous phase f₃

Nanostructure $Nd_{60}Fe_{20}Co_{10}AI_{10}$ T > T_{c2} $\frac{hmi}{2}$

Nd-rich Amorphous f₃ Nd-rich crystalline f₁ and f₂

Fe-rich crystalline

$Nd_{60}Fe_{20}Co_{10}AI_{10}$ $Tc_1 < T < Tc_2$

Nd-rich
amorphousNd-rich
crystallineFe-rich
crystallineparamagneticparamagneticMagnetic domainsHard magnetic
$Nd_{60}Fe_{20}Co_{10}AI_{10}$ T < Tc₁

Nd-rich amorphous ferromagnetic

Soft-magnetic

Nd-rich crystalline ferromagnetic

Fe-rich crystalline ferromagnetic

109

- Nanosized Nd-rich crystalline and amorphous particles embedded in Fe-rich ferromagnetic crystals.
- They are paramagnetic between T_{c1} and T_{c2} .
- They act as pinning center for magnetic domains (hard-magnetic behaviour).
- Below T_{c1} they are ferromagnetic with higher magnetization than Fe-rich crystals.

Magnetic Nanostructures Investigated by Small Angle Neutron Scattering

Albrecht Wiedenmann

VIII School of Neutron Scattering "Francesco Paolo Ricci" Structure and Dynamics of magnetic systems

http://www.hmi.de/bereiche/SF/SF3/methods/sans/index_en.html

25.09-6.10.2006 Santa Margerita di Pula (Italy)

III. Practice of SANS

hmi

1. Instrument V4

2. SANS-Experiment, Data Reduction and analysis

3. Tutorial and problem class

SANSPOL Instrument (V4 at hmi)

SANSPOL Instrument V4

SANSPOL components

Transmission-Polariser $\lambda > 0.48$ nm

V-shaped l = 1.8m, $\alpha = 8.33$ mrad

CoFe/Si Supermirror m = 2

FeNdB magnets: 7*100mm H=1kGs

Magnetic guide field

Permanent magnets NdFeB on steel rods Steel plates ST37, H=10 Gs in centre

Spin-flipper

 $B_0=100Gs$, dB/dl=3Gs/cmRF-coil 1=5cm, 3 w/cm: $\omega_0 = \gamma B_0 = 300 kHz$ =Larmor frequency $B_1 = 20 Gs$

Collimator

Transmission - Polariser

Critical angle for total reflection: $\Theta_{c (up)}$ [mrad]= m * 1.73 λ $\Theta_{c (dn)}$ [mrad]= 0.7* λ

No divergence of incident neutrons

 $\Theta_{\rm eff} = \alpha$

Divergence of incident neutrons

Critical angle for total reflection:

 $\Theta_{c (up)}$ [mrad]= m * 1.73 λ $\Theta_{c (dn)}$ [mrad]= 0.7* λ Prototype Fe-Si SM m=3.8

$$\Theta_{\rm eff} = \alpha \pm \delta i v$$

For collimators: $\delta iv = \phi / L$

For neutron guides m=1

 $\delta iv = 1.73 \lambda$

Decrease of Polarisation

Divergence from collimators

Divergence from a neutron guide

hm

V4 polariser behind a neutron guide

V4-m=2 polariser behind a Ni-guide

Magnetic guide-field

Spin-flipper

Performance of SANSPOL

T. Keller, T. Krist, A. Danzig, U. Keiderling, F. Mezei, A. Wiedenmann J. Nuclear Instruments A451(2000), 474-479

III. Practice of SANS

1. Instrument V4

2. SANS-Experiment, Data Reduction and analysis

3. Practice and sensitivity of SANSPOL

Choice of Q-range

 $\begin{array}{ll} \mbox{Guinier-approximation:} \\ \mbox{(for QR}_g < 1.5) \\ \mbox{I(Q)} = \Delta \eta^2 \, V_p^{\ 2} \exp((R_g^{\ 2}Q^2/3)) \\ \mbox{I}_0 &= \Delta \eta^2 \, V_p^{\ 2} \\ \mbox{R}_g &= (3/5)^{1/2} \, R_0 \end{array}$

Porod approximation: (for QR_g > 2.5) $I(Q)=2\pi\Delta\eta^2 S^*Q^{-4} = PQ^{-4}$ $S = 4\pi R_0^2$, $V_p = 4\pi/3R_0^3$ $R_0^4 = 9 I_0/2 P$

