Principles of inelastic neutron scattering

Scuola di Spettroscopia Neutronica "F.P. Ricci" S. Margherita di Pula (CA) 25 Sept. - 6 Oct., 2006

Marco Zoppi

Istituto dei Sistemi Complessi

Consiglio Nazionale delle Ricerche

Plan of module N.1

- 1. Introductory notes
- 2. Overview of Neutron Properties
- 3. General description of a scattering experiment
- 4. Cross section: definitions
- 5. Cross section calculation (Q.M.)
- 6. Integration over final energies (diffraction)
- 7. Coherent and incoherent (atomic) scattering

The discovery of neutron (Chadwick, 1932)

1930 - Bothe and Becker bombard Be with α -particles obtaining a very penetrating and non-ionizing radiation, that was assumed to be composed by very energetic γ -rays.

Soon after, Curie and Joliot observe that this radiation, hitting a target of paraffin, give rise to energetic protons (5.3 MeV). Where this radiation composed by γ-particles, their energy should have been of some 52 MeV, quite unlikely.

1932 - Chadwick identifies this radiation as neutral particles with a mass similar to that of proton.

The neutron is officially born!

neutron properties

- Free neutrons are unstable, with half-life $\tau = 10.6$ min. (β -decay)
- Bound neutrons are (generally) stable
- Mass: m = 1.6749286 a.m.u.
- Electric d.m. < 10⁻²⁵ (e cm)
- Spin: s = 1/2
- Magnetic d.m.: $\mu = g_s \ s \ \mu_N$
 - > For a neutral point particle $g_s = 0$
 - > Instead, $\mu = -1.9130418 \mu_N$
 - \Rightarrow neutron is NOT a point particle

Neutron production: nuclear fission

ILL: instrument map

7

Neutron production: spallation (to spall = to splinter, break away)

800 MeV protons

- High nuclear excitation
- Nuclear relaxation
 - Radiative decay
 - Light nuclides evaporation
- 15-30 neutrons / event

Schematics of pulsed source ISIS

Neutron pulsed source ISIS (160 kW) (Oxford, UK)

Intensity of neutron sources: hystorical sketch (and beyond)

Properties of neutrons

De Broglie:
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Momentum: $\mathbf{p} = \hbar \mathbf{k}$

Energy: $E = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{\hbar^2 k^2}{2m}$

Why neutrons?

Copper block: 1x1x1 cm³ density = 8.96 atomic weight: 63.54

Microscopic Structure:

> N = 8.492 x 10^{22} atoms

- > density = 84.92 atoms/nm³
- <ℓ> = 2.27 Å = 0.227 nm

Dynamics:

- > Kin. Energy = $3/2 k_B T$ (not true)
- < <E>= 38 meV
- > <v> = 343 m/s
- > <t> = 0.6 ps

Thermal neutron properties

Moderator: T = 300 K

E = 25.8 meV

~ elementary excitations energy

l = 1.78 A

~ interatomic distances in condensed matter

neutral particles

High penetration power in dense condensed matter

X-rays too may possess the right wavelength ...

<E> = 10 keV l = 1.24 A

thus ...

Good for probing the microscopic structure of dense matter **however**...

Energy too large to probe effectively the microscopic dynamics !

neutron and x-ray cross sections

16

A neutron scattering experiment

Incident neutron

 $\left\{ \boldsymbol{e}_{0}, \hbar \vec{k}_{0} \right\}$

Scattered $\{ \boldsymbol{e}_1, \boldsymbol{h} \vec{k}_1 \}$

Energy transfer

 $E = \boldsymbol{e}_0 - \boldsymbol{e}_1$

transfer

Momentum $k = k_0 - k_1$

dI = neutrons collected (neutrons /sec) N = number of elements in scattering volume $\phi(\varepsilon_0) = \text{Inc. neutron flux (neutrons/meV/sec/cm^2)}$ $d\varepsilon_0 = \text{Incident neutrons energy window (meV)}$ $d\varepsilon_1 = \text{Scattered neutrons energy window (meV)}$ $d\Omega = \text{Collection solid angle}$

Conservation rules: energy

Energy $E = \boldsymbol{e}_0 - \boldsymbol{e}_1$ conservation:

E = energy lost by the neutron

- E = energy gained by the system
 - > Collective excitations
 - Molecular excitations
 - > Nuclear recoil

Conservation rules: momentum

k

 \boldsymbol{k}_0

k

- Momentum $\hbar \mathbf{k} = \hbar \mathbf{k}_0 \hbar \mathbf{k}_1$ conservation:
- k₀ = incident neutron wavenumber
- k₁ =scattered neutron wavenumber
 - ħk =momentum transferred
 to the system
 - > Collective excitations
 - Molecular excitations
 - > Nuclear recoil

q/2

K

 \boldsymbol{k}_0

k

 $\hbar k_0 = \hbar k_1$ $e_0 = e_1$

$$\mathbf{k}^{2} = (\mathbf{k}_{0} - \mathbf{k}_{1})^{2} = k_{0}^{2} + k_{1}^{2} - 2k_{0}k_{1}\cos(\mathbf{q})$$

From which a kinematically allowed region can be drawn:

Kinematically allowed region

Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

23

Calculation of scattering cross section

Initial State: $|0\rangle = |\mathbf{k}_0, \mathbf{s}_0; \Lambda_0, \mathbf{s}_0\rangle$ Neutron $\geq \mathbf{k}_0, \, \mathbf{\epsilon}_0 = \text{momentum and energy}$ >**s**₀ = spin state Target E_0 = target energy $\succ \sigma_0$ = target spin state $>\Lambda_0$ =ALL degrees of freedom \checkmark Collective motions \checkmark Molecular excitations

Final State: $|1\rangle = |\mathbf{k}_1, \mathbf{s}_1; \Lambda_1, \mathbf{s}_1\rangle$ Neutron $\mathbf{k}_1, \mathbf{\epsilon}_1 =$ momentum and energy > s₁ = spin state Target E_1 = target energy $\succ \sigma_1$ = target spin state $> \Lambda_1 =$ ALL degrees of freedom \checkmark Collective motions \checkmark Molecular excitations

1st order perturbation theory (1st Born approximation)

$$w_{0\to 1} = \frac{2\boldsymbol{p}}{\hbar} \left| \langle 1 | \hat{V} | 0 \rangle \right|^2 \boldsymbol{r} (1)$$

Fermi "golden rule", where:

V = interaction Hamiltonian
 ρ(1) = density of final states (1)

Neutrons as plane waves:

Scattering cross section (1)
Incident flux: 1 neutron,
$$[k_0, \varepsilon_0]$$

$$\Phi(\mathbf{e}_0) = \mathbf{r} v_0 = \frac{1}{L^3} \frac{p_0}{m} = \frac{1}{L^3} \frac{\hbar k_0}{m}$$

$$\left[\frac{d^2 \mathbf{s}}{d\Omega d\mathbf{e}}\right]_{0\to 1} = \frac{1}{N} \frac{1}{\Phi(\mathbf{e}_0)} \frac{dI_{0\to 1}}{d\Omega d\mathbf{e}_1} = \frac{1}{N} \frac{mL^3}{\hbar k_0} \frac{w_{0\to 1}}{d\Omega d\mathbf{e}_1}$$
... and the expression for the cross section becomes:

$$\left|\frac{d^2 \mathbf{\sigma}}{d\Omega d\varepsilon}\right|_{0\to 1} = \frac{1}{N} \frac{k_1}{k_0} \left|\frac{\pi L^3}{2\pi\hbar^2}\right|^2 \left|\langle 1|\hat{V}|0\rangle\right|^2 \delta \left|\delta\varepsilon + E_0 - E_1\right|$$

7

Sec.