 $I(Q) = 9 \Delta \eta^2 V_p^2 [(\sin(QR) - (QR)\cos(QR))/(QR)^3]^2$

Choice of Q-range

hm

Intensity versus resolution

Optimized Conditions: L = I d_E=2d_s

Practice: Intensity contributions

Differential scattering cross section of scuple $\frac{ds}{ds}_{s} = \frac{I_{0} - I_{0}}{C(\lambda) \cdot t_{c} \cdot T_{e}} \cdot I_{BC}$

1.	Scattering with sample + holder	•	ID
2.	Scattering of holder abue		I _{R6}
3.	Residual noise		Io
4.	Transmission of sample - holder	١	Ts
5.	Transmission of holder alone	:	TRE
6.	Absolute calibration	•	Ca

Must be measured for each spectrometer configuration L, L, de, dsp, 7,...

hmi

Calculated

$$T = \exp(\sigma_{tot} t_s / \rho_s)$$

- ts : Thickness of sample
- ps : Atomic density
- otot: Total cross section

 $\sigma_{tot} = \sigma_{abs}(\lambda) + \sigma_{coh} + \sigma_{inc}$ $\sigma_{abs}(\lambda)$: absorption cross section (tabulated for $\lambda=1.8A$) $\sigma_{abs}(\lambda_1) / \sigma_{abs}(\lambda_2) = \lambda_1 / \lambda_2$

Measured : Direct beau : $T = \mathbf{I}_{0}(0) / \mathbf{I}(0) = \frac{\sum_{i=1}^{3 \text{ choch}} (Gouts) \text{ with sam}}{\sum_{i=1}^{3 \text{ choch}} \sum_{i=1}^{3 \text{ choch}} (Gouts) \text{ with sam}}$

- Attenuation of primary beam $f_a = 10.200$
- Saturation corrrections
 - I (true) = I (measured) * $[1-t_1 * I(measured)]$
- · Good collimation (small profile- low contributions of scattering contained in primary beam)

Measurement of empty can with attenuator $f_a=270$

Calibration of absolute intensity

$$C(r) = \phi_0(r) E(r) \cdot \Delta P \cdot ds^2$$

$$d_s^2/L^2$$
Kut be known cell by cell.

[I] Using Aandards with known (ds/dr)

(u) • eg H20 & dinc. = 160 bom/at

• Vanadium dinc = 5 barn/at

Incolumnt scalling inclopendent of Q:

 $T(a) = C(r) \cdot (1 - T_s)/4\pi \cdot scalled$

in 4TT?

• H20: g(1) • ~0.8-1.3 inclose could be

• Vanadium : couly for large & clus

- to SANS from imparties

- the incolumnt B6.

- · Compressibility of a liquid
- · Dorous syntees well grain site > tim
 - $\left(\frac{ds}{dx}\right) = 2\pi \left(0b\right)^2 \frac{s}{\sqrt{2}} \frac{1}{Q_y}$ Porod
- · Glany carbon: Well-know pre calibrated Q-dependencity
- · Ceramics .
- 2 <u>Direct beau measure meub</u> $I_3 = f_a(\lambda) \cdot \phi_0 \ \mathcal{E}(\lambda) \cdot \Delta \mathcal{R}$ with alternation factor $f_a(\lambda)$ lenown: $f_a(\lambda) = \sum (Caunts) \text{ of strong sections Absorbed}$ Un alternation. $\phi_0 \ \mathcal{E}(\lambda) \cdot \Delta \mathcal{R} = I_0 / f_a(\lambda)$ No calibration of individual cells: $E_i(\lambda)!$

ti mi

Data reduction : cell by cell corrections

Anisotropic raw data:

"SC 16", $\lambda = 1.2$ nm, SD = 16 m / 4 m (water)

sample 150 min, 26 n/s

sample holder 180 min, 16 n/s

water cell 120 min, 93 n/s

empty cell 120 min, 64 n/s

cadmium 180 min, 2.4 n/s

Anisotropic reduction procedure:

corrected intensity

error of corrected intensity

$$\Delta I = \sqrt{\left(\frac{\partial I}{\partial Cd} * \Delta Cd\right)^2 + \left(\frac{\partial I}{\partial W} * \Delta W\right)^2 + \left(\frac{\partial I}{\partial WB} * \Delta WB\right)^2 + \left(\frac{\partial I}{\partial SB} * \Delta SB\right)^2 + \left(\frac{\partial I}{\partial S} * \Delta SB\right)^2}$$

- masking
- result: corrected anisotropic data file

corrected data

mask

Azimutal averages

Cuts starting from beam-centre

270[°]dag

Data reduction software: BERSANS

Data analysis: Model fitting (SASFIT, FISH..)