The matrix element

|0> and |1> are GLOBAL states of the system (target + neutron):

$$\langle 1|V|0\rangle = \langle \mathbf{k}_1, \mathbf{s}_1; \mathbf{\Lambda}_1, \mathbf{s}_1|V|\mathbf{k}_0, \mathbf{s}_0; \mathbf{\Lambda}_0, \mathbf{s}_0\rangle$$

If NO neutron polarization analysis is carried out:

$$\hat{\langle 1 | V | 0 \rangle} = \langle \mathbf{k}_{1}; \Lambda_{1}, \boldsymbol{s}_{1} | V | \mathbf{k}_{0}; \Lambda_{0}, \boldsymbol{s}_{0} \rangle$$

$$= \frac{1}{L^{3}} \int d\mathbf{r} \ e^{i\mathbf{k}_{1}\cdot\mathbf{r}} \langle \Lambda_{1}, \boldsymbol{s}_{1} | V | \Lambda_{0}, \boldsymbol{s}_{0} \rangle e^{-i\mathbf{k}_{0}\cdot\mathbf{r}}$$

28

n-nucleus interaction Hamiltonian

Thermal neutrons: $\mathbf{l} \approx 2$. Å = 2 x 10⁻¹⁰ m
Nuclear size: (potential range) $r_0 \approx \text{fm} = 1 \times 10^{-15} \text{ m}$

FERMI pseudo-potential:

$$\hat{V}_{j}(\boldsymbol{r}) = \frac{2\boldsymbol{p}\,\hbar^{2}}{m}\hat{b}_{j}\,\boldsymbol{d}(\boldsymbol{r}-\hat{\boldsymbol{R}}_{j})$$

where:

 \mathbf{R}_{i} = position of j-th nucleus

 b_i = scattering amplitude of j-th nucleus

Matrix element

$$\begin{split} \langle \mathbf{1} | \hat{V} | \mathbf{0} \rangle &= \frac{1}{L^3} \int d\mathbf{r} \ e^{i\mathbf{k}_1 \cdot \mathbf{r}} \langle \Lambda_1, \mathbf{s}_1 | \sum_j \hat{V}_j(\mathbf{r}) | \Lambda_0, \mathbf{s}_0 \rangle e^{-i\mathbf{k}_0 \cdot \mathbf{r}} \\ &= \frac{1}{L^3} \frac{2\mathbf{p} \, \hbar^2}{m} \sum_j \ \int d\mathbf{r} \ e^{-i\mathbf{k} \cdot \mathbf{r}} \langle \Lambda_1, \mathbf{s}_1 | \hat{b}_j \ \mathbf{d} (\mathbf{r} - \hat{\mathbf{R}}_j) | \Lambda_0, \mathbf{s}_0 \rangle \\ &= \frac{1}{L^3} \frac{2\mathbf{p} \, \hbar^2}{m} \sum_j \ \langle \Lambda_1, \mathbf{s}_1 | \hat{b}_j \ \int d\mathbf{r} \ e^{-i\mathbf{k} \cdot \mathbf{r}} \mathbf{d} (\mathbf{r} - \hat{\mathbf{R}}_j) | \Lambda_0, \mathbf{s}_0 \rangle \\ &= \frac{1}{L^3} \frac{2\mathbf{p} \, \hbar^2}{m} \sum_j \ \langle \Lambda_1, \mathbf{s}_1 | \hat{b}_j \ e^{-i\mathbf{k} \cdot \mathbf{R}_j} | \Lambda_0, \mathbf{s}_0 \rangle \\ &= \frac{1}{L^3} \frac{2\mathbf{p} \, \hbar^2}{m} \sum_j \ \langle \Lambda_1, \mathbf{s}_1 | \hat{b}_j \ e^{-i\mathbf{k} \cdot \mathbf{R}_j} | \Lambda_0, \mathbf{s}_0 \rangle \\ &= \frac{1}{L^3} \frac{2\mathbf{p} \, \hbar^2}{m} \sum_j \ \langle \mathbf{s}_1 | \hat{b}_j | \mathbf{s}_0 \rangle \langle \Lambda_1 | e^{-i\mathbf{k} \cdot \mathbf{R}_j} | \Lambda_0 \rangle \underbrace{= \sum_j f_{0 \to 1}(\mathbf{k}, j)} \\ & \text{Sum over N independent nuclear events} \end{split}$$

Scattering cross section (2)

$$\left[\frac{d^2 s}{d\Omega d \boldsymbol{e}}\right]_{0\to 1} = \frac{1}{N} \frac{k_1}{k_0} \left|\sum_j f_{0\to 1}(\mathbf{k}, j)\right|^2 \boldsymbol{d} \left(\boldsymbol{e} + E_0 - E_1\right)$$

where:

|0> and |1> now refer to the atomic states j- labels the nuclei

MEMO

In general:

Initial state: |0> thermally populated

Final state: |1> not selected

Sum over states

Dirac d-function

The Dirac δ -function writes:

$$\delta b \varepsilon + E_0 - E_1 0 = \frac{1}{2\pi \hbar} \int_{-\infty}^{+\infty} dt \exp \left(\frac{it}{\hbar} b \varepsilon + E_0 - E_1 \right) dt$$

... we take into account that:

 $E_0 = E(\Lambda_0) + E(\sigma_0)$ $E_1 = E(\Lambda_1) + E(\sigma_1)$

 $\boldsymbol{d}(\boldsymbol{e}+\boldsymbol{E}_{0}-\boldsymbol{E}_{1})=\frac{1}{2\boldsymbol{p}\hbar}\int_{-\infty}^{+\infty}dt$ $\exp\left\{-\frac{it}{\hbar}\left[\boldsymbol{e}+E(\Lambda_0)+E(\boldsymbol{S}_0)-E(\Lambda_1)-E(\boldsymbol{S}_1)\right]\right\}$

Scattering cross section (3)

$$\begin{bmatrix} \frac{d^{2}\boldsymbol{s}}{d\Omega d\boldsymbol{e}} \end{bmatrix} = \frac{1}{N} \frac{k_{1}}{k_{0}} \sum_{j,l} \sum_{\Lambda_{0},\boldsymbol{s}_{0}} p(\Lambda_{0}) p(\boldsymbol{s}_{0}) \sum_{\Lambda_{1},\boldsymbol{s}_{1}} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \, e^{\left\{ -\frac{it}{\hbar} [\boldsymbol{e} + E(\Lambda_{0}) + E(\boldsymbol{s}_{0}) - E(\Lambda_{1}) - E(\boldsymbol{s}_{1})] \right\}} \langle \Lambda_{0} | \boldsymbol{e}^{i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{j}} | \Lambda_{1} \rangle \langle \boldsymbol{s}_{0} | \hat{\boldsymbol{b}}_{j}^{+} | \boldsymbol{s}_{1} \rangle \langle \Lambda_{1} | \boldsymbol{e}^{-i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{l}} | \Lambda_{0} \rangle \langle \boldsymbol{s}_{1} | \hat{\boldsymbol{b}}_{l} | \boldsymbol{s}_{0} \rangle$$

Scattering cross section (4)

$$\left[\frac{d^{2}\boldsymbol{s}}{d\Omega d\boldsymbol{e}}\right] = \frac{1}{N} \frac{k_{1}}{k_{0}} \sum_{j,l} \sum_{\Lambda_{0},\boldsymbol{s}_{0}} p(\Lambda_{0}) p(\boldsymbol{s}_{0}) \sum_{\Lambda_{1},\boldsymbol{s}_{1}} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \ \boldsymbol{e}^{\left\{-\frac{it\boldsymbol{e}}{\hbar}\right\}}$$

Energy terms are distributed close to the various |ket> and <bra| eigenstates where they belong

$$\left< \Lambda_0 \left| e^{i \mathbf{k} \cdot \hat{\mathbf{R}}_j} \right| \Lambda_1 \right> \left< \mathbf{s}_0 \left| \hat{b}_j^+ \right| \mathbf{s}_1 \right>$$

$$e^{\frac{it}{\hbar}E(\Lambda_1)} \langle \Lambda_1 | e^{-i\mathbf{k}\cdot\hat{\mathbf{R}}_l} | \Lambda_0 \rangle e^{-\frac{it}{\hbar}E(\Lambda_0)}$$

$$e^{\frac{it}{\hbar}E(\boldsymbol{s}_{1})}\langle\boldsymbol{s}_{1}|\hat{b}_{l}|\boldsymbol{s}_{0}\rangle e^{-\frac{it}{\hbar}E(\boldsymbol{s}_{0})}$$

Initial and final states are eigenstates of the unperturbed Hamiltonian, H

$$\begin{bmatrix} \frac{d^{2}\boldsymbol{s}}{d\Omega d\boldsymbol{e}} \end{bmatrix} = \frac{1}{N} \frac{k_{1}}{k_{0}} \sum_{j,l} \sum_{\Lambda_{0},\boldsymbol{s}_{0}} p(\Lambda_{0}) p(\boldsymbol{s}_{0}) \sum_{\Lambda_{1},\boldsymbol{s}_{1}} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{\left\{\frac{-it\boldsymbol{e}}{\hbar}\right\}} \\ \langle \Lambda_{0} | e^{i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{j}} | \Lambda_{1} \rangle \langle \boldsymbol{s}_{0} | \hat{b}_{j}^{+} | \boldsymbol{s}_{1} \rangle \\ \langle \Lambda_{1} | e^{\frac{it}{\hbar}\hat{H}(\Lambda)} \ e^{-i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{l}} \ e^{-\frac{it}{\hbar}\hat{H}(\Lambda)} | \Lambda_{0} \rangle \\ \langle \boldsymbol{s}_{1} | e^{\frac{it}{\hbar}\hat{H}(\boldsymbol{s})} \ \hat{b}_{l} \ e^{-\frac{-it}{\hbar}\hat{H}(\boldsymbol{s})} | \boldsymbol{s}_{0} \rangle \end{cases}$$