Non-linear least-squares fit

$$\chi^2 = \sum \{ (I(\mathbf{Q}_i)_{exp} - I(\mathbf{Q}_i)_{calc}) / w_i \}^2$$

 $\eta_2 \dots$

$$\Rightarrow$$
 <**R**₁>, $\sigma_{1,}$,**f**_{1,} η_1 <**R**₂>, $\sigma_{2,}$,**f**₂

Data analysis: (Inverse Fourier transform)

p (r)= 4π r² γ (r) e.g: spheres of Radius R

III. Practice of SANS

Instrument V4

SANS-Experiment, Data Reduction and analysis

Examples

Suspension of latex (C₈H₈) in D₂O

	Latex	Heavy water
Molecular weight	104	20
Number of electrons	56	10
Mass-density/ gcm ⁻³	1.0	1.1
Scattering length den	sity	
(X-ray) 0.281e-12	0.281e-12*1.1*10N _I /20	

Neutrons $N_L/104$ (8b_c+8b_H) 1.1*N_L / 20(2b_D+b_O)

ContrastX-ray $(\eta_1 - \eta_2) = -0.195 e^{10} cm^{-2}$ neutrons $(\eta_1 - \eta_2) = -4.970 e^{10} cm^{-2}$

Example 3:Sintering of nano-ceramics

Example3:Sintering of nano-ceramics

Moments of distribution

1. scatt. contrib.:	calc: yes
LogNorm	Sphere
<r^1> = 4.3403</r^1>	<r^5> = 11935.4</r^5>
<r^2> = 23.1189</r^2>	<r^6> = 144147</r^6>
<r^3> = 151.127</r^3>	<r^7> = 2.13335e+006</r^7>
<r^4> = 1212.39</r^4>	<r^8> = 3.85619e+007</r^8>
R_lc = 8.0223	lc = 5.3482
R_li = 6.53696	li = 4.90272
R_Ac = 8.88684	Ac = 31.4235221923
R_VP = 9.8436	VP = 227.705365117
R_RG = 16.356	RG = 12.6693031221

 $R^2 = \langle R^8 \rangle / \langle R^6 \rangle = 16.3$ RG=(5/3)^{0.5}R=12.7

Number density: $n_p (1-f) = N \ 10^{42} = 1.14 \ 10^{21} T \ cm^{-3}$

Volume fraction: $f(1-f)=n_p 4/3\pi < R^3 > =1.15 4/3\pi 151.12 10^{21}10^{-21}= 0.07$

Example3 : Sintering of nano-ceramics

Guinier radius: 11.65 nm

Invariant =f(1-f)/ $2\pi^2 \Delta \eta^2$ $\Delta \eta$ =5.33 10¹⁰ cm⁻² f(1-f)=4.04 10²¹/ $2\pi^2 \Delta \eta^2$ =0.07
Example 4: 2 D-scattering pattern

background

empty beam

sample

water

Wask file; no file Data file: D0035964.00

> Correction for background, efficiency. Beam center Cuts and radial averages

Н

2 D-fit: I=A+B[±] sin² α or segments:

hmi

$I(Q//H) = I_{nuc}(Q)$ $I(Q\perp Q) = A+B^{\pm}$

Scattering length density profile in Co-Ferroflui

Scattering length densities [10¹⁰cm⁻²]

Scattering length densities

1.	Solvent: 43% D / Η mixture of Toluene : η (x)= -0.7(1-x) + 6.8 x	ղ (solv)	= 3.0 10 ¹⁰ cm ⁻²
2.	Non-deuterated shell (C ₂₄ -H ₂₀ -N-O ₂)	n(shell)	$= 0.3 \ 10^{10} \ \mathrm{cm}^{-2}$
3.	Nuclear sld (Co)		
	Ω(Co)=0. 0.01099 nm³/at ,		
	b= 10 ⁻¹² cm	ղ (Co)	= 2.56 10 ¹⁰ cm ⁻²
4.	Magnetic sld Co		
	$m_0 = 1.715 \ \mu_B / atom$		
	η(mag) = 0.27 10 ⁻¹² m ₀ /Ω	ղ (mag)	= 4.3 10 ¹⁰ cm ⁻²

Contrasts for SANSPOL

core - solvent :Δη₁ (on) = η(Co) +η(mag) - η(solv) = 2.56+4.3-3.0= 3.83 10¹⁰ Δη₁ (off) = η(Co) - η(mag) - η(solv) = 2.56-4.3-3.0= -4.70 10¹⁰ Shell-solvent Δη₂ = η(shell) - η(solv) = 0.3-3.0 = -2.73 10¹⁰

Fit of nuclear scattering (I(Q) // H)