The Heisenberg operator

$$\hat{O}_{H}(t) = e^{i\frac{\hat{H}t}{\hbar}}\hat{O}_{S}e^{-i\frac{\hat{H}t}{\hbar}}$$

and the cross section becomes:

$$\begin{bmatrix} \frac{d^{2}\boldsymbol{s}}{d\boldsymbol{\Omega}d\boldsymbol{e}} \end{bmatrix} = \frac{1}{N} \frac{k_{1}}{k_{0}} \sum_{j,l} \sum_{\Lambda_{0},\boldsymbol{s}_{0}} p(\Lambda_{0}) p(\boldsymbol{s}_{0}) \sum_{\Lambda_{1},\boldsymbol{s}_{1}} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{-i\boldsymbol{w}t}$$
$$\left\langle \Lambda_{0} \left| e^{i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{j}(0)} \right| \Lambda_{1} \right\rangle \left\langle \Lambda_{1} \left| e^{-i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{l}(t)} \right| \Lambda_{0} \right\rangle$$
$$\left\langle \boldsymbol{s}_{0} \left| \hat{b}_{j}^{+}(0) \right| \boldsymbol{s}_{1} \right\rangle \left\langle \boldsymbol{s}_{1} \right| \hat{b}_{l}(t) \left| \boldsymbol{s}_{0} \right\rangle$$

The representation of the final states is COMPLETE $\sum_{\Lambda_1} |\Lambda_1\rangle \langle \Lambda_1| = 1 \qquad \sum_{\Lambda_1} |\boldsymbol{s}_1\rangle \langle \boldsymbol{s}_1| = 1$ and the double differential cross section becomes: $\left|\frac{d^2 s}{d\Omega de}\right| = \frac{1}{N} \frac{k_1}{k_0} \sum_{i,l} \sum_{\Lambda_0, \mathbf{s}_i} p(\Lambda_0) p(\mathbf{s}_0) \frac{1}{2\mathbf{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{-i\mathbf{w}t}$ $\langle \Lambda_0 | e^{i \mathbf{k} \cdot \hat{\mathbf{R}}_j(0)} e^{-i \mathbf{k} \cdot \hat{\mathbf{R}}_l(t)} | \Lambda_0 \rangle$ $\langle \boldsymbol{s}_0 | \hat{b}_i^{\dagger}(0) \hat{b}_l(t) | \boldsymbol{s}_0 \rangle$

Summarizing:

- The cross section is RIGOROUS within the 1st Born approximation
- The cross section is determined by:
 - > Nuclear position dynamics \Rightarrow R(t)
 - > Nuclear spin dynamics \Rightarrow b(t)
- Using unpolarized neutrons, the spin dynamics information is INCOMPLETE
- Within the same framework, we
 NEGLECT the nuclear spin dynamics
 ⇒ b(t)=b(0)

Neglecting spin dynamics:

 $\begin{bmatrix} \frac{d^{2}\boldsymbol{s}}{d\Omega d\boldsymbol{e}} \end{bmatrix} = \frac{1}{N} \frac{k_{1}}{k_{0}} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{-i\boldsymbol{w}t} \sum_{j,l} \sum_{\boldsymbol{s}_{0}} p(\boldsymbol{s}_{0}) \langle \boldsymbol{s}_{0} | \hat{\boldsymbol{b}}_{j}^{+} \hat{\boldsymbol{b}}_{l} | \boldsymbol{s}_{0} \rangle$ $\sum_{j} p(\boldsymbol{\Lambda}_{0}) \langle \boldsymbol{\Lambda}_{0} | e^{i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{j}(0)} e^{-i\boldsymbol{k}\cdot\hat{\boldsymbol{R}}_{l}(t)} | \boldsymbol{\Lambda}_{0} \rangle$

Cross section determined by dynamics of nuclear pairs We define the pair correlation function:

$$Y_{j,l} \mathbb{D}\mathbf{k}, t \mathbb{Q} = \sum_{\Lambda_0} p(\Lambda_0) \langle \Lambda_0 | e^{i\mathbf{k}\cdot\hat{\mathbf{R}}_j} e^{-i\mathbf{k}\cdot\hat{\mathbf{R}}_l(t)} | \Lambda_0 \rangle$$
$$= \langle e^{i\mathbf{k}\cdot\hat{\mathbf{R}}_j} e^{-i\mathbf{k}\cdot\hat{\mathbf{R}}_l(t)} \rangle$$

Double differential cross section

$$\begin{bmatrix} d^2 \mathbf{s} \\ d\Omega d\mathbf{e} \end{bmatrix} = \frac{1}{N} \frac{k_1}{k_0} \frac{1}{2\mathbf{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{-i\mathbf{w}t} \sum_{j,l}$$

$$\sum_{\boldsymbol{s}_0} p(\boldsymbol{s}_0) \langle \boldsymbol{s}_0 | \hat{\boldsymbol{b}}_j^{\dagger} \hat{\boldsymbol{b}}_l | \boldsymbol{s}_0 \rangle \langle e^{i \boldsymbol{k} \cdot \hat{\boldsymbol{R}}_j} e^{-i \boldsymbol{k} \cdot \hat{\boldsymbol{R}}_l(t)} \rangle$$

MEMO:

Operators $\mathbf{R}_{j}(0)$ and $\mathbf{R}_{l}(t)$, taken at different times, DO NOT COMMUTE !

The two exponentials can be combined in the classical limit ONLY.

TWO possibilities for the sum over nucler positions

 $\ell = j$ self term

$$\sum_{\boldsymbol{s}_0} p_{\boldsymbol{s}_0} \langle \boldsymbol{s}_0 | \hat{b}_j^{\dagger} \hat{b}_j | \boldsymbol{s}_0 \rangle = \langle \hat{b}_j^{\dagger} \hat{b}_j \rangle \equiv \overline{b_j^2}$$

 $\ell \neq j$ distinct term

MEMO: We assume a negligible quantum correlation between different nuclei.

$$\sum_{\boldsymbol{s}_0} p_{\boldsymbol{s}_0} \langle \boldsymbol{s}_0 | \hat{\boldsymbol{b}}_j^{\dagger} \hat{\boldsymbol{b}}_l | \boldsymbol{s}_0 \rangle = \sum p_{\boldsymbol{s}_0^1}^{(1)} \cdots p_{\boldsymbol{s}_0^N}^{(N)} \langle \boldsymbol{s}_0^{(1)} \cdots \boldsymbol{s}_0^{(N)} | \hat{\boldsymbol{b}}_j^{\dagger} \hat{\boldsymbol{b}}_l | \boldsymbol{s}_0^{(1)} \cdots \boldsymbol{s}_0^{(N)} \rangle$$

$$= \sum p_{\boldsymbol{s}_{0}^{j}}^{(j)} \left\langle \boldsymbol{s}_{0}^{(j)} \left| \hat{b}_{j}^{\dagger} \right| \boldsymbol{s}_{0}^{(j)} \right\rangle \sum p_{\boldsymbol{s}_{0}^{l}}^{(l)} \left\langle \boldsymbol{s}_{0}^{(l)} \left| \hat{b}_{l} \right| \boldsymbol{s}_{0}^{(l)} \right\rangle$$

$$= \left\langle \hat{b}_{j}^{+} \right\rangle \left\langle \hat{b}_{l}^{+} \right\rangle = \overline{b}_{j}^{*} \overline{b}_{l}$$

Decomposition in self & distinct terms

We define the self term:

$$I_{self}(\mathbf{k},t) = \frac{1}{N} \sum_{j} \overline{b_{j}^{2}} \left\langle e^{-i\mathbf{k}\cdot\mathbf{R}_{j}(0)} e^{i\mathbf{k}\cdot\mathbf{R}_{j}(t)} \right\rangle$$

... and the distinct term

$$I_{dist}(\mathbf{k},t) = \frac{1}{N} \sum_{j} \sum_{l \neq j} \bar{b}_{j}^{*} \bar{b}_{l} \left\langle e^{-i\mathbf{k}\cdot\mathbf{R}_{j}(0)} e^{i\mathbf{k}\cdot\mathbf{R}_{l}(t)} \right\rangle$$

The cross section becomes:

1

$$\frac{d^2\sigma}{d\Omega d\varepsilon} = \frac{k_1}{k_0} \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} dt \exp\{-i\omega t\} \left[I_{dist}(k,t) + I_{self}(k,t) \right]$$