I(Q) – on (I perp. H)

I(on) same parameters –except η_1 (on)

I(off) same parameters –except η_1 (off)

Optimisation by simultaneous fits l(on) l(off) and l(nuc) or l(mag) using contraints on parameters e.g.:

> $\Delta \eta_1 \text{ (on)= } \Delta \eta_1 \text{ (nuc)+ } \eta_1 \text{(mag)}$ $\Delta \eta_1 \text{ (off)= } \Delta \eta_1 \text{ (nuc)- } \eta_1 \text{(mag)}$

Software: SASFIT (J. Kohlbrecher , PSI) FISH (R. Heenan ISIS) MATHematica (A.Heinemann, hmi) Max Entropie: (Tatschev, hmi)

Number density: $n_p (1-f) = N \ 10^{42} = 6.59 \ 10^{15} T \ cm^{-3}$

Volume fraction: $f(1-f)=n_p 4/3\pi < R^3 > =6.59 4/3\pi 55.5 10^{15}10^{-21} = 0.0015$

Moments of distribution

Problem class

1.) Calculate the nuclear and magnetic scattering contrast of ferromagnetic Co-particles with fully aligned magnetic moments in a solvent of a mixture of $40\% D_2O$ and $60\% H_2O$.

- H_2O : density 1 g/cm³
- D_2O : density 1.1 g/cm³
- H: Scattering lenght b= -0.374 10⁻¹²cm
- D: Scattering lenght b= 0.667 10⁻¹²cm
- O: Scattering lenght b= 0.581 10-12cm
- Co: Atomic volume Ω (Co)=0. 0.01099 nm³/at , Scattering lenght b= 0.278 10⁻¹²cm, Magnetic Moment m0 = 1.715 μ B/ atom

V. New developments-Dynamical SANS

Spacial fluctuations of density, composition, magnetization Dynamical fluctuations-What time range Relaxation of field-induced order: Time-resolved SANSPOL

Ordering and re-ordering in oscillating external field:

Continuous stroboscopic SANS Pulsed stroboscopic "TISANE"

Time-resolved SANSPOL

Decay of nuclear and magnetic correlations measured in time slices of 0.1 s

Duty cycle 15-30 s

MFT3N1: 6% Co in oil L9 H=0.5T

SANS cross-section

SANSPOL Difference cross-section

Magnetic and Nuclear correlations + Misalignment of magnetic moment + Nomagnetic contributions

Magnetic-Nuclear correlations

SANSPOL Differences

Chain segments remain partly aligned along remanent field

11111

Time dependence of I(+)- I(-)

Sectors α = 90° (Q \perp H)

Time dependence of I(+)- I(-)

hmi

Sectors α = 30°

A. Wiedenmann, U. Keiderling, R. P. May, C. Dewhurst Physica B 2006

•Slow decay of field-induced ordering (few seconds).

•Fully reversible relaxation onto equilibrium

•Single exponential decay: Time constants depending on Q and B_{max} τ (intra-chain) > τ (in-plane) > τ (inter-plane)

Switch-on of B:

Reordering follows B-sweep rate: Process too fast!

Response from oscillating magnetic field

B(t)=B₀*sin ($2\pi\nu$ t + ϕ)

Frequency v = 50 - 2200 Hz

Duty cycle: 3-5 orders of magnitude shorter

Trigger for list-mode data acquisition in 2 D detector

Continuous stroboscopic SANS

2D- Detector: Time stamped recording of each scattered neutron

Sample S Oscillating magnetic field: oscillating magnetic contrast

Continuous monochromatic flux

 $t_{TOF}[ms] = \lambda[nm] * L_2[m] * 2.52778$

Continuous stroboscopic SANS at V4

 $\Delta t_R / T_s = \Delta \lambda * t_{TOF} * v_s$

Pulsed time-involved SANS (TISANE)

Pulsed time-involved SANS (TISANE)

All neutrons scattered at the sample in the same oscillation state are recorded in the same time channel hm

Pulsed time-involved SANS (TISANE)

TISANE@NEAT

 L_1 =13 m, L_2 =4 m, v_E (max)=666 Hz , v_s (max)=2800 Hz

TISANE@NEAT

 L_1 =13 m, L_2 =4 m, v_E (max)=666 Hz , v_s (max)=2800 Hz

11 111 7

Results: Static SANS

Results: Static SANS

Time*frequency

with increasing frequency

MFT3N1-13

0,0 0,2 0,4 0,6 0,8 1,0

Frequency * time

hm

Continuous SANS

Pulsed TISANE:

α = **90°**

Superparamagnetic behaviour

 σ/σ_{∞} = L(M_{cr}V_p μ_0 H_{eff} / kT)

Langevin function:

L(x)=coth(x)-1/x

Known from SANS: V_p Particle volume M_{cr} Magnetic particle moment hm

Magnetic single-domain particles

Static SANS cross-section

$$[F_{M}^{2} L^{2}(x) \sin^{2}\alpha + F_{N}^{2}] S(Q,\alpha)$$

R. Pynn et al (1983), J. Kohlbrecher , AW 1997

Magnetic single-domain particles

Static SANS cross-section

Magnetic and Nuclear correlations

+ Misalignment of magnetic moments

SANS cross-section in oscillating field

Stroboscopic versus static SANS

SANS cross-section in oscillating field

$B(t)=B_0 \sin(2\pi v t) + B_{st}$

Fraction of freely rotating moments

Fraction of freely rotating moments

Neel-relaxation of single particle moment

Néel-relaxation of particle moment

hm

Néel-relaxation of particle moment

Attractive interactions

Formation of ordered domains

Relaxation: Rotation of ordered domains

Relaxation: Rotation of ordered domains

Summary

Mechanisms and dynamics of field-induced ordering in Co-Ferrfluids determined by Brownian relaxation

Dynamical processes in nanoscaled inhomogeneities are observable by time-resolved SANS

Limitation of continuous techniques: $\Delta\lambda/\lambda$ Pulsed TISANE technique: Sub-millisecond range

Complementary to Photon correlation spectroscopy (PCS,XPCS), Forced Raleigh scattering, ac-χ

Closes the gap between inelastic neutron scattering/ Mössbauer (10⁻¹²- 10⁻⁶ s) and static measuremets

A. Wiedenmann, U. Keiderling, K. Habicht, M. Russina, R. Gähler PRL 97 057202 (2006)

Combining *"SANS, SANSPOL, POLARIS "* Contrast variation technique for magnetic materials

Weak magnetic versus strong nuclear contributions and vice-versa:

Density profiles, interfaces Sign and magnitude of contrast

Separation of magnetic and nuclear contributions

Dynamics in nanoscaled materials in sub-ms range

References

- A. Guinier, G. Fournet: Small angle scattering of x rays, John Wiley New Yorck 1955
- O. Glatter O. Kratky edt. Small angle scattering of x ray, Academic Press, London, 1982
- L.A. Feigin D.I. Svergun Structure Analysis by Small Angle X-ray and Neutron Scattering Plenum Press New Yorck, 1987
- G. Kostorz in Neutron Scattering ed. Kostorz Academic New Yorck 12979 p 227
- T. Keller, T. Krist, A. Danzig, U. Keiderling, F. Mezei, A. Wiedenmann, J. Nuclear Instruments A451(2000),474-479
- A. Wiedenmann, A. Hoell, M. Kammel, P. Boesecke, Phys Rev. E 68 (2003) 031203, 1-10
- A. Wiedenmann, J. Appl. Cryst. 33 (2000)428-432
- A. Wiedenmann, Physica B297(2001)226-233
- A. Wiedenmann, A. Hoell and M. Kammel ,J. Magn. Magn. Mater. 252 (2002)83-85
- A. Wiedenmann ,Lecture Notes in Physics, Springer, editor S. Odenbach (2002), S. 33-61
- A. Heinemann, A. Wiedenmann ,J. Appl. Cryst. 36 (2003),845-849
- J. Teixeira, J. Appl. Chryst., 21 (1988) 781-785
- J. Kohlbrecher et al J, Zeitschrift für Physic B, 104 (1997) 1
- U. Keiderling et al, physica B, 213 214 (1995) 895-897
- D.I. Svergun, H.B. Stuhrmann, Acta Cryst., A47 (1991) 736-744
- R. Pynn, Los Alamos Neutr. Sc. Center, ()
- J.S. Pedersen, J. Appl. Chryst., 27 (1994) 595-608
- A. Wiedenmann, Materials Science Forum, 312-314 (1999) 315-324
- A. Heinemann, A. Wiedenmann, Acta Crystallographica Section A, A57 (2001) 1-4
- A. Wiedenmann, Journal of Applied Crystallography, 33 (2000) 428-432
- P. Fratzl, F. Langmayr and O. Raris, J. Appl. Cryst, 26 (1993) 820-826
- U. Keiderling and A. Wiedenmann, Physica B, 213\&214 (1995) 895-897
- A. Wiedenmann SANS investigations of magnetic nanostructures
 - in "Neutron scattering from magnetic materials" ed. T. Chatterji Elsevier 2006, 473-520