Monatomic, monoisotopic sample

$$\hat{b}_j = \hat{b}_l = \hat{b}_l$$
 ... as a consequence:

The self term:

The distinct term:

$$I_{self}(\mathbf{k},t) = \frac{b^2}{N} \sum_{j} \left\langle e^{-i\mathbf{k}\cdot\mathbf{R}_j(0)} e^{i\mathbf{k}\cdot\mathbf{R}_j(t)} \right\rangle$$

$$I_{dist}(\mathbf{k},t) = \frac{\overline{b}^* \overline{b}}{N} \sum_{j} \sum_{l \neq j} \left\langle e^{-i\mathbf{k} \cdot \mathbf{R}_j(0)} e^{i\mathbf{k} \cdot \mathbf{R}_l(t)} \right\rangle$$

Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

44

A neutron diffraction experiment: integration over all final energies Neutron detector Scattered neutron the differential cross section is: $\frac{d\mathbf{s}}{d\Omega} = \int_{-\infty}^{+\infty} d\mathbf{e} \frac{d^2 \mathbf{s}}{d\Omega d\mathbf{e}} \qquad \text{MEMO:} \\ \text{True IF } \mathbf{\epsilon}_0 \to \infty$ Targe Incident neutron $\frac{ds}{d\Omega} = \int_{-\infty}^{+\infty} dw \, \mathbf{k} \, \frac{1}{2\mathbf{p}} \int_{-\infty}^{+\infty} dt \, \exp\{-i\mathbf{w}t\} \left[I_{dist}(\mathbf{k},t) + I_{self}(\mathbf{k},t) \right]$ In the same limit the static approximation holds: $k_1 \cong k_0$ $\frac{d\mathbf{s}}{d\mathbf{O}} = I_{dist}(\mathbf{k},0) + I_{self}(\mathbf{k},0)$ 45 Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

How good is the static approximation? (thermal neutrons: atomic case)

How good is the static approximation? (thermal neutrons: molecular / crystal case)

- Molecular case:
 - > M >> m, overall recoil negligible
 - > $\varepsilon_0 < \Delta E$ (smallest molecular excitation)
- Crystal case:
 - > $\varepsilon_0 < \Delta E$ (smallest phonon excitation)

In practice:

> Careful analysis, case by case.

The differential cross section

$$\frac{ds}{d\Omega} = I_{dist}(\mathbf{k}, 0) + I_{self}(\mathbf{k}, 0) \quad \text{where:}$$

$$I_{self}(\mathbf{k}, 0) = \frac{\overline{b}^2}{N} \sum_j \left\langle e^{-i\mathbf{k}\cdot\mathbf{R}_j(0)} e^{i\mathbf{k}\cdot\mathbf{R}_j(0)} \right\rangle = \overline{b}^2$$
Operators \mathbf{R}_j and \mathbf{R}_j , taken at the same time DO COMMUTE The two exponentials can be combined:

$$I_{dist}(\mathbf{k}, 0) = \frac{\overline{b}^* \overline{b}}{N} \sum_j \sum_{l \neq j} \left\langle e^{-i\mathbf{k}\cdot\mathbf{R}_j(0)} e^{i\mathbf{k}\cdot\mathbf{R}_l(0)} \right\rangle = \frac{\left|\overline{b}\right|^2}{N} \sum_j \sum_{l \neq j} \left\langle e^{-i\mathbf{k}\cdot(\mathbf{R}_j-\mathbf{R}_l)} \right\rangle$$

The structure factor

Definition:

$$S(\mathbf{k}) = \frac{1}{N} \sum_{j,l} \left\langle e^{-i\mathbf{k} \cdot \left(\mathbf{R}_l - \mathbf{R}_j\right)} \right\rangle$$

As a consequence:

$$\frac{1}{N}\sum_{j}\sum_{l\neq j}\left\langle e^{-i\mathbf{k}\cdot\left(\mathbf{R}_{l}-\mathbf{R}_{j}\right)}\right\rangle = S(\mathbf{k})-1$$

And the differential cross section becomes:

$$\frac{d\boldsymbol{s}}{d\Omega} = \overline{b^2} + \left|\overline{b}\right|^2 \left[S(\mathbf{k}) - 1\right]$$

Basic expression for a diffraction experiment

The total scattering cross section

For an isotropic system:

$$\boldsymbol{s}(k) = \int d\Omega \, \frac{d\boldsymbol{s}}{d\Omega} = 4\boldsymbol{p} \, \overline{\boldsymbol{b}^2} + 4\boldsymbol{p} \left| \overline{\boldsymbol{b}} \right|^2 \left[S(k) - 1 \right]$$

For a homogeneous system: S(k) = 1 $S(k) = 4pb^2 = S_{tot}$

Definition:

 $\boldsymbol{s}_{coh} = 4\boldsymbol{p} \left| \overline{b} \right|^{2}$ •Coherent cross section $\boldsymbol{s}_{inc} = 4\boldsymbol{p} \left[\overline{b^{2}} - \left| \overline{b} \right|^{2} \right]$ •Incoherent cross section $\boldsymbol{s}_{tot} = \boldsymbol{s}_{coh} + \boldsymbol{s}_{inc} = 4\boldsymbol{p} \overline{b^{2}}$ •Total cross section

back to the d.d. scattering c.s.

$$\left[\frac{d^2 s}{d\Omega d \boldsymbol{e}}\right] = \frac{k_1}{k_0} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \exp\{-i\boldsymbol{w}t\} \left[I_{dist}(\mathbf{k},t) + I_{self}(\mathbf{k},t)\right]$$

For a monatomic, mono-isotopic system:

$$I_{dist}(\mathbf{k},t) = \left|\overline{b}\right|^{2} \frac{1}{N} \sum_{j} \sum_{l \neq j} \left\langle e^{-i\mathbf{k} \cdot \mathbf{R}_{j}(0)} e^{i\mathbf{k} \cdot \mathbf{R}_{l}(t)} \right\rangle = \left|\overline{b}\right|^{2} F_{dist}(\mathbf{k},t)$$

$$I_{self}(\mathbf{k},t) = \overline{b^{2}} \frac{1}{N} \sum_{j} \left\langle e^{-i\mathbf{k} \cdot \mathbf{R}_{j}(0)} e^{i\mathbf{k} \cdot \mathbf{R}_{j}(t)} \right\rangle = \overline{b^{2}} F_{self}(\mathbf{k},t)$$

 $F_{self}(k,t) = F_{dist}(k,t)$ = intermediate scattering functions

The classical formula for the double differential scattering cross section:

[L. Van Howe, Phys. Rev. 95, 249, (1954)]

$$\frac{d^2 s}{d\Omega dw} = \begin{bmatrix} \frac{k_1}{k_0} \\ \frac{k_1}{k_0} \end{bmatrix} = \begin{bmatrix} \frac{k_1}{k_0} \\ \frac{k_1}{4p} \\ \frac{k_0}{4p} \\ \frac{k_0}{4p} \\ \frac{k_0}{k_0} \end{bmatrix}$$

Where the dynamic structure factors are defined as:

$$S(k, \mathbf{w}) = \frac{1}{2p} \int_{-\infty}^{+\infty} dt \exp\left[-i\mathbf{w} t\right] F(k, t)$$

$$S_{self}(k, \mathbf{w}) = \frac{1}{2p} \int_{-\infty}^{+\infty} dt \exp\left[-i\mathbf{w} t\right] F(k, t)$$

General considerations on the distinct term (classical limit)

The distinct term:

$$I_{dist}(\mathbf{k},t) = \frac{1}{N} \sum_{j} \sum_{l \neq j} \overline{b}_{j}^{*} \overline{b}_{l} \left\langle e^{-i\mathbf{k} \cdot \left[\mathbf{R}_{j}(0) - \mathbf{R}_{l}(t)\right]} \right\rangle$$

 $[R_i - R_1] > internuclear distance (\approx 1 A)$

when $k \gg 1 A^{-1}$

then, fast phase oscillations impose: $I_{dist}(k,t) \cong 0$

when $k \ll 1 A^{-1}$

I_{dist}(k,t) probes long-wavelength collective (phonon) modes

General considerations on the self term (classical limit)

The self term

$$I_{self}(\mathbf{k},t) = \frac{1}{N} \sum_{j} \overline{b_{j}^{2}} \left\langle e^{-i\mathbf{k} \cdot \left[\mathbf{R}_{j}(0) - \mathbf{R}_{j}(t)\right]} \right\rangle$$

Large k probe the short-time self dynamics.

Small k probe the long-time diffusive motion $[exp \rightarrow 1, in a crystal (NO diffusion)].$

Self term is the only surviving at large k.

Very large $k \Rightarrow$ very short-time dynamics

 $[R_i(t) - R_i(0)] \cong v_i t$ (impulse approximation)

coherent / incoherent scattering $\left|\frac{d^{2}s}{d\Omega de}\right| = \frac{k_{1}}{k_{0}} \frac{1}{2\mathbf{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{-i\mathbf{w}t} \frac{1}{N} \sum_{j \mid l} \left\langle \hat{b}_{j}^{+} \hat{b}_{l} \right\rangle \left\langle e^{i\mathbf{k}\cdot\hat{\mathbf{R}}_{j}} e^{-i\mathbf{k}\cdot\hat{\mathbf{R}}_{l}(t)} \right\rangle$ $\left\langle \hat{b}_{j}^{+} \hat{b}_{l}^{-} \right\rangle = \left\langle \hat{b}_{j}^{+} \hat{b}_{l}^{-} \right\rangle_{l \neq j} + \boldsymbol{d}_{j,l} \left\langle \hat{b}_{j}^{+} \hat{b}_{j}^{-} \right\rangle$ by writing: $= \left\langle \hat{b}_{j}^{+} \right\rangle \left\langle \hat{b}_{l}^{-} \right\rangle_{l \neq i} + \boldsymbol{d}_{j,l} \left\langle b_{j}^{2} \right\rangle \pm \boldsymbol{d}_{j,l} \left\langle \hat{b}_{j}^{+} \right\rangle \left\langle \hat{b}_{j}^{-} \right\rangle$ $= \left\langle \hat{b}_{j} \right\rangle^{*} \left\langle \hat{b}_{l} \right\rangle + \boldsymbol{d}_{j,l} \left| \left\langle b_{j}^{2} \right\rangle - \left\langle \hat{b}_{j} \right\rangle^{*} \left\langle \hat{b}_{j} \right\rangle \right|$ For a monatomic, mono-isotopic system: $\left\langle \hat{\boldsymbol{b}}_{j}^{+} \hat{\boldsymbol{b}}_{l} \right\rangle = \left| \overline{\boldsymbol{b}} \right|^{2} + \boldsymbol{d}_{j,l} \left[\overline{\boldsymbol{b}^{2}} - \left| \overline{\boldsymbol{b}} \right|^{2} \right] = \frac{1}{4\boldsymbol{p}} \left[\boldsymbol{s}_{coh} + \boldsymbol{d}_{j,l} \boldsymbol{s}_{inc} \right]$ Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006 55

$$\begin{aligned} & \left[\frac{d^{2}\boldsymbol{s}}{d\Omega d\boldsymbol{e}}\right] = \frac{k_{1}}{k_{0}} \frac{1}{2\boldsymbol{p}\hbar} \int_{-\infty}^{+\infty} dt \ e^{-i\boldsymbol{w}t} \ I(\boldsymbol{k},t) \\ & \text{where:} \quad I(\boldsymbol{k},t) = I_{coh}(\boldsymbol{k},t) + I_{inc}(\boldsymbol{k},t) \qquad \text{with:} \\ & I_{coh}(\boldsymbol{k},t) = \frac{\boldsymbol{s}_{coh}}{4\boldsymbol{p}} F(\boldsymbol{k},t) \\ & \text{and:} \qquad I_{inc}(\boldsymbol{k},t) = \frac{\boldsymbol{s}_{inc}}{4\boldsymbol{p}} F_{self}(\boldsymbol{k},t) \\ & F(\boldsymbol{k},t) = \frac{1}{N} \sum_{j,l} \left\langle e^{-i\boldsymbol{k}\cdot\boldsymbol{R}_{j}(0)} e^{i\boldsymbol{k}\cdot\boldsymbol{R}_{j}(t)} \right\rangle \\ & \left[F_{self}(\boldsymbol{k},t) = \frac{1}{N} \sum_{j} \left\langle e^{-i\boldsymbol{k}\cdot\boldsymbol{R}_{j}(0)} e^{i\boldsymbol{k}\cdot\boldsymbol{R}_{j}(t)} \right\rangle \end{aligned}$$

Origin of incoherence in elastic neutron scattering

Monatomic mono-isotopic system:

- Nuclear spin ¹ 0: the spin transition introduces a random term in the phase of the scattered neutron wave (constructive interference NOT possible).
 ⇒ incoherent scattering (es.: Vanadium 51)
 - Nuclear spin = 0: NO spin transition allowed (constructive interference IS possible) \Rightarrow coherent scattering (es.: Argon 36)

Monatomic isotopic mixture

 Incoherence is induced by different scattering lenghts of different isotopes

Origin of incoherence in neutron inelastic scattering

Collective excitations (phonons)

- The scattering event on the single nucleus is (substantially) elastic:
- $\bullet \Rightarrow constructive interference IS possible$

Molecular transitions are excited:

- The intra-molecular transition introduces a random phase in the scattered neutron propagator:
- $\bullet \Rightarrow NO$ constructive interference possible.

Summing up:

- Neutron features
- How neutrons are produced
- Thermal and pulsed neutron sources
- General theory of a neutron inelastic scattering experiment
- Integration over the final energy (diffraction)
- General considerations on D.D. cross section:
 - > High k limit
 - Low k limit
 - > origin of the incoherence in neutron scattering

THE END

• ... of part 1

• to be continued

Plan of module N.2 (discussing the Born approximation)

- 1. Scattering from a central potential
- 2. General solution (Green function method)
- 3. Perturbative solution
- 4. 1st order solution (Born approximation)
- 5. Validity Criterion
- 6. Failure of the Born approximation (wow!)
- 7. Fermi conjecture
- 8. Fermi pseudo-potential

Particle scattering problem in Quantum Mechanics (A. Messiah, Ch.XIX)

Problem: scattering from a central potential V(r).

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r}) \qquad \begin{array}{l} \text{Schrödinger}\\ \text{Equation} \end{array}\right)$$

A known Eigensolution (with the correct asymptotic behaviour) is:

$$\Psi(\mathbf{r}) \approx e^{i\mathbf{k}_0 \cdot \mathbf{r}} + f(\Omega) \frac{e^{ik_1 r}}{r} \quad \text{with} \quad E = \frac{\hbar^2 k^2}{2m}$$

Solution of Schrödinger equation

we define: $U(r) = \frac{2m}{\hbar^2} V(r)$

$$(\nabla^2 + k^2)\Psi(r) = U(r)\Psi(r)$$
 Schrödinger equation

General Solution of the inhomogeneous equation:

$$\Psi(\mathbf{r}) = \Psi_{\text{homogeneous}}(\mathbf{r}) + \Psi_{\text{particular}}(\mathbf{r})$$

Solution of the homogeneous equation:

$$(\nabla^2 + k^2) \Phi(\mathbf{r}) = 0 \implies \Phi(\mathbf{r}) = e^{i\mathbf{k}_0 \cdot \mathbf{r}}$$

the Green function method for the particular solution

Definition of the Green function:

$$\left(\nabla^2 + k^2\right)G(\mathbf{r} - \mathbf{r'}) = \boldsymbol{d}(\mathbf{r} - \mathbf{r'})$$

Particular solution:

$$\Psi(\mathbf{r}) = \int d\mathbf{r}' \, G(\mathbf{r} - \mathbf{r}') \, U(r') \, \Psi(\mathbf{r}')$$

Formal general solution of Schrödinger equation:

 $\Psi(\mathbf{r}) = \Phi(\mathbf{r}) - \int d\mathbf{r}' G(\mathbf{r} - \mathbf{r}') U(r') \Psi(\mathbf{r}')$

soution of the Green equation: $(\nabla^2 + k^2)G(\mathbf{r}) = -\mathbf{d}(\mathbf{r})$ We define the Fourier transform: $F(\mathbf{q}) = \int d\mathbf{r} \, e^{-i\mathbf{q}\cdot\mathbf{r}} G(\mathbf{r}) \quad \text{the differential equation becomes:}$ $\left(-q^2+k^2\right)F(\mathbf{q})=-1$... and the solution is: $F(q) = \frac{1}{q^2 - k^2}$ From which, using the inverse Fourier transform: $G(\mathbf{r}) = \frac{1}{(2\mathbf{p})^3} \int d\mathbf{q} \, e^{i\mathbf{q}\cdot\mathbf{r}} F(\mathbf{q})$

the Fourier integral (angular part):

$$G(\mathbf{r}) = \frac{1}{(2\mathbf{p})^3} \int_0^{2\mathbf{p}} d\mathbf{j} \int_0^{\mathbf{p}} d\mathbf{q} \sin(\mathbf{q}) \int_0^{\infty} dq \, q^2 e^{iqr\cos(q)} F(q)$$

$$= \frac{2\mathbf{p}}{(2\mathbf{p})^3} \int_{-1}^{1} dx \int_0^{\infty} dq \, q^2 e^{iqrx} F(q)$$

$$= \frac{1}{(2\mathbf{p})^2} \int_0^{\infty} dq \, q^2 F(q) \int_{-1}^{1} dx e^{iqrx}$$

$$= \frac{1}{(2\mathbf{p})^2} \int_0^{\infty} dq \, q^2 F(q) \frac{2\sin(qr)}{qr}$$

$$= \frac{1}{2\mathbf{p}^2 r} \int_0^{\infty} dq \, q \sin(qr) F(q)$$
Sucla di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

the Fourier integral (radial term):

$$G(\mathbf{r}) = \frac{1}{2p^2 r} \int_0^\infty dq \, q \sin(qr) \frac{1}{q^2 - k^2} \quad \text{integrand EVEN in } \kappa$$

$$= \frac{1}{4p^2 r} \int_{-\infty}^{+\infty} dq \, \sin(qr) \frac{1}{q^2 - k^2} \quad \text{exp. form of } \sin(\kappa r)$$

$$= \frac{1}{4p^2 r} \int_{-\infty}^{+\infty} dq \, q \, \frac{e^{iqr} - e^{-iqr}}{2i} \frac{1}{q^2 - k^2} \text{ combining the 2 exp.}$$

$$= \frac{1}{4ip^2 r} \int_{-\infty}^{+\infty} dq \, q \, \frac{e^{iqr}}{q^2 - k^2} \quad \text{contour integral in the complex plane}$$

the contour integral:

the Green function:

The final result for the Green function is:

$$G(\mathbf{r}-\mathbf{r'}) = \frac{e^{ik_1|\mathbf{r}-\mathbf{r'}|}}{4\mathbf{p}|\mathbf{r}-\mathbf{r'}|}$$

And the formal solution of the Schrödinger equation becomes:

$$\Psi(\mathbf{r}) = e^{i\mathbf{k}_0 \cdot \mathbf{r}} - \int d\mathbf{r}' \frac{e^{ik_1|\mathbf{r}-\mathbf{r}'|}}{4\mathbf{p}|\mathbf{r}-\mathbf{r}'|} U(r') \Psi(\mathbf{r}')$$

The result is RIGOROUS: no approximation made

Approximation N. 1: far field

We are looking for a solution far from the potential centre.

 $r_0 = range of U(r) \ll r$

$$|\mathbf{r} - \mathbf{r'}| \cong r - \mathbf{r'} \cdot \hat{\mathbf{r}}$$

Thus the formal solution becomes $(\mathbf{k}_1 \text{ directed as } \mathbf{r})$:

$$\Psi(\mathbf{r}) = e^{i\mathbf{k}_0 \cdot \mathbf{r}} - \frac{e^{ik_1r}}{4\mathbf{p} r} \int d\mathbf{r'} e^{-i\mathbf{k}_1 \cdot \mathbf{r'}} U(r') \Psi(\mathbf{r'})$$

Perturbative solution:

$$\Psi(\mathbf{r}) = e^{i\mathbf{k}_{0}\cdot\mathbf{r}} - \frac{e^{ik_{1}r}}{4p r} \int d\mathbf{r}' e^{-ik_{1}(\mathbf{r}'\cdot\hat{\mathbf{r}})} U(r') \Psi(\mathbf{r}')$$
Equation can be solved iteratively
[provided U(r) is small]

$$\Psi^{(0)}(\mathbf{r}) = e^{i\mathbf{k}_{0}\cdot\mathbf{r}} \quad 0\text{-th order solution !}$$
1-st order solution !
1-st order solution !

$$\Psi^{(1)}(\mathbf{r}) = e^{i\mathbf{k}_{0}\cdot\mathbf{r}} - \frac{e^{ik_{1}r}}{4p r} \int d\mathbf{r}' e^{-i\mathbf{k}_{1}\cdot\mathbf{r}'} U(r') \Psi^{(0)}(\mathbf{r}')$$
Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2007

1st order solution (Born approximation): $k_1 = k_1 (r/r)$ $\mathbf{k} = \mathbf{k}_1 - \mathbf{k}_0$ \mathbf{k}_{0} $\Psi^{(1)}(\mathbf{r}) = e^{i\mathbf{k}_0 \cdot \mathbf{r}} - \frac{e^{ik_1r}}{4\mathbf{p} r} \int d\mathbf{r}' e^{-i(\mathbf{k}_1 - \mathbf{k}_0) \cdot \mathbf{r}'} U(r')$ The solution, in Born approximation, becomes: $f(\mathbf{\Omega}) = \frac{-1}{4\mathbf{p}} \int d\mathbf{r}' \ e^{-i\mathbf{k}\cdot\mathbf{r}'} \ U(r') = \frac{-2\mathbf{m}}{4\mathbf{p} \ \hbar^2} \int d\mathbf{r}' \ e^{-i\mathbf{k}\cdot\mathbf{r}'} \ V(r')$ Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

72
validity condition of the Born approximation

1st order solution:

$$\Psi(\mathbf{r}) = e^{i\mathbf{k}_0 \cdot \mathbf{r}} - \int d\mathbf{r}' \frac{e^{ik_1|\mathbf{r}-\mathbf{r}'|}}{4\mathbf{p}|\mathbf{r}-\mathbf{r}'|} U(r') e^{i\mathbf{k}_0 \cdot \mathbf{r}'}$$

The 2nd term (spherical wave) SHOULD be smaller than the 1st (plane wave).

$$\frac{2\boldsymbol{m}}{\hbar^{2}}\int d\mathbf{r}' \frac{e^{ik_{1}|\mathbf{r}-\mathbf{r}'|}}{4\boldsymbol{p}|\mathbf{r}-\mathbf{r}'|} V(r') e^{i\mathbf{k}_{0}\cdot\mathbf{r}'} <<1$$

This condition should be valid in any point **r**, where the interaction potential is $\neq 0$

check on the validity condition

Without loss in generality, we assume:

- square well potential (depth V_0 and range r_0)
- $\mathbf{r} \cong \mathbf{0}$

$$\Delta = \left| \frac{2\boldsymbol{m}}{\hbar^2} \int d\mathbf{r}' \frac{e^{ik_1 r'}}{4\boldsymbol{p} r'} V(r') e^{i\mathbf{k}_0 \cdot \mathbf{r}'} \right| \ll 1$$

Moreover:

- We take the the z-axis along \mathbf{k}_0
- We assume $k_1 \sim k_0$

angular integration

$$\Delta = \left| \frac{2m}{\hbar^2} 2p \int_0^p dq \sin q \int_0^{r_0} dr r^2 \frac{e^{ik_0 r}}{4p r} V(r) e^{ik_0 r \cos q} \right|$$

$$= \left| \frac{m}{\hbar^2} \int_0^{r_0} dr r^2 \frac{e^{ik_0 r}}{r} V(r) \int_{-1}^1 dx e^{ik_0 rx} \right|$$

$$= \left| \frac{m}{\hbar^2} \int_0^{r_0} dr r^2 \frac{e^{ik_0 r}}{r} V(r') \frac{1}{ik_0 r} \left[e^{ik_0 r} - e^{-ik_0 r} \right] \right|$$

$$= \left| \frac{mV_0}{ik_0 \hbar^2} \int_0^{r_0} dr \left[e^{2ik_0 r} - 1 \right] \right|$$
Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

radial integration

$$\Delta = \left| \frac{\mathbf{m}V_0}{ik_0\hbar^2} \int_0^{r_0} dr \left[e^{2ik_0r} - 1 \right] \right|$$

= $\left| \frac{\mathbf{m}V_0}{ik_0\hbar^2} \left[\frac{1}{2ik_0} \left(e^{2ik_0r_0} - 1 \right) - r_0 \right] \right|$
We define: y=2 k₀ r₀ $\Delta = \frac{\mathbf{m}V_0}{2k_0^2\hbar^2} \left| e^{iy} - iy - 1 \right|$
= $\frac{\mathbf{m}V_0}{2k_0^2\hbar^2} \left[\left(e^{iy} - iy - 1 \right) \left(e^{-iy} + iy - 1 \right) \right]^{\frac{1}{2}}$
= $\frac{\mathbf{m}V_0}{2k_0^2\hbar^2} \left[y^2 + 2 + 2y \sin y - 2\cos y \right]^{\frac{1}{2}}$

failure of the Born approximation !

Assuming: $\lambda_0 \cong 10^{-8}$ cm, $r_0 = 2 \times 10^{-13}$ cm y = 2 k₀ r₀ = 2.5x10⁻⁴ << 1

$$\Delta = \frac{mV_0}{2k_0^2\hbar^2} \left[y^2 + 2 - 2y\sin y - 2\cos y \right]^{1/2} = \frac{mV_0}{2k_0^2\hbar^2} \left[\frac{y^4}{4} + \cdots \right]^{1/2}$$

and the condition becomes:

$$\Delta \cong \frac{mV_0 r_0^2}{\hbar^2} << 1$$

Assuming (n-p interaction): $V_0 \cong 36 \text{ MeV}$ $\Delta \cong \frac{mV_0 r_0^2}{\hbar^2} = \frac{(1.6 \times 10^{-24}) \cdot (36 \times 10^6 \cdot 1.6 \times 10^{-12}) \cdot 4 \times 10^{-26}}{10^{-54}} \cong 3.7$

Definitely Δ is NOT << 1 !!!

Fermi conjecture (La Ricerca Scientifica, v.7, p.13, 1936)

$$f(\Omega) \approx \frac{\mathbf{m}}{\hbar^2} \int d\mathbf{r}' \ e^{-i\mathbf{k}\cdot\mathbf{r}'} V(r') \approx \frac{\mathbf{m}}{\hbar^2} V_0 r_0^3 = \text{scattering amplitude}$$
(can be measured)

- Decrease V_0 and increase r_0 in such a way that $V_0 r_0^3$ remains \cong constant
- For example:

>
$$V_0^* = V_0 \times 10^{-6}$$

> $r_0^* = r_0 \times 10^2$

 $k_0 r_0^* = 2.5 \ 10^{-2} << 1$

$$\Delta \cong \frac{mV_0^*(r_0^*)^2}{\hbar^2} \cong 3.7 \times 10^{-6} \times 10^4 = 3.7 \times 10^{-2}$$

In other words:

- Collision theory for thermal neutrons can be reformulated in such a way that the 1st Born approximation can be safely applied.
- Thermal neutron wavelength is long enough, that we may extend the range of the neutron-nucleon potential by two orders of magnitude, still considering the scattering event as happening in a point.
- This allows to decrease the effective amplitude of the potential by six orders of magnitude, without changing the scattering length

Definition of Fermi pseudo-potential

$$\hat{V}_{j}(\boldsymbol{r}) = \frac{2\boldsymbol{p}\,\hbar^{2}}{m}\hat{b}_{j}\,\boldsymbol{d}(\boldsymbol{r}-\hat{\boldsymbol{R}}_{j})$$

- It contains only the (measurable) scattering length ...
- ... and some fundamental constants (neutron mass and ħ)

Summing up:

- Scattering Problem in Q.M.
- Solution of Schrödinger equation (using the Green function method)
- The 1-st order solution
 - (Born approximation)
- Failure of the Born Approximation
- Fermi conjecture
- Fermi pseudo-potential

Plan of module N.3 (dealing with recoil)

- 1. Recalling some basic QM relations
- 2. Intermediate scattering functions
- 3. Evidencing the recoil factor

Some basic OM relations (1)

$$\begin{bmatrix} R_{j,a}, P_{l,b} \end{bmatrix} = i\hbar d_{jl} d_{a,b} \delta_{\alpha,\beta}^{j,l} \qquad \text{label the nuclei} \\ \text{label the Cartesian components} \\ \text{As a consequence:} \\ \begin{bmatrix} P_{j,a}, A(r,p) \end{bmatrix} = -i\hbar \frac{\Re}{\Re R_{j,a}} A(r,p) \begin{bmatrix} R_{j,a}, A(r,p) \end{bmatrix} = i\hbar \frac{\Re}{\Re P_{j,a}} A(r,p) \\ \text{in particular:} \\ \begin{bmatrix} P_{j,a}, \exp \left[ik \cdot R_l \right] \end{bmatrix} = \hbar k_a d_{jl} \exp \left[ik \cdot R_l \right] \\ \text{from which:} \\ P_{j,a} \exp \left[ik \cdot R_l \right] = \exp \left[ik \cdot R_l \right] = \exp \left[ik \cdot R_l \right] \\ \end{bmatrix}$$

Some basic QM relations (2)

The procedure can be iterated:

$$|P_{j,a}|^n \exp \left| i\mathbf{k} \cdot \mathbf{R}_l \right| = \exp \left| i\mathbf{k} \cdot \mathbf{R}_l \right| + P_{j,a}|^n$$

and we arrive to the general expression:

$$\boldsymbol{A}(\boldsymbol{r},\boldsymbol{p}) \exp \left[\boldsymbol{h}\boldsymbol{k} \cdot \boldsymbol{R}_{j} \right] = \exp \left[\boldsymbol{h}\boldsymbol{k} \cdot \boldsymbol{R}_{j} \right] \boldsymbol{A}\left[\boldsymbol{r}; \boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \dots, \boldsymbol{\theta}_{j} + \hbar \boldsymbol{k} \right], \dots, \boldsymbol{P}_{N} \right]$$

Thus, for any function of operators A(r,p) we have:

$$\begin{aligned} & \exp \left[\mathbf{h} + i\mathbf{k} \cdot \mathbf{R}_{j} \mathbf{S} A(r, p) \exp \left[-i\mathbf{k} \cdot \mathbf{R}_{l} \mathbf{Q} \right] = \\ & = \exp \left[\mathbf{0} i\mathbf{k} \cdot \mathbf{Q}_{j} - \mathbf{R}_{l} \right]^{\dagger} \mathbf{A}(r; \mathbf{P}_{1}, \mathbf{P}_{2}, \cdots, \mathbf{P}_{l} - \hbar \mathbf{k}, \cdots, \mathbf{P}_{N}) \end{aligned}$$

Application to the Hamiltonian

$$e^{i\mathbf{k}\cdot\mathbf{R}_{l}}e^{\frac{it}{\hbar}H}e^{-i\mathbf{k}\cdot\mathbf{R}_{l}} = e^{\frac{it}{\hbar}H(r;\mathbf{P}_{1},\cdots,\mathbf{P}_{l}-\hbar\mathbf{k},\cdots,\mathbf{P}_{N})}$$

If the Hamiltonian has the standard form:

$$H(r,p) = \frac{p^2}{2M} + \Phi(r)$$

... then we have:

$$\mathbf{H}(r;\mathbf{P}_{1},\cdots,\mathbf{P}_{l}-\hbar\mathbf{k},\cdots,\mathbf{P}_{N})=\mathbf{H}(r,p)-\frac{\hbar}{M}(\mathbf{P}_{l}\cdot\mathbf{k})+\frac{\hbar^{2}k^{2}}{2M}$$

Recall the intermediate scattering functions

$$F(\mathbf{k},t) = \frac{1}{N} \sum_{j,l} \left\langle e^{i\mathbf{k}\cdot\mathbf{R}_{j}} e^{-i\mathbf{k}\cdot\mathbf{R}_{l}(t)} \right\rangle$$
$$= \frac{1}{N} \sum_{j,l} \left\langle e^{i\mathbf{k}\cdot\mathbf{R}_{j}} e^{-i\mathbf{k}\cdot\mathbf{R}_{l}} e^{i\mathbf{k}\cdot\mathbf{R}_{l}} e^{-i\mathbf{k}\cdot\mathbf{R}_{l}(t)} \right\rangle$$
$$= \frac{1}{N} \sum_{j,l} \left\langle e^{i\mathbf{k}\cdot(\mathbf{R}_{j}-\mathbf{R}_{l})} e^{i\mathbf{k}\cdot\mathbf{R}_{l}} e^{\frac{it}{\hbar}\mathbf{H}} e^{-i\mathbf{k}\cdot\mathbf{R}_{l}} e^{-\frac{it}{\hbar}\mathbf{H}} \right\rangle$$
$$F_{self}(\mathbf{k},t) = \frac{1}{N} \sum_{j} \left\langle e^{i\mathbf{k}\cdot\mathbf{R}_{j}} e^{\frac{it}{\hbar}\mathbf{R}} e^{-i\mathbf{k}\cdot\mathbf{R}_{j}} e^{-\frac{it}{\hbar}\mathbf{H}} \right\rangle$$

Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

86

They become:

$$F(\mathbf{k},t) = e^{\frac{it}{\hbar}\frac{\hbar^{2}k^{2}}{2M}} \frac{1}{N} \sum_{j,l} \left\langle e^{i\mathbf{k}\cdot(\mathbf{R}_{j}-\mathbf{R}_{l})} e^{\frac{it}{\hbar}\left[\mathbf{H}-\frac{\hbar}{M}(\mathbf{P}_{l}\cdot\mathbf{k})\right]} e^{-\frac{it}{\hbar}\mathbf{H}} \right\rangle$$

coherent term
$$F_{self}(\mathbf{k},t) = e^{\frac{it}{\hbar}\frac{\hbar^{2}k^{2}}{2M}} \frac{1}{N} \sum_{j} \left\langle e^{\frac{it}{\hbar}\left[\mathbf{H}-\frac{\hbar}{M}(\mathbf{P}_{j}\cdot\mathbf{k})\right]} e^{-\frac{it}{\hbar}\mathbf{H}} \right\rangle$$

incoherent (self) term

$$define the operator A_{j}(\mathbf{k},t)$$

$$A_{j}(\mathbf{k},t) = e^{\frac{it}{\hbar}H'_{j}(r,p)}e^{-\frac{it}{\hbar}H(r,p)}$$
where: $H'_{j}(r,p) = \left[H(r,p) - \frac{\hbar}{M}(\mathbf{P}_{j} \cdot \mathbf{k})\right] = \left[H(r,p) - \hbar \mathbf{v}_{j} \cdot \mathbf{k}\right]$
its equation of motion is:
$$\frac{d}{dt}A_{j}(\mathbf{k},t) = \left(\frac{iH'}{\hbar}\right)e^{\frac{it}{\hbar}H'}e^{-\frac{it}{\hbar}H} + e^{\frac{it}{\hbar}H'}\left(\frac{-iH}{\hbar}\right)e^{-\frac{it}{\hbar}H}$$

$$= e^{\frac{it}{\hbar}H'}\left(i\frac{H'-H}{\hbar}\right)e^{-\frac{it}{\hbar}H}$$

$$= e^{\frac{it}{\hbar}H'}\left(-i\mathbf{v}_{j} \cdot \mathbf{k}\right)e^{-\frac{it}{\hbar}H}$$

Choosing the reference system

- Origin \equiv position of j-th particle at t=0
- $\Phi(r)=\Phi(R_1, ..., R_{j-1}, R_{j+1}, ..., R_N)$ (independent of R_j)

As a consequence:

•
$$[P_j, H(r,p)] = 0$$

the Eq. of motion reduces to:

 $\frac{d}{dt}A_{j}(\mathbf{k},t) = \left[-i \mathbf{v}_{j}(t) \cdot \mathbf{k}\right]A_{j}(\mathbf{k},t) \quad \text{whose solution is:}$

$$A_j(\mathbf{k},t) = A_j(\mathbf{k},0) - i \int_0^t dt_1 [\mathbf{v}_j(t_1) \cdot \mathbf{k}] A_j(\mathbf{k},t_1)$$

Iterative solution of Operator A_i(k,t)

$$A_{j}(\mathbf{k},t) = 1 - ik \int_{0}^{t} dt_{1} v_{j,k}(t_{1}) A_{j}(\mathbf{k},t_{1})$$

1-th order solution:

$$A_{j}^{(1)}(\mathbf{k},t) = 1 - ik \int_{0}^{t} dt_{1} v_{j,k}(t_{1})$$

2-nd order solution:

$$\begin{aligned} A_{j}^{(2)}(\mathbf{k},t) &= 1 - ik \int_{0}^{t} dt_{1} v_{j,k}(t_{1}) A^{(1)}(\mathbf{k},t_{1}) \\ &= 1 - ik \int_{0}^{t} dt_{1} v_{j,k}(t_{1}) \left[1 - ik \int_{0}^{t_{1}} dt_{2} v_{j,k}(t_{2}) \right] \\ &= 1 + (-ik) \int_{0}^{t} dt_{1} v_{j,k}(t_{1}) + (-ik)^{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} v_{j,k}(t_{1}) v_{j,k}(t_{2}) \end{aligned}$$

Formal solution of A_j(k,t)

$$A_{j}(\mathbf{k},t) = \sum_{n=0}^{\infty} (-ik)^{n} \int_{0}^{t} dt_{1} \cdots \int_{0}^{t_{n-1}} dt_{n} v_{j,k}(t_{1}) \cdots v_{j,k}(t_{n})$$

Introducing the Dyson (Time Ordering) **T** operator:

$$A_{j}(\mathbf{k},t) = \sum_{n=0}^{\infty} \frac{(-ik)^{n}}{n!} \int_{0}^{t} dt_{1} \cdots \int_{0}^{t} dt_{n} \operatorname{T} \left\{ v_{j,k}(t_{1}) \cdots v_{j,k}(t_{n}) \right\}$$

and the formal solution becomes:

$$A_j(\mathbf{k},t) = \mathrm{T}e^{-ik\int_0^t dt_1 v_{j,k}(t_1)}$$

Introducing atomic displacement
Atomic motion:
$$\mathbf{R}_{j}(t) = \mathbf{R}_{j}(0) + \int_{0}^{t} dt' \mathbf{v}_{j}(t')$$

projecting along k: $R_{j,k}(t) = R_{j,k}(0) + \int_{0}^{t} dt' \mathbf{v}_{j,k}(t')$
 $A_{j}(\mathbf{k}, t) = \mathbf{T}e^{ik\{R_{j,k}(0)-R_{j,k}(t)\}}$ = formal solution.
In vector form:
 $A_{j}(\mathbf{k}, t) = \mathbf{T}e^{i\mathbf{k}\cdot[\mathbf{R}_{j}(0)-\mathbf{R}_{j}(t)]} = \mathbf{T}e^{-i\mathbf{k}\cdot[\mathbf{R}_{j}(t)-\mathbf{R}_{j}(0)]}$
 $= e^{-i\mathbf{k}\cdot[\mathbf{R}_{j}(t)-\mathbf{R}_{j}(0)]} = e^{-i\mathbf{k}\cdot d\mathbf{R}_{j}(t)}$

Back to intermediate sc. functions

$$F(\mathbf{k},t) = e^{\frac{it}{\hbar}E_R} \frac{1}{N} \sum_{j,l} \left\langle e^{i\mathbf{k}\cdot\left(\mathbf{R}_j - \mathbf{R}_l\right)} A_l(\mathbf{k},t) \right\rangle$$

$$F_{self}(\mathbf{k},t) = e^{\frac{it}{\hbar}E_R} \frac{1}{N} \sum_j \left\langle A_j(\mathbf{k},t) \right\rangle = e^{\frac{it}{\hbar}E_R} \left\langle A(\mathbf{k},t) \right\rangle$$
$$= e^{\frac{it}{\hbar}E_R} \left\langle e^{-i\mathbf{k}\cdot d\mathbf{R}(t)} \right\rangle$$

Having defined the recoil energy: E_R

Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

 $=\frac{\hbar^2 k^2}{2}$

2M

Summing up:

- Very general Q.M. relations
- Applied to the intermediate scattering functions F (k,t) and F_{dist}(k,t)
- Explicit derivation of recoil term

Thank you for your attention!

INES Italian Neutron Experimental Station

Scuola di Spettroscopia Neutronica "F.P. Ricci" S. Margherita di Pula (CA) 25 Sept. - 6 Oct., 2006

Marco Zoppi

Istituto dei Sistemi Complessi

Consiglio Nazionale delle Ricerche

INES: W. W. W. W. & W.

- WHO:
 - Italian CNR Neutron Spettroscopy Committe
- WHY:
 - Italy has NO national source for neutron scattering WHAT:
 - Multi-purpose powder diffractometer
 - WHERE:

- ISIS (the moste powerful pulsed neutron source)
- Beamline N-8, downstream TOSCA spectrometer
 WHEN:
 - 2003 Official start of project
 - 2005 End of Commissioning
 - 2006 Beginning of user program

Location of INES@ISIS

Frame overlap on INES

We assume as an acceptable limit: Slow neutron flux < 0.001 Fast neutron flux

INES features

L₀ = 22.80 m. L₁ = 1.00 m. $\lambda_{min} = 0.17 \text{ Å}$

$$d_{max} = 16.1 \text{ Å}$$

 $d_{min} = 0.4 \text{ Å}$

$$\begin{aligned} \theta_{max} &= 170.6^{\circ} \\ O_{min} &= 3.8 \text{ Å}^{-1} \\ Q_{max} &= 75. \text{ Å}^{-1} \end{aligned} \qquad \begin{array}{l} d_{max} &= 1.65 \text{ Å} \\ d_{min} &= 0.08 \text{ Å} \end{aligned}$$

Diffraction resolving power (pulsed neutrons)

In general:

Shape and size of moderator

Shape and size of sample and detector

Relative angular size of sample and detector

sample & detector size-effect

8

INES resolving power (no angular contribution)

INES resolving power (total)

What about the neutron flux? (courtesy of P.G. Radaelli)

Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006

13
INES: the actual instrument

Beam size: 34x34 mm² Uniform flux Limited penumbra

goto
$$\Rightarrow$$
 slides

Scuola di Spettroscopia Neutronica "F.P. Ricci", S. Margherita di Pula (CA), 25 Sept. - 6 Oct., 2006